1
|
Steger F, Reich J, Fuchs W, Rittmann SKMR, Gübitz GM, Ribitsch D, Bochmann G. Comparison of Carbonic Anhydrases for CO 2 Sequestration. Int J Mol Sci 2022; 23:957. [PMID: 35055147 PMCID: PMC8777876 DOI: 10.3390/ijms23020957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Strategies for depleting carbon dioxide (CO2) from flue gases are urgently needed and carbonic anhydrases (CAs) can contribute to solving this problem. They catalyze the hydration of CO2 in aqueous solutions and therefore capture the CO2. However, the harsh conditions due to varying process temperatures are limiting factors for the application of enzymes. The current study aims to examine four recombinantly produced CAs from different organisms, namely CAs from Acetobacterium woodii (AwCA or CynT), Persephonella marina (PmCA), Methanobacterium thermoautotrophicum (MtaCA or Cab) and Sulphurihydrogenibium yellowstonense (SspCA). The highest expression yields and activities were found for AwCA (1814 WAU mg-1 AwCA) and PmCA (1748 WAU mg-1 PmCA). AwCA was highly stable in a mesophilic temperature range, whereas PmCA proved to be exceptionally thermostable. Our results indicate the potential to utilize CAs from anaerobic microorganisms to develop CO2 sequestration applications.
Collapse
Affiliation(s)
- Franziska Steger
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Johanna Reich
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Werner Fuchs
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Georg M Gübitz
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Doris Ribitsch
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Günther Bochmann
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| |
Collapse
|
2
|
Fachet M, Witte C, Flassig RJ, Rihko-Struckmann LK, McKie-Krisberg Z, Polle JEW, Sundmacher K. Reconstruction and analysis of a carbon-core metabolic network for Dunaliella salina. BMC Bioinformatics 2020; 21:1. [PMID: 31898485 PMCID: PMC6941287 DOI: 10.1186/s12859-019-3325-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The green microalga Dunaliella salina accumulates a high proportion of β-carotene during abiotic stress conditions. To better understand the intracellular flux distribution leading to carotenoid accumulation, this work aimed at reconstructing a carbon core metabolic network for D. salina CCAP 19/18 based on the recently published nuclear genome and its validation with experimental observations and literature data. RESULTS The reconstruction resulted in a network model with 221 reactions and 212 metabolites within three compartments: cytosol, chloroplast and mitochondrion. The network was implemented in the MATLAB toolbox CellNetAnalyzer and checked for feasibility. Furthermore, a flux balance analysis was carried out for different light and nutrient uptake rates. The comparison of the experimental knowledge with the model prediction revealed that the results of the stoichiometric network analysis are plausible and in good agreement with the observed behavior. Accordingly, our model provides an excellent tool for investigating the carbon core metabolism of D. salina. CONCLUSIONS The reconstructed metabolic network of D. salina presented in this work is able to predict the biological behavior under light and nutrient stress and will lead to an improved process understanding for the optimized production of high-value products in microalgae.
Collapse
Affiliation(s)
- Melanie Fachet
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany
| | - Carina Witte
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany
| | - Robert J Flassig
- Brandenburg University of Applied Sciences, Department of Engineering, Magdeburger Str. 50, Brandenburg an der Havel, 14770, Germany
| | - Liisa K Rihko-Struckmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany.
