1
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
2
|
Patarroyo ME, Bermúdez A, Moreno-Vranich A. Towards the development of a fully protectivePlasmodium falciparumantimalarial vaccine. Expert Rev Vaccines 2014; 11:1057-70. [DOI: 10.1586/erv.12.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev 2011; 111:3459-507. [DOI: 10.1021/cr100223m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad Nacional de Colombia
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| |
Collapse
|
4
|
Atomic fidelity of subunit-based chemically-synthesized antimalarial vaccine components. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 102:38-44. [DOI: 10.1016/j.pbiomolbio.2009.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/12/2009] [Indexed: 11/24/2022]
|
5
|
García J, Curtidor H, Pinzón CG, Vanegas M, Moreno A, Patarroyo ME. Identification of conserved erythrocyte binding regions in members of the Plasmodium falciparum Cys6 lipid raft-associated protein family. Vaccine 2009; 27:3953-62. [PMID: 19389446 DOI: 10.1016/j.vaccine.2009.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/03/2009] [Accepted: 04/15/2009] [Indexed: 11/15/2022]
Abstract
Detergent-resistant lipid raft membrane-associated Pf12, Pf38 and Pf41 proteins belong to the Cys(6) family, whose members are implicated in Plasmodium falciparum invasion to erythrocytes. We have analyzed the interaction between 20-mer-long synthetic peptides spanning the entire Pf12, Pf38 and Pf41 sequences and erythrocytes. Eight high-activity binding peptides (HABPs) were identified in these proteins, which presented saturable bindings susceptible to erythrocytes' enzymatic treatment, and beta-turn, random coil and alpha-helical elements as principal structural features. Some of these HABPs inhibited merozoite invasion in vitro, suggesting a possible role of Pf12, Pf38 and Pf41 during erythrocyte invasion and supporting their inclusion in the design of a fully effective antimalarial vaccine.
Collapse
Affiliation(s)
- Jeison García
- Fundación Instituto de Inmunología de Colombia FIDIC, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
6
|
Patarroyo ME, Cifuentes G, Bermúdez A, Patarroyo MA. Strategies for developing multi-epitope, subunit-based, chemically synthesized anti-malarial vaccines. J Cell Mol Med 2009; 12:1915-35. [PMID: 19012725 PMCID: PMC4506160 DOI: 10.1111/j.1582-4934.2008.00174.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An anti-malarial vaccine against the extremely lethal Plasmodium falciparum is desperately needed. Peptides from this parasite's proteins involved in invasion and having high red blood cell-binding ability were identified; these conserved peptides were not immun genic or protection-inducing when used for immunizing Aotus monkeys. Modifying some critical binding residues in these high-activi binding peptides' (HABPs') attachment to red blood cells (RBC) allowed them to induce immunogenicity and protection against expermental challenge and acquire the ability to bind to specific HLA-DRp1* alleles. These modified HABPs adopted certain characterist structural configurations as determined by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) associated with certain HLA-DRβ1* haplotype binding activities and characteristics, such as a 2-Å-distance difference between amino acids fitting into HLA-DRp1 Pockets 1 to 9, residues participating in binding to HLA-DR pockets and residues making contact with the TCR, suggesting haplotyp and allele-conscious TCR. This has been demonstrated in HLA-DR-like genotyped monkeys and provides the basis for designing high effective, subunit-based, multi-antigen, multi-stage, synthetic vaccines, for immediate human use, malaria being one of them.
Collapse
Affiliation(s)
- M E Patarroyo
- Fundación Instituto de Inmunólogia de Colombia (FIDIC), Bogotá, Colombia.
