1
|
Yokoyama H, Koch B, Walczak R, Ciray-Duygu F, González-Sánchez JC, Devos DP, Mattaj IW, Gruss OJ. The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation. Nat Commun 2015; 5:3270. [PMID: 24509916 DOI: 10.1038/ncomms4270] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/16/2014] [Indexed: 01/11/2023] Open
Abstract
The GTP-bound form of the Ran GTPase (RanGTP), produced around chromosomes, drives nuclear envelope and nuclear pore complex (NPC) re-assembly after mitosis. The nucleoporin MEL-28/ELYS binds chromatin in a RanGTP-regulated manner and acts to seed NPC assembly. Here we show that, upon mitotic NPC disassembly, MEL-28 dissociates from chromatin and re-localizes to spindle microtubules and kinetochores. MEL-28 directly binds microtubules in a RanGTP-regulated way via its C-terminal chromatin-binding domain. Using Xenopus egg extracts, we demonstrate that MEL-28 is essential for RanGTP-dependent microtubule nucleation and spindle assembly, independent of its function in NPC assembly. Specifically, MEL-28 interacts with the γ-tubulin ring complex and recruits it to microtubule nucleation sites. Our data identify MEL-28 as a RanGTP target that functions throughout the cell cycle. Its cell cycle-dependent binding to chromatin or microtubules discriminates MEL-28 functions in interphase and mitosis, and ensures that spindle assembly occurs only after NPC breakdown.
Collapse
Affiliation(s)
- Hideki Yokoyama
- 1] Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany [2] European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Birgit Koch
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Rudolf Walczak
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Fulya Ciray-Duygu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | - Damien P Devos
- Centre for Organismal Studies (COS), Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Iain W Mattaj
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Oliver J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Yokoyama H, Gruss OJ. New mitotic regulators released from chromatin. Front Oncol 2013; 3:308. [PMID: 24380075 PMCID: PMC3864359 DOI: 10.3389/fonc.2013.00308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/04/2013] [Indexed: 12/13/2022] Open
Abstract
Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP), produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.
Collapse
Affiliation(s)
- Hideki Yokoyama
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance , Heidelberg , Germany
| | - Oliver J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance , Heidelberg , Germany
| |
Collapse
|
3
|
Yokoyama H, Nakos K, Santarella-Mellwig R, Rybina S, Krijgsveld J, Koffa MD, Mattaj IW. CHD4 is a RanGTP-dependent MAP that stabilizes microtubules and regulates bipolar spindle formation. Curr Biol 2013; 23:2443-51. [PMID: 24268414 DOI: 10.1016/j.cub.2013.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/19/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Production of the GTP-bound form of the Ran GTPase (RanGTP) around chromosomes induces spindle assembly by activating nuclear localization signal (NLS)-containing proteins. Several NLS proteins have been identified as spindle assembly factors, but the complexity of the process led us to search for additional proteins with distinct roles in spindle assembly. RESULTS We identify a chromatin-remodeling ATPase, CHD4, as a RanGTP-dependent microtubule (MT)-associated protein (MAP). MT binding occurs via the region containing an NLS and chromatin-binding domains. In Xenopus egg extracts and cultured cells, CHD4 largely dissociates from mitotic chromosomes and partially localizes to the spindle. Immunodepletion of CHD4 from egg extracts significantly reduces the quantity of MTs produced around chromatin and prevents spindle assembly. CHD4 RNAi in both HeLa and Drosophila S2 cells induces defects in spindle assembly and chromosome alignment in early mitosis, leading to chromosome missegregation. Further analysis in egg extracts and in HeLa cells reveals that CHD4 is a RanGTP-dependent MT stabilizer. Moreover, the CHD4-containing NuRD complex promotes organization of MTs into bipolar spindles in egg extracts. Importantly, this function of CHD4 is independent of chromatin remodeling. CONCLUSIONS Our results uncover a new role for CHD4 as a MAP required for MT stabilization and involved in generating spindle bipolarity.
Collapse
Affiliation(s)
- Hideki Yokoyama
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany.
| | - Konstantinos Nakos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis 68100, Greece
| | | | - Sofia Rybina
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Maria D Koffa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis 68100, Greece.
| | - Iain W Mattaj
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| |
Collapse
|
4
|
Yajima M, Fairbrother WG, Wessel GM. ISWI contributes to ArsI insulator function in development of the sea urchin. Development 2012; 139:3613-22. [PMID: 22949616 DOI: 10.1242/dev.081828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulators are genomic elements that regulate transcriptional activity by forming chromatin boundaries. Various DNA insulators have been identified or are postulated in many organisms, and the paradigmatic CTCF-dependent insulators are perhaps the best understood and most widespread in function. The diversity of DNA insulators is, however, understudied, especially in the context of embryonic development, when many new gene territories undergo transitions in functionality. Here we report the functional analysis of the arylsulfatase insulator (ArsI) derived from the sea urchin, which has conserved insulator activity throughout the many metazoans tested, but for which the molecular mechanism of function is unknown. Using a rapid in vivo assay system and a high-throughput mega-shift assay, we identified a minimal region in ArsI that is responsible for its insulator function. We discovered a small set of proteins specifically bound to the minimal ArsI region, including ISWI, a known chromatin-remodeling protein. During embryogenesis, ISWI was found to interact with select ArsI sites throughout the genome, and when inactivated led to misregulation of select gene expression, loss of insulator activity and aberrant morphogenesis. These studies reveal a mechanistic basis for ArsI function in the gene regulatory network of early development.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA.