| | - Zaid McKie-Krisberg
- Brooklyn College of the City University of New York, Department of Biology, 2900 Bedford Avenue, New York, NY 11210, USA
| | - Jürgen E W Polle
- Brooklyn College of the City University of New York, Department of Biology, 2900 Bedford Avenue, New York, NY 11210, USA
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Process Systems Engineering, Sandtorstr. 1, Magdeburg, 39106, Germany.,Otto von Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, Magdeburg, 39106, Germany
| |
Collapse
|
3
|
Bi R, Zeng X, Mu L, Hou L, Liu W, Li P, Chen H, Li D, Bouchez A, Tang J, Xie L. Sensitivities of seven algal species to triclosan, fluoxetine and their mixtures. Sci Rep 2018; 8:15361. [PMID: 30337662 PMCID: PMC6193942 DOI: 10.1038/s41598-018-33785-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023] Open
Abstract
Increasing release of pharmaceuticals and personal care products (PPCPs) into aquatic ecosystems is a growing environmental concern. Triclosan and fluoxetine are two widely used PPCPs and frequently detected in aquatic ecosystems. In this study, the sensitivities of 7 algal species from 4 genera to triclosan, fluoxetine and their mixture were evaluated. The results showed that the inhibitory effect on algal growth (EC50-96h) of triclosan varied with 50 times differences among the 7 algal species. Chlorella ellipsoidea was the least susceptible species and Dunaliella parva was the most sensitive species to triclosan. The inhibitory effect of fluoxetine was less variable than triclosan. Slightly higher toxicity of fluoxetine than triclosan was shown in the 7 tested algal species. No consistent pattern of the effects from mixture of triclosan and fluoxetine was observed among the 7 algal species and among the 4 genera. Additive effects of the mixture occured in 4 species and antagonistic effects in the other 3 species but no synergistic effect was detected. The algal species might show some sign of phylogenetic response to triclosan, as evidenced by the wide range of differences in their sensitivity at the genus level. This study provides important data which could be beneficial for biomonitoring programs on the ecological risk (algal species diversity) of these two chemicals.
Collapse
Affiliation(s)
- Ran Bi
- Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China.
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| | - Lei Mu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510655, China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China
| | - Ping Li
- Marine Biology Institute, Shantou University, Shantou, Guangdong, 515063, China
| | - Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Dan Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Agnes Bouchez
- Institute National de la Recherche Agronomique, UMR CARRTEL, Thonon-les-Bains, 74200, France
| | - Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000, China
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Lee CH, Jang EK, Yeon YJ, Pack SP. Stabilization of Bovine carbonic anhydrase II through rational site-specific immobilization. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Jo BH, Im SK, Cha HJ. Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Bose H, Satyanarayana T. Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO 2 and as a virtual peroxidase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10869-10884. [PMID: 28293826 DOI: 10.1007/s11356-017-8739-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Aeribacillus pallidus TSHB1 polyextremophilic bacterium produces a γ-carbonic anhydrase (ApCA), which is a homotrimeric biocatalyst with a subunit molecular mass of 32 ± 2 kDa. The enzyme is stable in the pH range between 8.0 and 11.0 and thus alkali-stable and moderately thermostable with T1/2 values of 40 ± 1, 15 ± 1, and 8 ± 0.5 min at 60, 70, and 80 °C, respectively. Activation energy for irreversible inactivation "E d " of carbonic anhydrase is 67.119 kJ mol-1. The enzyme is stable in the presence of various flue gas contaminants such as SO32-,SO42-, and NO3- and cations Mg2+, Mn2+, Ca2+, and Ba2+. Fluorescence studies in the presence of N-bromosuccinimide and fluorescence quenching using KI and acrylamide revealed the importance of tryptophan residues in maintaining the structural integrity of the enzyme. ApCA is more efficient than the commercially available bovine carbonic anhydrase (BCA) in CO2 sequestration. The enzyme was successfully used in biomineralization of CO2 from flue gas. Replacement of active site Zn2+ with Mn2+ enabled ApCA to function as a peroxidase which exhibited alkali-stability and moderate thermostability like ApCA.
Collapse
Affiliation(s)
- Himadri Bose
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Netaji Subhas Institute of Technology, Azad Hind Fauz Marg, Sector 3, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
7
|
Jun SY, Kim SH, Kanth BK, Lee J, Pack SP. Expression and characterization of a codon-optimized alkaline-stable carbonic anhydrase from Aliivibrio salmonicida for CO 2 sequestration applications. Bioprocess Biosyst Eng 2016; 40:413-421. [PMID: 27896426 DOI: 10.1007/s00449-016-1709-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 11/17/2016] [Indexed: 11/28/2022]
Abstract
The CO2 mineralization process, accelerated by carbonic anhydrase (CA) was proposed for the efficient capture and storage of CO2, the accumulation of which in the atmosphere is the main cause of global warming. Here, we characterize a highly stable form of the cloned CA from the Gram-negative marine bacterium Aliivibrio salmonicida, named ASCA that can promote CO2 absorption in an alkaline solvent required for efficient carbon capture. We designed a mature form of ASCA (mASCA) using a codon optimization of ASCA gene and removal of ASCA signal peptide. mASCA was highly expressed (255 mg/L) with a molecular weight of approximately 26 kDa. The mASCA enzyme exhibited stable esterase activity within a temperature range of 10-60 °C and a pH range of 6-11. mASCA activity remained stable for 48 h at pH 10. We also investigated its inhibition profiles using inorganic anions, such as acetazolamide, sulfanilamide, iodide, nitrate, and azide. We also demonstrate that mASCA is capable of catalyzing the conversion of CO2 to CaCO3 (calcite form) in the presence of Ca2+. It should be noted that mASCA enzyme exhibits high production yield and sufficient stabilities against relatively high temperature and alkaline pH, which are required conditions for the development of more efficient enzymatic CCS systems.