| | | | | | | |
Collapse
|
7
|
Bermúdez A, Vanegas M, Patarroyo ME. Structural and immunological analysis of circumsporozoite protein peptides: A further step in the identification of potential components of a minimal subunit-based, chemically synthesised antimalarial vaccine. Vaccine 2008; 26:6908-18. [DOI: 10.1016/j.vaccine.2008.09.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/16/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
8
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
9
|
Curtidor H, Arévalo G, Vanegas M, Vizcaíno C, Patarroyo MA, Forero M, Patarroyo ME. Characterization of Plasmodium falciparum integral membrane protein Pf25-IMP and identification of its red blood cell binding sequences inhibiting merozoite invasion in vitro. Protein Sci 2008; 17:1494-504. [PMID: 18556472 DOI: 10.1110/ps.036251.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The identification of proteins present on the surface of Plasmodium falciparum-infected red blood cells as well as of free merozoites has been widely considered as one of the main areas of research in the development of an antimalarial vaccine due to their involvement in the parasite's pathogenesis and invasion mechanisms. Major advances had been accomplished in this area thanks to the analysis of the reported genomic sequence of P. falciparum, allowing for the identification of genes encoding for putative integral membrane proteins. This study reports for the first time the transcription of the MAL8P1.3 gene, which codifies for a 25-kDa integral membrane protein of P. falciparum (FCB-2 strain), namely, Pf25-IMP. Western blot and immunofluorescence assays using goat polyclonal sera indicate that this protein is expressed in erythrocytic asexual blood stages. A highly robust, sensible, and specific receptor-ligand interaction assay allowed identification of two high activity binding peptides (HABPs) derived from Pf25-IMP: 30577 ((41)YKTANENVKLASSLSDRLSR(60)) and 30583 ((161)LNKKTVVRKIAEGLGYTIVF(180)). Both HABPs bound with high affinity to human red blood cells (RBCs), and such binding was susceptible to enzyme treatment with trypsin. A common RBC surface receptor of apparently 48 kDa was found for both HABPs, plus an additional 31-kDa receptor for HABP 30577. HABP 30577 inhibited merozoite invasion in vitro by 73%, while HABP 30583 showed a 59% inhibition at 200 microM concentration. The data suggest a possible role of Pf25-IMP in merozoite invasion to RBCs and support its inclusion in further immunological studies for evaluating its potential as vaccine candidates.
Collapse
|
10
|
Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008; 41:377-86. [PMID: 18266328 DOI: 10.1021/ar700120t] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seventeen million people die of transmittable diseases and 2/3 of the world's population suffer them annually. Malaria, tuberculosis, AIDS, hepatitis, and reemerging and new diseases are a great threat to humankind. A logical and rational approach for vaccine development is thus desperately needed. Protein chemistry provides the best tools for tackling these problems. The tremendous complexity of microbes, the different pathways they use for invading host cells, and the immune responses they induce can only be resolved by using the minimum subunit-based (chemically produced approximately 20-mer peptides), multiantigenic (most proteins involved in invasion), multistage (different invasion mechanisms) vaccine development approach. The most lethal form of malaria caused by Plasmodium falciparum (killing 3 million and affecting 500 million people worldwide annually) was used as target disease since many of its proteins, its invasion pathways, and its genome have been described recently. A New World primate (the Aotus monkey) is highly susceptibly to human malaria; its immune system molecules are 80-100% identical to those of its human counterpart, making it an excellent model for vaccine development. Chemically synthesized approximately 20-mer peptides, covering all the P. falciparum malaria proteins involved in red blood cell (RBC) invasion were synthesized by the classical t-Boc technology (based on synthetic SPf66 antimalarial vaccine information for identifying targets) and assayed in a highly sensitive, specific, and robust test for detecting receptor-ligand interactions between high-activity binding peptides (HABPs) and RBCs. HABPs were identified, some in which the molecule displays genetic variability (to be discarded due to their tremendous complexity) and elicits a strain-specific immune response and others that are conserved (no amino acid sequence variation). Conserved HABPs were synthesized in a polymeric form by adding cysteines at their N- and C-terminal ends to be used for monkey immunization. They became nonimmunogenic (no antibodies were induced) nonprotection inducers (monkeys were not protected against P. falciparum malaria challenge with a highly infective strain) suggesting a code of immunological silence or nonresponsiveness for these conserved HABPs. A large number of monkey trials involving a considerable number of Aotus monkeys were performed to break this code of immunological silence by replacing critical residues (determined by glycine peptide analogue scanning) to find that the following amino acid changes had to be made to render them antibody and protection inducing: F<-->R; W<-->Y; L<-->H; I<-->N; M<-->K; P<-->D; Q<-->E; C<-->T. The three-dimensional (3D) structure of >100 of these native modified HABPs (determined by (1)H NMR) revealed that the following structural changes had all to be achieved to allow a better fit into the major histocompatibility complex class II (MHC II)-peptide-TCR complex to properly activate the immune system: alpha-helix shortening, modifying their beta-turn, adopting segmental alpha-helix configuration, changing residue orientation, and increasing the distance of those residues fitting into the MHC II molecules from antigen-presenting cells. More than 100 such highly immunogenic, protection-inducing (against P. falciparum malaria) modified HABPs have been identified to date with this methodology, showing that it could lead to developing a highly effective subunit-based, multiantigenic, multistage synthetic vaccine against diseases scourging humankind, malaria being one of them.