| | | | | |
Collapse
|
5
|
Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010; 11:728-38. [DOI: 10.1038/nrm2976] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Yokoyama H, Rybina S, Santarella-Mellwig R, Mattaj IW, Karsenti E. ISWI is a RanGTP-dependent MAP required for chromosome segregation. ACTA ACUST UNITED AC 2010; 187:813-29. [PMID: 20008562 PMCID: PMC2806316 DOI: 10.1083/jcb.200906020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin-remodeling factor ISWI is a microtubule-associated protein that contributes to chromosome segregation by stabilizing microtubules during anaphase. Production of RanGTP around chromosomes induces spindle assembly by activating nuclear localization signal (NLS)–containing factors. Here, we show that the NLS protein ISWI, a known chromatin-remodeling ATPase, is a RanGTP-dependent microtubule (MT)-associated protein. Recombinant ISWI induces MT nucleation, stabilization, and bundling in vitro. In Xenopus culture cells and egg extract, ISWI localizes within the nucleus in interphase and on spindles during mitosis. Depletion of ISWI in egg extracts does not affect spindle assembly, but in anaphase spindle MTs disappear and chromosomes do not segregate. We show directly that ISWI is required for the RanGTP-dependent stabilization of MTs during anaphase independently of its effect on chromosomes. ISWI depletion in Drosophila S2 cells induces defects in spindle MTs and chromosome segregation in anaphase, and the cells eventually stop growing. Our results demonstrate that distinctly from its role in spindle assembly, RanGTP maintains spindle MTs in anaphase through the local activation of ISWI and that this is essential for proper chromosome segregation.
Collapse
Affiliation(s)
- Hideki Yokoyama
- European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | | | | | | | | |
Collapse
|
7
|
Pépin D, Vanderhyden BC, Picketts DJ, Murphy BD. ISWI chromatin remodeling in ovarian somatic and germ cells: revenge of the NURFs. Trends Endocrinol Metab 2007; 18:215-24. [PMID: 17544291 DOI: 10.1016/j.tem.2007.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/23/2007] [Accepted: 05/16/2007] [Indexed: 01/20/2023]
Abstract
Chromatin has emerged as an important regulator of gene expression, interposed between cell signaling pathways and transcriptional machinery. It participates in transmitting extra- and intra-cellular signals that coordinate ovarian events: ovarian follicle development, the meiotic maturation of the oocyte that precedes ovulation, and the ovulatory process and consequent luteinization. Recent evidence from model organisms and mammals suggests that chromatin signaling is achieved, in part, by imitation switch (ISWI) ATP-dependent chromatin-remodeling complexes. This review highlights a role for complexes containing the ISWI ATPase sucrose nonfermenting-2h (Snf2h) in proliferation in somatic and germ cells and also in meiosis in germ cells. Moreover, complexes containing the Snf2l ATPase dictate the differentiation of somatic cells and act in the induction of the terminal phases of meiosis in the oocyte.
Collapse
Affiliation(s)
- David Pépin
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | |
Collapse
|
8
|
Varga-Weisz P. Chromatin remodeling factors and DNA replication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:1-30. [PMID: 15881889 DOI: 10.1007/3-540-27310-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatin structures have to be precisely duplicated during DNA replication to maintain tissue-specific gene expression patterns and specialized domains, such as the centromeres. Chromatin remodeling factors are key components involved in this process and include histone chaperones, histone modifying enzymes and ATP-dependent chromatin remodeling complexes. Several of these factors interact directly with components of the replication machinery. Histone variants are also important to mark specific chromatin domains. Because chromatin remodeling factors render chromatin dynamic, they may also be involved in facilitating the DNA replication process through condensed chromatin domains.