Collapse
Affiliation(s)
- So-Young Jun
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Bashista Kumar Kanth
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Seoul, 04107, Korea.
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea.
| |
Collapse
|
8
|
Jeon H, Jeong J, Baek K, McKie-Krisberg Z, Polle JE, Jin E. Identification of the carbonic anhydrases from the unicellular green alga Dunaliella salina strain CCAP 19/18. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ki MR, Nguyen TKM, Kim SH, Kwon I, Pack SP. Chimeric protein of internally duplicated α-type carbonic anhydrase from Dunaliella species for improved expression and CO 2 sequestration. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Chen XJ, Wu MJ, Jiang Y, Yang Y, Yan YB. Dunaliella salina Hsp90 is halotolerant. Int J Biol Macromol 2015; 75:418-25. [PMID: 25680963 DOI: 10.1016/j.ijbiomac.2015.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/28/2022]
Abstract
Dunaliella salina is a unicellular green alga with exceptional halotolerance. Although the D. salina cells are capable to proliferate in hypersaline medium, the intracellular salt concentrations are maintained at a low level. Thus the extracellular but not intracellular Dunaliella proteins are expected to be highly halotolerant. In this research, we compared the salt-dependence of the activity and stability of Hsp90s from the halotolerant alga D. salina (dsHsp90) and the mesophilic alga Chlamydomonas reinhardtii (crHsp90). We found that the ATPase activity of crHsp90 could be enhanced about six-fold by 2M NaCl, while the activity of dsHsp90 showed a much weaker dependence on salinity. When denatured by urea, both crHsp90 and dsHsp90 exhibited an apparent three-state unfolding with the population of an unfolding intermediate. High salinity significantly decreased the Gibbs free energy change of crHsp90 but not dsHsp90 for the transition from the native state to the intermediate. The little dependence of dsHsp90 activity and folding on salinity suggests that dsHsp90 is halotolerant though it is an intracellular protein. We propose that the halotolerance of intracellular Dunaliella proteins might play a role in fighting against the transient intracellular salt fluctuations during hyperosmotic or hypoosmotic shock.
Collapse
Affiliation(s)
- Xiang-Jun Chen
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming-Jie Wu
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Jiang
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of MOE, College of Life Science, Sichuan University, Chengdu 610064, China.
| | - Yong-Bin Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Lao YM, Xiao L, Luo LX, Jiang JG. Hypoosmotic expression of Dunaliella bardawil ζ-carotene desaturase is attributed to a hypoosmolarity-responsive element different from other key carotenogenic genes. PLANT PHYSIOLOGY 2014; 165:359-72. [PMID: 24632600 PMCID: PMC4012594 DOI: 10.1104/pp.114.235390] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/20/2014] [Indexed: 05/08/2023]
Abstract
Some key carotenogenic genes (crts) in Dunaliella bardawil are regulated in response to salt stress partly due to salt-inducible cis-acting elements in their promoters. Thus, we isolated and compared the ζ-carotene desaturase (Dbzds) promoter with other crts promoters including phytoene synthase (Dbpsy), phytoene desaturase (Dbpds), and lycopene β-cyclase1 (DblycB1) to identify salt-inducible element(s) in the Dbzds promoter. In silico analysis of the Dbzds promoter found several potential cis-acting elements, such as abscisic acid response element-like sequence, myelocytomatosis oncogene1 recognition motif, AGC box, anaerobic motif2, and activation sequence factor1 binding site. Remarkably, instead of salt-inducible elements, we found a unique regulatory sequence architecture in the Dbzds promoter: a hypoosmolarity-responsive element (HRE) candidate followed by a potential hypoosmolarity-inducible factor GBF5 binding site. Deletion experiments demonstrated that only HRE, but not the GBF5 binding site, is responsible for hypoosmotic expression of the fusion of Zeocin resistance gene (ble) to the enhanced green fluorescent protein (egfp) chimeric gene under salt stress. Dbzds transcripts were in accordance with those of ble-egfp driven by the wild-type Dbzds promoter. Consequently, Dbzds is hypoosmotically regulated by its promoter, and HRE is responsible for this hypoosmotic response. Finally, the hypoosmolarity mechanism of Dbzds was studied by comparing transcript profiles and regulatory elements of Dbzds with those of Dbpsy, Dbpds, DblycB1, and DblycB2, revealing that different induction characteristics of crts may correlate with regulatory sequence architecture.