Collapse
Affiliation(s)
- Manuel E. Patarroyo
- Fundacion Instituto de Inmunologia de Colombia, Bogota, Colombia, and Universidad Nacional de Colombia, Bogota, Colombia
| | - Manuel A. Patarroyo
- Fundacion Instituto de Inmunologia de Colombia, Bogota, Colombia, and Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
11
|
Patarroyo ME, Cifuentes G, Rodríguez R. Structural characterisation of sporozoite components for a multistage, multi-epitope, anti-malarial vaccine. Int J Biochem Cell Biol 2008; 40:543-57. [DOI: 10.1016/j.biocel.2007.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 11/30/2022]
|
12
|
Reyes C, Patarroyo ME, Vargas LE, Rodríguez LE, Patarroyo MA. Functional, structural, and immunological compartmentalisation of malaria invasive proteins. Biochem Biophys Res Commun 2007; 354:363-71. [PMID: 17239816 DOI: 10.1016/j.bbrc.2006.12.220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 11/16/2022]
Abstract
Conserved Plasmodium falciparum merozoite high activity binding peptides (HABPs) involved in red blood cell (RBC) invasion which are present in merozoite surface proteins (MSPs) involved in attachment, rolling over RBC, those derived from soluble proteins loosely bound to the membrane, and those present in microneme and rhoptry organelles have an alpha-helical structure and bind with high affinity to HLA-DR52 molecules. On the contrary, conserved HABPs belonging to molecules anchored to the membrane by a GPI tail, or a transmembranal region, or those molecules presenting PEXEL motifs have a strand, turn or unordered configuration and bind with high affinity to HLA-DR53 molecules. Such functional, cellular, structural, and immunological compartmentalisation has tremendous implications in subunit-based, multi-epitope, synthetic, anti-malarial vaccine development.
Collapse
Affiliation(s)
- Claudia Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-00, Bogota, Colombia
| | | | | | | | | |
Collapse
|
13
|
López R, Valbuena J, Rodríguez LE, Ocampo M, Vera R, Curtidor H, Puentes A, García J, Ramirez LE, Patarroyo ME. Plasmodium falciparum merozoite surface protein 6 (MSP-6) derived peptides bind erythrocytes and partially inhibit parasite invasion. Peptides 2006; 27:1685-92. [PMID: 16713025 DOI: 10.1016/j.peptides.2006.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 11/19/2022]
Abstract
This work shows that Plasmodium falciparum merozoite surface protein-6 (MSP-6) peptides specifically bind to membrane surface receptor on human erythrocytes. Three high activity binding peptides (HABPs) were found: peptides 31175 (41MYNNDKILSKNEVDTNIESN60) and 31178 (101YDIQATYQFPSTSGGNNVIP120) in the amino terminal region and 31191 (361EIDSTINNLVQEMIHLFSNNY380) at the carboxy terminal. Their binding to erythrocytes was saturable. HABPs 31191 and 31178 recognized 56 and 26 kDa receptors on erythrocyte membrane and inhibited in vitro Plasmodium falciparum merozoite invasion of erythrocytes by between 27% and 46% at 200 microg ml(-1) concentration, suggesting that these MSP-6 protein peptides play a possible role in the invasion process.
