3
|
He XD, Gong W, Zhang JN, Nie J, Yao CF, Guo FS, Lin Y, Wu XH, Li F, Li J, Sun WC, Wang ED, An YP, Tang HR, Yan GQ, Yang PY, Wei Y, Mao YZ, Lin PC, Zhao JY, Xu Y, Xu W, Zhao SM. Sensing and Transmitting Intracellular Amino Acid Signals through Reversible Lysine Aminoacylations. Cell Metab 2018; 27:151-166.e6. [PMID: 29198988 DOI: 10.1016/j.cmet.2017.10.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/17/2017] [Accepted: 10/26/2017] [Indexed: 02/05/2023]
Abstract
Amino acids are known regulators of cellular signaling and physiology, but how they are sensed intracellularly is not fully understood. Herein, we report that each aminoacyl-tRNA synthetase (ARS) senses its cognate amino acid sufficiency through catalyzing the formation of lysine aminoacylation (K-AA) on its specific substrate proteins. At physiologic levels, amino acids promote ARSs bound to their substrates and form K-AAs on the ɛ-amine of lysines in their substrates by producing reactive aminoacyl adenylates. The K-AA marks can be removed by deacetylases, such as SIRT1 and SIRT3, employing the same mechanism as that involved in deacetylation. These dynamically regulated K-AAs transduce signals of their respective amino acids. Reversible leucylation on ras-related GTP-binding protein A/B regulates activity of the mammalian target of rapamycin complex 1. Glutaminylation on apoptosis signal-regulating kinase 1 suppresses apoptosis. We discovered non-canonical functions of ARSs and revealed systematic and functional amino acid sensing and signal transduction networks.
Collapse
Affiliation(s)
- Xia-Di He
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Wei Gong
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PRC
| | - Jia-Nong Zhang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Ji Nie
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Cui-Fang Yao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Fu-Shen Guo
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Yan Lin
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Xiao-Hui Wu
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200032, PRC
| | - Feng Li
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Jie Li
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PRC
| | - Wei-Cheng Sun
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - En-Duo Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yan-Peng An
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Hui-Ru Tang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Guo-Quan Yan
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC
| | - Peng-Yuan Yang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC
| | - Yun Wei
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Yun-Zi Mao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining 810007, PRC
| | - Jian-Yuan Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC
| | - Yanhui Xu
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, PRC; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PRC.
| | - Wei Xu
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC.
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PRC; Key Laboratory of Reproduction Regulation of NPFPC (SIPPR,IRD) and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PRC; State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PRC.
| |
Collapse
|
9
|
Iwaki J, Suzuki R, Fujimoto Z, Momma M, Kuno A, Hasegawa T. Overexpression, purification and crystallization of tyrosyl-tRNA synthetase from the hyperthermophilic archaeon Aeropyrum pernix K1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:1003-5. [PMID: 16511219 PMCID: PMC1978129 DOI: 10.1107/s1744309105033245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/17/2005] [Indexed: 11/10/2022]
Abstract
Hyperthermophilic archaeal tyrosyl-tRNA synthetase from Aeropyrum pernix K1 was cloned and overexpressed in Escherichia coli. The expressed protein was purified by Cibacron Blue affinity chromatography following heat treatment at 363 K. Crystals suitable for X-ray diffraction studies were obtained under optimized crystallization conditions in the presence of 1.5 M ammonium sulfate using the hanging-drop vapour-diffusion method. The crystals belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 66.1, c = 196.2 A, and diffracted to beyond 2.15 A resolution at 100 K.
Collapse
Affiliation(s)
- Jun Iwaki
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Ryuichiro Suzuki
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Research Centre for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Zui Fujimoto
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Mitsuru Momma
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Atsushi Kuno
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
- Research Centre for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Tsunemi Hasegawa
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| |
Collapse
|