Collapse
Affiliation(s)
- Yong-Min Lao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (Y.-M.L., J.-G.J.); and
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China (Y.-M.L., L.X., L.-X.L.)
| | - Lan Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (Y.-M.L., J.-G.J.); and
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China (Y.-M.L., L.X., L.-X.L.)
| | - Li-Xin Luo
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (Y.-M.L., J.-G.J.); and
- School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, China (Y.-M.L., L.X., L.-X.L.)
| | | |
Collapse
|
12
|
Asghari S, Shekari Khaniani M, Darabi M, Mansoori Derakhshan S. Cloning of Soluble Human Stem Cell Factor in pET-26b(+) Vector. Adv Pharm Bull 2014; 4:91-5. [PMID: 24409415 DOI: 10.5681/apb.2014.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Stem cell factor (SCF) plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+) with periplasmic localization potential. METHODS Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+) vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3) Ecoli strains. RESULTS The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. CONCLUSION The SCF ORF was successfully cloned in pET-26b (+) expression vector and is ready for future production of SCF protein.
Collapse
Affiliation(s)
- Salman Asghari
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Masood Darabi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
13
|
Ki MR, Kanth BK, Min KH, Lee J, Pack SP. Increased expression level and catalytic activity of internally-duplicated carbonic anhydrase from Dunaliella species by reconstitution of two separate domains. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Expression, reconstruction and characterization of codon-optimized carbonic anhydrase from Hahella chejuensis for CO2 sequestration application. Bioprocess Biosyst Eng 2012; 36:375-81. [DOI: 10.1007/s00449-012-0788-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
15
|
Karthik D, Ilavenil S, Kaleeswaran B, Ravikumar S. Analysis of Modification of Liver Proteome in Diabetic Rats by 2D Electrophoresis and MALDI-TOF-MS. Indian J Clin Biochem 2012; 27:221-30. [PMID: 26405379 PMCID: PMC4577502 DOI: 10.1007/s12291-012-0209-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 03/26/2012] [Indexed: 01/28/2023]
Abstract
The uncontrolled hyperglycemia can lead to disturbances in the cell structure and functions of organs. This study was performed to analyze the "differential proteome" change in rat liver associated with diabetes mellitus in relation to effects of an anti-diabetic herb, Cynodon dactylon leaf extracts. Rats were intraperitoneally injected with alloxan (150 mg/kg/bw) and treated with C. dactylon leaf extracts (450 mg/kg/bw/day/orally). The liver proteins were subjected to proteome analysis using the advanced technologies i.e., 2D electrophoresis (2-DE) and mass spectrometry. Comparison of 2-DE protein distribution profiles among the livers from normal, alloxan-induced diabetic rats and alloxan-induced diabetic rats treated with C. dactylon leaves identified three proteins that were up-regulated in alloxan-induced diabetic rats i.e., nucleophosmin, l-xylulose reductase and carbonic anhydrase III which are known to be mainly involved in ribosome biogenesis, centrosome duplication, cell proliferation, tumor suppression, glucose metabolism, osmo-regulation, water-CO2 balance and acid-base balance. These results help us to understand the elucidation of molecular mechanism connected to liver function and insulin associated with diabetes mellitus. These identified proteins were primarily involved in cell proliferation and homoeostasis of liver tissues upon the treatment with C. dactylon leaf extracts.