Collapse
Affiliation(s)
- Ramsés López
- Fundación Instituto de Inmunología de Colombia (FIDIC) and Universidad Nacional de Colombia, Colombia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Patarroyo ME, Salazar LM, Cifuentes G, Lozano JM, Delgado G, Rivera Z, Rosas J, Vargas LE. Protective cellular immunity against P. falciparum malaria merozoites is associated with a different P7 and P8 residue orientation in the MHC–peptide–TCR complex. Biochimie 2006; 88:219-30. [PMID: 16126320 DOI: 10.1016/j.biochi.2005.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/19/2022]
Abstract
Developing a logical and rational methodology for obtaining vaccines, especially against the main parasite causing human malaria (P. falciparum), consists of blocking receptor-ligand interactions. Conserved peptides derived from proteins involved in invasion and having high red blood cell binding ability have thus been identified. Immunization studies using Aotus monkeys have revealed that these peptides were neither immunogenic nor protection inducing. When modified in their critical binding residues, previously identified by Glycine scanning, some of these peptides were immunogenic and non-protection inducers; others induced short-lived antibodies whilst a few were both immunogenic and protection inducing. However, very few of these modified high activity binding peptides (HABPs) reproducibly induced protection without inducing antibody production, but with high cytokine liberation, suggesting that cellular mechanisms had been activated in the protection process. The three-dimensional structure of these peptides inducing protection without producing antibodies was determined by 1H-NMR. Their HLA-DRbeta1* molecule binding ability was also determined to ascertain association between their 3D structure and ability to bind to Major Histocompatibility Complex Class-II molecules (MHC-II). 1H Nuclear Magnetic Resonance analysis and structure calculations clearly showed that these modified HABPs inducing protective cellular immune responses (but not producing antibodies against malaria) adopted special structural configuration to fit into the MHC II-peptide-TCR complex. A different orientation for P7 and P8 TCR contacting residues was clearly recognized when comparing their structure with modified peptides, which induced high antibody titers and protection, suggesting that these residues are involved in activating the immune system associated with antibody production and protection.
Collapse
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No., 26-00 Bogotá, Colombia; Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Espejo F, Bermúdez A, Vanegas M, Rivera Z, Torres E, Salazar LM, Patarroyo ME. Elongating modified conserved peptides eliminates their immunogenicity and protective efficacy against P. falciparum malaria. J Struct Biol 2005; 150:245-58. [PMID: 15890273 DOI: 10.1016/j.jsb.2005.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/18/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Plasmodium falciparum malaria protein peptides were synthesised in the search for more effective routes for inducing a protective immune response against this deadly parasite and this information has been associated with such molecules' three-dimensional structure. These peptides had high red blood cell binding activity and their carboxy- and amino-terminal extremes were elongated for determining their immunogenic and protection-inducing activity against this disease in the Aotus monkey experimental model. 1H-NMR was used for analysing their three-dimensional structure; FAST ELISA, immunofluorescence antibody test, and Western blot were used for identifying their antibody inducing capacity and these previously immunised Aotus were inoculated with a highly infective P. falciparum strain to determine whether these elongated peptides were able to induce protection. This was aimed at establishing an association or correlation between long peptides' three-dimensional structure and their immunogenic and protection-inducing response in these monkeys. Peptides 20026 (25 residue), 20028 (30 residue), and 20030 (35 residues) were synthesised based on elongating the amino-terminal region of the 10022 highly immunogenic and protection-inducing modified peptide. 1H-NMR studies revealed that the first three had Classical type III beta-turn structures, different from the 20-amino acid long modified peptide 10022 which had a distorted type III beta-turn. Humoral immune response analysis showed that even when some antibodies could be generated against the parasite, none of the immunised Aotus could be protected with elongated peptides suggesting that elongating them eliminated modified peptide 10022 immunogenic and protection-inducing capacity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aotus trivirgatus