Collapse
|
9
|
Dirscherl SS, Henry JJ, Krebs JE. Neural and eye-specific defects associated with loss of the imitation switch (ISWI) chromatin remodeler in Xenopus laevis. Mech Dev 2005; 122:1157-70. [PMID: 16169710 DOI: 10.1016/j.mod.2005.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 08/05/2005] [Accepted: 08/05/2005] [Indexed: 12/28/2022]
Abstract
Imitation Switch (ISWI) is a member of the SWI2/SNF2 superfamily of ATP-dependent chromatin remodelers, which regulate transcription and maintain chromatin structure by mobilizing nucleosomes using the energy of ATP. Four distinct ISWI complexes have been identified in Xenopus oocytes. The developmental role of Xenopus ISWI, however, has not previously been investigated in vivo. Here we report the tissue specificity, developmental expression, and requirement of ISWI for development of Xenopus embryos. Whole mount in situ hybridization shows ISWI localized in the lateral sides of the neural plate, brain, eye, and in later stages, the spinal cord. Injection of antisense ISWI RNA, morpholino oligonucleotides or dominant-negative ISWI mutant mRNA into fertilized eggs inhibits gastrulation and neural fold closure. Genes involved in neural patterning and development, such as BMP4 and Sonic hedgehog (Shh), are misregulated in the absence of functional ISWI, and ISWI binds to the BMP4 gene in vivo. Developmental and transcriptional defects caused by dominant-negative ISWI are rescued by co-injection of wild-type ISWI mRNA. Inhibition of ISWI function results in aberrant eye development and the formation of cataracts. These data suggest a critical role for ISWI chromatin remodeling complexes in neural development, including eye differentiation, in the Xenopus laevis embryo.
Collapse
Affiliation(s)
- Sara S Dirscherl
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage Alaska 99508, USA
| | | | | |
Collapse
|
10
|
Abstract
The yeast SWI/SNF ATP-dependent chromatin remodeling complex was first identified and characterized over 10 years ago (F. Winston and M. Carlson. 1992. Trends Genet. 8: 387-391.) Since then, the number of distinct ATP-dependent chromatin remodeling complexes and the variety of roles they play in nuclear processes have become dizzying (J.A. Martens and F. Winston. 2003. Curr. Opin. Genet. Dev. 13: 136-142; A. Vacquero et al. 2003. Sci. Aging Knowledge Environ. 2003: RE4)--and that does not even include the companion suite of histone modifying enzymes, which exhibit a comparable diversity in both number of complexes and variety of functions (M.J. Carrozza et al. 2003. Trends Genet. 19: 321-329; W. Fischle et al. 2003. Curr. Opin. Cell Biol. 15: 172-183; M. Iizuka and M.M. Smith. 2003. Curr. Opin. Genet. Dev. 13: 1529-1539). This vast complexity is hardly surprising, given that all nuclear processes that involve DNA--transcription, replication, repair, recombination, sister chromatid cohesion, etc.--must all occur in the context of chromatin. The SWI/SNF-related ATP-dependent remodelers are divided into a number of subfamilies, all related by the SWI2/SNF2 ATPase at their catalytic core. In nearly every species where researchers have looked for them, one or more members of each subfamily have been identified. Even the budding yeast, with its comparatively small genome, contains eight different chromatin remodelers in five different subfamilies. This review will focus on just one subfamily, the Imitation Switch (ISWI) family, which is proving to be one of the most diverse groups of chromatin remodelers in both form and function.
Collapse
Affiliation(s)
- Sara S Dirscherl
- Dept. of Biological Sciences, University of Alaska Anchorage, 99508, USA
| | | |
Collapse
|
11
|
McConnell AD, Gelbart ME, Tsukiyama T. Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo. Mol Cell Biol 2004; 24:2605-13. [PMID: 15024052 PMCID: PMC371119 DOI: 10.1128/mcb.24.7.2605-2613.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report the identification of two new subunits of the Isw2 chromatin-remodeling complex in Saccharomyces cerevisiae. Both proteins, Dpb4p and Yjl065cp (named Dls1p), contain histone fold motifs and are homologous to the two smallest subunits of ISWI-containing CHRAC complexes in higher eukaryotes. Dpb4p is also a subunit of the DNA polymerase epsilon (polepsilon) complex, and Dls1p is homologous to another polepsilon subunit, Dpb3p. Therefore, these small histone fold proteins may fulfill functions that are required for both polepsilon and Isw2 complexes. We characterized the role of Dls1p in known roles of the Isw2 complex in vivo. Transcriptional analyses reveal that the Isw2 complex requires Dls1p to various degrees at a wide variety of loci in vivo. Consistent with this, Dls1p is required for Isw2-dependent chromatin remodeling in vivo, although the requirement for this protein varies among Isw2 targets. Dls1p is likely required for functions of the Isw2 complex at steps subsequent to its interaction with chromatin, since a dls1 mutation does not affect cross-linking of Isw2 with chromatin.
Collapse
Affiliation(s)
- Audrey D McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
12
|
Corona DFV, Tamkun JW. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. ACTA ACUST UNITED AC 2004; 1677:113-9. [PMID: 15020052 DOI: 10.1016/j.bbaexp.2003.09.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 09/26/2003] [Indexed: 01/26/2023]
Abstract
ISWI functions as the ATPase subunit of multiple chromatin-remodeling complexes. These complexes use the energy of ATP hydrolysis to slide nucleosomes and increase chromatin fluidity, thereby modulating the access of transcription factors and other regulatory proteins to DNA. Here we discuss recent progress toward understanding the biological functions of ISWI, with an emphasis on its roles in transcription, chromosome organization and DNA replication.
Collapse
Affiliation(s)
- Davide F V Corona
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 350 Sinsheimer Labs, Santa Cruz, CA 95064, USA
| | | |
Collapse
|