Collapse
Affiliation(s)
- Dhanaraj Karthik
- Department of Biotechnology, Faculty of Biotechnology, PRIST University, Thanjavur, 613 403 Tamil Nadu India
| | - Soundherrajan Ilavenil
- Department of Biotechnology, Faculty of Biotechnology, PRIST University, Thanjavur, 613 403 Tamil Nadu India
| | - Balasubramanian Kaleeswaran
- Department of Biotechnology, Faculty of Biotechnology, PRIST University, Thanjavur, 613 403 Tamil Nadu India
| | - Sivanesan Ravikumar
- Department of Biotechnology, Faculty of Biotechnology, PRIST University, Thanjavur, 613 403 Tamil Nadu India
| |
Collapse
|
16
|
Kim IG, Jo BH, Kang DG, Kim CS, Choi YS, Cha HJ. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. CHEMOSPHERE 2012; 87:1091-1096. [PMID: 22397838 DOI: 10.1016/j.chemosphere.2012.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
Recently, as a mimic of the natural biomineralization process, the use of carbonic anhydrase (CA), which is an enzyme catalyzing fast reversible hydration of carbon dioxide to bicarbonate, has been suggested for biological conversion of CO(2) to valuable chemicals. While purified bovine CA (BCA) has been used in previous studies, its practical utilization in CO(2) conversion has been limited due to the expense of BCA preparation. In the present work, we investigated conversion of CO(2) into calcium carbonate as a target carbonate mineral by using a more economical, recombinant CA. To our knowledge, this is the first report of the usage of recombinant CA for biological CO(2) conversion. Recombinant α-type CA originating in Neisseria gonorrhoeae (NCA) was highly expressed as a soluble form in Escherichia coli. We found that purified recombinant NCA which showed comparable CO(2) hydration activity to commercial BCA significantly promoted formation of solid CaCO(3) through the acceleration of CO(2) hydration rate, which is naturally slow. In addition, the rate of calcite crystal formation was also accelerated using recombinant NCA. Moreover, non-purified crude recombinant NCA also showed relatively significant ability. Therefore, recombinant CA could be an effective, economical biocatalyst in practical CO(2) conversion system.
Collapse
Affiliation(s)
- Im Gyu Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Liu W, Ming Y, Li P, Huang Z. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:43-48. [PMID: 22377429 DOI: 10.1016/j.plaphy.2012.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
In this study, Dunaliella salina (D. salina) maintained in 30‰ salinity for more than two years was exposed to the salinities of 5‰, 10‰, 20‰, 30‰ (control) in order to investigate oxidative burst and it's possible connection with extracellular carbonic anhydrase (CA) under hypo-osmotic stress (low salinity). The results indicated that intracellular ROS contents increased significantly when cells were exposed to salinity of 5 and 10‰, and the increase also occurred at 20‰ salinity. The activity of extracellular CA and its gene (P60) expression decreased significantly when cells were exposed to salinity of 5-20‰. Data from H₂O₂ treatments hinted that ROS production was possibly one of the factors affecting CA, including enzyme activity and gene expression levels. Significant inhibition of effective quantum efficiency of PSII and photosynthetic oxygen evolution rate were observed with the increase of ROS production and decline of CA activities. Taken together, hypo-osmotic stresses could induce ROS production in D. salina, and CA enzyme activities and expression levels were consequently inhibited. As a result, algal photosynthesis and oxygen evolution were inhibited.
Collapse
Affiliation(s)
- Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, China.
| | | | | | | |
Collapse
|
18
|
Li J, Lu Y, Xue L, Xie H. A structurally novel salt-regulated promoter of duplicated carbonic anhydrase gene 1 from Dunaliella salina. Mol Biol Rep 2010; 37:1143-54. [PMID: 19823944 DOI: 10.1007/s11033-009-9901-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
It has been demonstrated that the duplicated carbonic anhydrase is induced by salt in the Dunaliella salina (D. salina) and duplicated carbonic anhydrase 1 (DCA1) is a member of carbonic anhydrase family. The purpose of this study was to identify whether both the DCA1 gene and its promoter from D. salina are salt-inducible. In this study, the results of real time RT-PCR showed that the transcripts of DCA1 were induced by gradient concentration of sodium chloride. Subsequently, a structurally novel promoter containing highly repeated GT/AC sequences of the DCA1 gene was isolated, which was able to drive a stable expression of the foreign bar gene in transformed cells of D. salina, and the gradient concentrations of sodium chloride in media paralleled regulations in the levels of both proteins and mRNA of the bar gene driven by the DCA1 promoter. Furthermore, analysis of GUS activities revealed that the salt-inducible expression of the external gus gene was regulated by the promoter fragments containing highly repeated GT sequences, but not by the promoter fragments deleting highly repeated GT sequences. The findings above-mentioned suggest that the highly repeated GT sequence in the DCA1 promoter is involved in the salt-inducible regulation in D. salina and may be a novel salt-inducible element.