- Binding, Competitive
- Blotting, Western
- Circular Dichroism
- Enzyme-Linked Immunosorbent Assay
- HLA-DR Antigens/metabolism
- HLA-DRB1 Chains
- Humans
- Macromolecular Substances/chemistry
- Magnetic Resonance Spectroscopy
- Malaria Vaccines
- Malaria, Falciparum/prevention & control
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Plasmodium falciparum
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Fabiola Espejo
- Fundacion Instituto de Inmunología de Colombia (FIDIC), Colombia
| | | | | | | | | | | | | |
Collapse
|
16
|
Cifuentes G, Salazar LM, Vargas LE, Parra CA, Vanegas M, Cortes J, Patarroyo ME. Evidence supporting the hypothesis that specifically modifying a malaria peptide to fit into HLA-DRβ1*03 molecules induces antibody production and protection. Vaccine 2005; 23:1579-87. [PMID: 15694510 DOI: 10.1016/j.vaccine.2004.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 08/10/2004] [Indexed: 11/26/2022]
Abstract
EBA-175 protein is used as ligand in Plasmodium falciparum binding to erythrocytes. Evidence shows that conserved peptide 1815 from this protein having high red blood cell binding ability plays an important role in the invasion process. This peptide is neither immunogenic nor protective. Residues were substituted by amino acids having similar volume or mass but different polarity in 1815 analogues had to make them fit into HLA-DRbeta1*03 molecules; these were synthesised and inoculated into Aotus monkeys, generating different immunogenic and/or protective immune responses. A shortening in alpha-helix structure was found in the immunogenic and protective ones when their secondary structure was analyzed by NMR to correlate their structure with their immunological properties. This data, together with results from previous studies, suggests that this shortening in high-activity binding peptide (HABP) helical configuration may lead to better fitting into immune system molecules as shown by binding to purified HLA-DRbeta1* molecules rendering them immunogenic and protective and therefore, excellent candidates for consideration as components of a subunit based multi-component synthetic vaccine against malaria.
Collapse
Affiliation(s)
- Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50, No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
17
|
Bermúdez A, Alba P, Espejo F, Vargas LE, Parra C, Rodríguez R, Reyes C, Patarroyo ME. Fitting modified HRP-I peptide analogue 3D structure into HLA-DR molecules induces protection against Plasmodium falciparum malaria. Int J Biochem Cell Biol 2005; 37:336-49. [PMID: 15474979 DOI: 10.1016/j.biocel.2004.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/16/2004] [Accepted: 07/08/2004] [Indexed: 11/26/2022]
Abstract
Conserved, high-activity, red blood cell binding malaria peptide 6786, from the HRP-I protein, having a random 3D structure as determined by 1H-NMR, was non-immunogenic and non-protection inducing when used as an immunogen in Aotus monkeys. Modifications made in its amino acid sequence were thus performed to render it immunogenic and protection inducing. Non-immunogenic, non-protection inducing modified peptide 13852 presented A2-H8 and K14-L18 helix fragments. Immunogenic, non-protection inducing modified peptide 23428 presented a short, displaced helix in a different region, whilst immunogenic, protection inducing peptide 24224 had 2 displaced helical regions towards the central region giving more flexibility to its N- and C-terminals. Immunogenic and protection inducing peptides bound with high affinity to HLA-DRB1* 0301 whilst others did not bind to any HLA-DRB1* purified molecule. Structural modifications may thus lead to inducing immunogenicity and protection associated with their capacity to bind specifically to purified HLA-DRB1* molecules, suggesting a new way of developing multi-component, subunit-based malarial vaccines.
Collapse
Affiliation(s)
- Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bermúdez A, Cifuentes G, Guzmán F, Salazar LM, Patarroyo ME. Immunogenicity and protectivity of Plasmodium falciparum EBA-175 peptide and its analog is associated with alpha-helical region shortening and displacement. Biol Chem 2004; 384:1443-50. [PMID: 14669987 DOI: 10.1515/bc.2003.160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
EBA-175 protein is used as a ligand in the binding of P. falciparum to red blood cells (RBCs). Evidence shows that the conserved peptide 1779 from this protein (with high red blood cell binding ability and known critical erythrocyte binding residues) plays an important role in the invasion process. This peptide is neither immunogenic nor protective; analogs having critical residues replaced by amino acids with similar volume or mass but different polarity were synthesized and inoculated into Aotus monkeys, and elicited different immunogenic and protective responses. Nuclear Magnetic Resonance (1H-NMR) studies revealed that peptide analog 21696 (non-immunogenic and non-protective) presents a large helical fragment, that the peptide 14012 (immunogenic and non-protective) helical fragment is smaller, while the peptide 22812 (immunogenic and protective) alpha-helix is shorter in a different region and possesses greater flexibility at its N-terminus. The presence of methionine residues could affect the structural stability of peptide 22812 and ultimately its immunological response. Our results suggest a new strategy for designing a new malaria multi-component subunit-based vaccine.
Collapse
Affiliation(s)
- Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
19
|
Valbuena JJ, Bravo RV, Ocampo M, Lopez R, Rodriguez LE, Curtidor H, Puentes A, Garcia JE, Tovar D, Gomez J, Leiton J, Patarroyo ME. Identifying Plasmodium falciparum EBA-175 homologue sequences that specifically bind to human erythrocytes. Biochem Biophys Res Commun 2004; 321:835-44. [PMID: 15358103 DOI: 10.1016/j.bbrc.2004.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Indexed: 10/26/2022]
Abstract
Erythrocyte binding antigen-160 (EBA-160) protein is a Plasmodium falciparum antigen homologue from the erythrocyte binding protein family (EBP). It has been shown that the EBP family plays a role in parasite binding to the erythrocyte surface. The EBA-160 sequence has been chemically synthesised in seventy 20-mer sequential peptides covering the entire 3D7 protein strain, each of which was tested in erythrocyte binding assays to identify possible EBA-160 functional regions. Five EBA-160 high activity binding peptides (HABPs) specifically binding to erythrocytes with high affinity were identified. Dissociation constants lay between 200 and 460 nM and Hill coefficients between 1.5 and 2.3. Erythrocyte membrane protein binding peptide cross-linking assays using SDS-PAGE showed that these peptides bound specifically to 12, 28, and 44 kDa erythrocyte membrane proteins. The nature of these receptor sites was studied in peptide binding assays using enzyme-treated erythrocytes. HABPs were able to block merozoite in vitro invasion of erythrocytes. HABPs' potential as anti-malarial vaccine candidates is also discussed.
Collapse
Affiliation(s)
- John Jairo Valbuena
- Fundacion Instituto de Inmunologia de Colombia, Universidad Nacional de Colombia, Colombia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cubillos M, Alba MP, Bermúdez A, Trujillo M, Patarroyo ME. Plasmodium falciparum SERA protein peptide analogues having short helical regions induce protection against malaria. Biochimie 2004; 85:651-7. [PMID: 14505820 DOI: 10.1016/s0300-9084(03)00136-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three Plasmodium falciparum serine repeat antigen (SERA) protein peptides were studied by NMR and structure calculations being done in 70:30 water:trifluoroethanol solution. Peptide 22834 was shown to be immunogenic and protective against malaria in Aotus monkeys, whilst native peptide 6737 and its analogue 14096 did not present protection against the disease in these monkeys. Results showed a relationship between these peptides' secondary structure and their function as immunogen against malaria.
Collapse
Affiliation(s)
- Marcia Cubillos
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-00, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
21
|
Alba MP, Salazar LM, Purmova J, Vanegas M, Rodriguez R, Patarroyo ME. Induction and displacement of an helix in the 6725 SERA peptide analogue confers protection against P. falciparum malaria. Vaccine 2004; 22:1281-9. [PMID: 15003658 DOI: 10.1016/j.vaccine.2003.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 08/28/2003] [Indexed: 11/18/2022]
Abstract
The protein called serine repeat antigen (SERA) is a Plasmodium falciparum malaria antigen; high activity erythrocyte binding peptides have been identified in this protein. One of these, the 6725 peptide (non-immunogenic and non-protective), was analyzed for immunogenicity and protective activity in Aotus monkeys, together with several of its analogues. These peptides were studied by 1H NMR to try to correlate their structure with their biological function. These peptides showed helical regions having differences in their position, except for randomly structured 6725. It is shown that replacing some amino acids induced immunogenicity and protectivity against experimental malaria and changed their three-dimensional (3D) structure, suggesting that such modifications may allow a better fit with immune system molecules.