Collapse
Affiliation(s)
- Jie Li
- Laboratory for Cell Biology, Department of Biology, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | | | | | | |
Collapse
|
19
|
|
20
|
Katz A, Waridel P, Shevchenko A, Pick U. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis. Mol Cell Proteomics 2007; 6:1459-72. [PMID: 17569891 DOI: 10.1074/mcp.m700002-mcp200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The halotolerant alga Dunaliella salina is a recognized model photosynthetic organism for studying plant adaptation to high salinity. The adaptation mechanisms involve major changes in the proteome composition associated with energy metabolism and carbon and iron acquisition. To clarify the molecular basis for the remarkable resistance to high salt, we performed a comprehensive proteomics analysis of the plasma membrane. Plasma membrane proteins were recognized by tagging intact cells with a membrane-impermeable biotin derivative. Proteins were resolved by two-dimensional blue native/SDS-PAGE and identified by nano-LC-MS/MS. Of 55 identified proteins, about 60% were integral membrane or membrane-associated proteins. We identified novel surface coat proteins, lipid-metabolizing enzymes, a new family of membrane proteins of unknown function, ion transporters, small GTP-binding proteins, and heat shock proteins. The abundance of 20 protein spots increased and that of two protein spots decreased under high salt. The major salt-regulated proteins were implicated in protein and membrane structure stabilization and within signal transduction pathways. The migration profiles of native protein complexes on blue native gels revealed oligomerization or co-migration of major surface-exposed proteins, which may indicate mechanisms of stabilization at high salinity.
Collapse
Affiliation(s)
- Adriana Katz
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
21
|
Yu S, Xia D, Luo Q, Cheng Y, Takano T, Liu S. Purification and characterization of carbonic anhydrase of rice (Oryza sativa L.) expressed in Escherichia coli. Protein Expr Purif 2007; 52:379-83. [PMID: 17208453 DOI: 10.1016/j.pep.2006.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 11/15/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
Rice carbonic anhydrase (CA) was successfully expressed as a glutathione-S-transferase (GST) fusion protein in an Escherichia coli expression system. The optimal induction concentration of IPTG and growth temperature was found to be 1.0mM and 28 degrees C. To obtain milligram amounts of homogeneous active recombinant proteins, 150mM NaCl and Mg-ATP solution were used during the purification procedures. After improving the conditions of expression and the purification procedures, final yield of recombinant proteins was 1.3mg/g wet cell weight after enzymatic cleavage of the GST tag, and the molecular weight was about 29kDa. The purified protein had CO(2) hydration activity, and had no detectable esterase activity in vitro. Addition of zinc improved the CO(2) hydration activity of the rice CA produced by E. coli. The effects of acetazolamide (AZ) and the anions N3-, NO3-, I(-), Br(-), and Cl(-) on CO(2) hydration activity of CA were studied. AZ and N3- were found to be strong inhibitors of rice CA. The inhibitory activity of AZ and ions was in the order AZ>N3->NO3->I(-)>Br(-)>Cl(-).
Collapse
Affiliation(s)
- Song Yu
- Alkali Soil Natural Environmental Science Center (ASNESC), Stress Molecular Biology Laboratory, Northeast Forestry University, Harbin 150040, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Ogata N, Ohtaguchi K. Production in Escherichia coli and Application of a Recombinant Carbonic Anhydrase of the Cyanobacterium Anabaena sp. Strain PCC7120. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2006. [DOI: 10.1252/jcej.39.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naohisa Ogata
- Department of Chemical Engineering, Tokyo Institute of Technology
| | | |
Collapse
|
23
|
Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 2005; 115:113-28. [PMID: 15607230 DOI: 10.1016/j.jbiotec.2004.08.004] [Citation(s) in RCA: 596] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 08/26/2004] [Accepted: 08/30/2004] [Indexed: 11/15/2022]
Abstract
Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. The ribosomal machinery, located in the cytoplasm is an outstanding catalyst of recombinant protein biosynthesis. Escherichia coli facilitates protein expression by its relative simplicity, its inexpensive and fast high-density cultivation, the well-known genetics and the large number of compatible tools available for biotechnology. Especially the variety of available plasmids, recombinant fusion partners and mutant strains have advanced the possibilities with E. coli. Although often simple for soluble proteins, major obstacles are encountered in the expression of many heterologous proteins and proteins lacking relevant interaction partners in the E. coli cytoplasm. Here we review the current most important strategies for recombinant expression in E. coli. Issues addressed include expression systems in general, selection of host strain, mRNA stability, codon bias, inclusion body formation and prevention, fusion protein technology and site-specific proteolysis, compartment directed secretion and finally co-overexpression technology. The macromolecular background for a variety of obstacles and genetic state-of-the-art solutions are presented.