Collapse
Affiliation(s)
- Martha Patricia Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50, No. 26-00, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
22
|
Alba MP, Salazar LM, Vargas LE, Trujillo M, Lopez Y, Patarroyo ME. Modifying RESA protein peptide 6671 to fit into HLA-DRbeta1* pockets induces protection against malaria. Biochem Biophys Res Commun 2004; 315:1154-64. [PMID: 14985134 DOI: 10.1016/j.bbrc.2004.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Indexed: 10/26/2022]
Abstract
6671 is a non-immunogenic, conserved high activity red blood cell binding peptide located between residues 141 and 160 of the Plasmodium falciparum RESA protein. This peptide's critical red blood cell (RBC) binding residues have been replaced by amino acids having similar mass but different charge to change their immunologic properties. Three analogues (two of them immunogenic and protective and one immunogenic) were studied by purified HLA-DRbeta1* binding and NMR to correlate their structure with their immunological properties. Native peptide 6671 had a very flexible beta-sheet structure, whilst its immunogenic, protective, and non-protective peptide analogues presented an alpha-helical structure having different locations and lengths. These changes in peptide structure facilitated their fitting into HLA-DRbeta1* molecules. This paper shows for the first time how modifications performed on RESA protein non-immunogenic, non-protectogenic peptides impose a configuration allowing them to fit perfectly into the MHC II-TCR complex, in turn leading to appropriate activation of the immune system.
Collapse
Affiliation(s)
- Martha Patricia Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
23
|
Espejo F, Bermúdez A, Torres E, Urquiza M, Rodríguez R, López Y, Patarroyo ME. Shortening and modifying the 1513 MSP-1 peptide’s α-helical region induces protection against malaria. Biochem Biophys Res Commun 2004; 315:418-27. [PMID: 14766224 DOI: 10.1016/j.bbrc.2004.01.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Indexed: 11/25/2022]
Abstract
Immunogenic and protective peptide sequences are of prime importance in the search for an anti-malarial vaccine. The MSP-1 conserved and semi-conserved sequences have been shown to contain red blood cell (RBC) membrane high affinity binding peptides (HABP). HABP 1513 sequence ((42)GYSLFQKEKMVLNEGTSGTA(61)), from this protein's N-terminal, has been shown to possess a T-epitope; however, it did not induce a humoral immune response or complete protection when evaluated in Aotus monkeys. Analogue peptides with critical binding residues replaced by amino acids with similar mass but different charge were synthesised and tested for immunogenicity and protectivity in monkey. NMR studies correlated structural behaviour with biological function. Non-immunogenic and non-protective 1513 native peptide presented a helical fragment between residues L(4) and E(14). C-terminal, 5-residue-shorter, non-immunogenic, non-protective peptide 17894 contained an alpha-helix from Q(6) to L(12) residues. Immunogenic and protective peptide 13946 presented a shorter alpha-helix between K(7) to N(13) residues. These data suggest that changing certain residues permits better peptide fit within the MHC class II-peptide-TCR complex, thus activating the immune system and inducing a protective immune response.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aotidae
- Blotting, Western
- Cell Membrane/metabolism
- Circular Dichroism
- Epitopes/chemistry
- Erythrocytes/metabolism
- Fluorescent Antibody Technique, Indirect
- Magnetic Resonance Spectroscopy
- Malaria Vaccines
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/prevention & control
- Merozoite Surface Protein 1/chemistry
- Models, Molecular
- Molecular Sequence Data
- Peptide Biosynthesis
- Peptide Fragments
- Peptides/chemistry
- Plasmodium falciparum/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Fabiola Espejo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Universidad Nacional de Colombia-Bogotá, Cra. 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
24
|
López R, Valbuena J, Curtidor H, Puentes A, Rodríguez LE, García J, Suárez J, Vera R, Ocampo M, Trujillo M, Ramirez LE, Patarroyo ME. Plasmodium falciparum: red blood cell binding studies using peptides derived from rhoptry-associated protein 2 (RAP2). Biochimie 2004; 86:1-6. [PMID: 14987794 DOI: 10.1016/j.biochi.2003.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 11/28/2003] [Indexed: 11/23/2022]
Abstract
Plasmodium falciparum rhoptry-associated proteins 1 (RAP1) and 2 (RAP2) are antigens presenting themselves as candidates for a subunit malaria vaccine. RAP2 protein, non-overlapping, consecutive peptides were synthesised and tested in red blood cell (RBC) binding assays to identify their receptor-ligand interaction in recognising RAP2 regions involved in the in vitro merozoite invasion process. Four high activity binding peptides (HABPs) were identified in the resulting 20 peptides. Peptides 26220 ((61)NHFSSADELIKYLEKTNINT(80)), 26225 ((161)IKKNPFLRVLNKASTTTHAT(180)) and 26229 ((241)RSVNNVISKNKTLGLRKRSS(260)) were located in the amino terminal and central part of the protein and HABP 26235 ((361)FLAEDFVELFDVTMDCYSRQ(380)) was located at the carboxy terminal. All these HABPs showed saturable binding and presented dissociation constants between 500 and 950 nM; the number of binding sites per RBC ranged from 48,000 to 160,000. High binding peptides' critical amino acids involved in RBC binding were determined by competition binding assays; their amino acids appear in bold in the sequences shown above. SDS-PAGE results showed that peptides 26220, 26225 and 26229 had at least two different sets of 62 and 42 kDa HABP receptors on RBCs and that peptide 26235 had at least two different sets of 77 and 62 kDa. HABPs inhibited in vitro merozoite invasion by between 54% and 94% at 200 microM, suggesting that these RAP2 peptides are involved in the in vitro P. falciparum invasion process.
Collapse
Affiliation(s)
- Ramsés López
- Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Alba MP, Salazar LM, Puentes A, Pinto M, Torres E, Patarroyo ME. 6746 SERA peptide analogues immunogenicity and protective efficacy against malaria is associated with short alpha helix formation: malaria protection associated with peptides alpha helix shortening. Peptides 2003; 24:999-1006. [PMID: 14499278 DOI: 10.1016/s0196-9781(03)00187-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Erythrocyte high activity binding peptides (HABPs) have been identified for the Plasmodium falciparum serine repeat antigen (SERA). HABP 6746, located in this protein's 50 kDa fragment had its critical binding residues replaced by amino acids having similar mass but different charge to change their immunologic properties. This peptide analogues were used to immunize Aotus monkeys that were challenged later on with a virulent P. falciparum strain to determine their protective efficacy. A shortening in alpha helix structure was found in the immunogenic and protective ones when their secondary structure was analyzed by NMR, to correlate their structure with their immunologic properties. These data, together with results from previous studies, suggest that this shortening in HABP helical configuration may lead to better fitting with immune system molecules, rendering them immunogenic and protective and therefore making them excellent candidates for consideration as components of a subunit based multicomponent synthetic vaccine against malaria.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Aotidae
- Blotting, Western
- Chromatography, High Pressure Liquid
- Fluorescent Antibody Technique, Indirect
- Magnetic Resonance Spectroscopy
- Malaria Vaccines/chemistry
- Malaria Vaccines/immunology
- Malaria Vaccines/pharmacology
- Malaria, Falciparum/immunology
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Plasmodium falciparum/immunology
- Polymers/chemistry
- Polymers/pharmacology
- Protein Structure, Secondary
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Structure-Activity Relationship
- Vaccination
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- Martha Patricia Alba
- Fundación Instituto de Inmunología de Colombia, Cra. 50 No. 26-00, Bogota, Colombia
| | | | | | | | | | | |
Collapse
|