Collapse
Affiliation(s)
- Hans Peter Sørensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
24
|
Premkumar L, Greenblatt HM, Bageshwar UK, Savchenko T, Gokhman I, Sussman JL, Zamir A. Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog. Proc Natl Acad Sci U S A 2005; 102:7493-8. [PMID: 15894606 PMCID: PMC1111892 DOI: 10.1073/pnas.0502829102] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein molecular adaptation to drastically shifting salinities was studied in dCA II, an alpha-type carbonic anhydrase (EC 4.2.1.1) from the exceptionally salt-tolerant unicellular green alga Dunaliella salina. The salt-inducible, extracellular dCA II is highly salt-tolerant and thus differs from its mesophilic homologs. The crystal structure of dCA II, determined at 1.86-A resolution, is globally similar to other alpha-type carbonic anhydrases except for two extended alpha-helices and an added Na-binding loop. Its unusual electrostatic properties include a uniformly negative surface electrostatic potential of lower magnitude than that observed in the highly acidic halophilic proteins and an exceptionally low positive potential at a site adjoining the catalytic Zn(2+) compared with mesophilic homologs. The halotolerant dCA II also differs from typical halophilic proteins in retaining conformational stability and solubility in low to high salt concentrations. The crucial role of electrostatic features in dCA II halotolerance is strongly supported by the ability to predict the unanticipated halotolerance of the murine CA XIV isozyme, which was confirmed biochemically. A proposal for the functional significance of the halotolerance of CA XIV in the kidney is presented.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Sørensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 2005; 4:1. [PMID: 15629064 PMCID: PMC544838 DOI: 10.1186/1475-2859-4-1] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 01/04/2005] [Indexed: 11/10/2022] Open
Abstract
Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target protein in an unmodified form or by applying modifications using expressivity and solubility tags.
Collapse
Affiliation(s)
| | - Kim Kusk Mortensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Yoshimune K, Yamashita R, Masuo N, Wakayama M, Moriguchi M. Digestion by serine proteases enhances salt tolerance of glutaminase in the marine bacterium Micrococcus luteus K-3. Extremophiles 2004; 8:441-6. [PMID: 15290324 DOI: 10.1007/s00792-004-0407-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 05/25/2004] [Indexed: 11/26/2022]
Abstract
Salt-tolerant glutaminase (Micrococcus glutaminase, with an apparent molecular mass of 48.3 kDa, intact glutaminase) from the marine bacterium Micrococcus luteus K-3 was digested using protease derived from M. luteus K-3. The digestion products were a large fragment (apparent molecular mass of 38.5 kDa, the glutaminase fragment) and small fragments (apparent molecular mass of 8 kDa). The digestion was inhibited by phenylmethanesulfonyl fluoride (PMSF). Digestion of intact glutaminase by serine proteases including trypsin, elastase, lysyl endopeptidase, and arginylendopeptidase also produced the glutaminase fragment. The N-terminus of the glutaminase fragment was the same as that of intact glutaminase. The N-termini of two small fragments were Ala394 and Ala396, respectively. The enzymological and kinetic properties of the glutaminase fragment were almost the same as those of intact glutaminase except for salt-tolerant behavior. The glutaminase fragment was a higher salt-tolerant enzyme than the intact glutaminase, suggesting that Micrococcus glutaminase is digested in the C-terminal region by serine protease from M. luteus K-3 to confer salt tolerance on glutaminase.
Collapse
Affiliation(s)
- Kazuaki Yoshimune
- Department of Applied Chemistry, Faculty of Engineering, Oita University, Dannoharu, Oita 870-1192, Japan
| | | | | | | | | |
Collapse
|