1
|
DasGupta S. Synthetic antibodies for accelerated RNA crystallography. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1869. [PMID: 39187256 DOI: 10.1002/wrna.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
RNA structure is crucial to a wide range of cellular processes. The intimate relationship between macromolecular structure and function necessitates the determination of high-resolution structures of functional RNA molecules. X-ray crystallography is the predominant technique used for macromolecular structure determination; however, solving RNA structures has been more challenging than their protein counterparts, as reflected in their poor representation in the Protein Data Bank (<1%). Antibody-assisted RNA crystallography is a relatively new technique that promises to accelerate RNA structure determination by employing synthetic antibodies (Fabs) as crystallization chaperones that are specifically raised against target RNAs. Antibody chaperones facilitate the formation of ordered crystal lattices by minimizing RNA flexibility and replacing unfavorable RNA-RNA contacts with contacts between chaperone molecules. Atomic coordinates of these antibody fragments can also be used as search models to obtain phase information during structure determination. Antibody-assisted RNA crystallography has enabled the structure determination of 15 unique RNA targets, including 11 in the last 6 years. In this review, I cover the historical development of antibody fragments as crystallization chaperones and their application to diverse RNA targets. I discuss how the first structures of antibody-RNA complexes informed the design of second-generation antibodies and led to the development of portable crystallization modules that have greatly reduced the uncertainties associated with RNA crystallography. Finally, I outline unexplored avenues that can increase the impact of this technology in structural biology research and discuss potential applications of antibodies as affinity reagents for interrogating RNA biology outside of their use in crystallography. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Banna HA, Das NK, Ojha M, Koirala D. Advances in chaperone-assisted RNA crystallography using synthetic antibodies. BBA ADVANCES 2023; 4:100101. [PMID: 37655005 PMCID: PMC10466895 DOI: 10.1016/j.bbadva.2023.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
RNA molecules play essential roles in many biological functions, from gene expression regulation, cellular growth, and metabolism to catalysis. They frequently fold into three-dimensional structures to perform their functions. Therefore, determining RNA structure represents a key step for understanding the structure-function relationships and developing RNA-targeted therapeutics. X-ray crystallography remains a method of choice for determining high-resolution RNA structures, but it has been challenging due to difficulties associated with RNA crystallization and phasing. Several natural and synthetic RNA binding proteins have been used to facilitate RNA crystallography. Having unique properties to help crystal packing and phasing, synthetic antibody fragments, specifically the Fabs, have emerged as promising RNA crystallization chaperones, and so far, over a dozen of RNA structures have been solved using this strategy. Nevertheless, multiple steps in this approach need to be improved, including the recombinant expression of these anti-RNA Fabs, to warrant the full potential of these synthetic Fabs as RNA crystallization chaperones. This review highlights the nuts and bolts and recent advances in the chaperone-assisted RNA crystallography approach, specifically emphasizing the Fab antibody fragments as RNA crystallization chaperones.
Collapse
Affiliation(s)
- Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
4
|
Torabi SF, Vaidya AT, Tycowski KT, DeGregorio SJ, Wang J, Shu MD, Steitz TA, Steitz JA. RNA stabilization by a poly(A) tail 3'-end binding pocket and other modes of poly(A)-RNA interaction. Science 2021; 371:science.abe6523. [PMID: 33414189 DOI: 10.1126/science.abe6523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Polyadenylate [poly(A)] tail addition to the 3' end of a wide range of RNAs is a highly conserved modification that plays a central role in cellular RNA function. Elements for nuclear expression (ENEs) are cis-acting RNA elements that stabilize poly(A) tails by sequestering them in RNA triplex structures. A crystal structure of a double ENE from a rice hAT transposon messenger RNA complexed with poly(A)28 at a resolution of 2.89 angstroms reveals multiple modes of interaction with poly(A), including major-groove triple helices, extended minor-groove interactions with RNA double helices, a quintuple-base motif that transitions poly(A) from minor-groove associations to major-groove triple helices, and a poly(A) 3'-end binding pocket. Our findings both expand the repertoire of motifs involved in long-range RNA interactions and provide insights into how polyadenylation can protect an RNA's extreme 3' end.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Anand T Vaidya
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
5
|
Abstract
Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments.
Collapse
Affiliation(s)
- Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR 9002 CNRS/Université de Strasbourg, 15, rue René Descartes, Strasbourg Cedex, 67084, France
| | | |
Collapse
|
6
|
Abstract
Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.
Collapse
|
7
|
Batey RT, Kieft JS. Soaking Hexammine Cations into RNA Crystals to Obtain Derivatives for Phasing Diffraction Data. Methods Mol Biol 2016; 1320:219-32. [PMID: 26227046 DOI: 10.1007/978-1-4939-2763-0_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solving a novel RNA structure by x-ray crystallography requires a means to obtain initial phase estimates. This is a challenge because many of the tools available for solving protein structures are not available for RNA. We have developed a reliable means to use hexammine cations to address this challenge. The process involves engineering the RNA to introduce a reliable hexammine binding site into the structure, then soaking crystals of these RNAs with an iridium (III) or cobalt (III) compound in a "directed soaking" strategy. Diffraction data obtained from these crystals then can be used in SAD or MAD phasing. In many cases, suitable derivatives can be obtained by soaking the hexammine into RNA crystals that have not been engineered. Considerations for using this method and example protocols are presented.
Collapse
Affiliation(s)
- Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, CO, 80309, USA,
| | | |
Collapse
|
8
|
McPherson A, Cudney B. Optimization of crystallization conditions for biological macromolecules. Acta Crystallogr F Struct Biol Commun 2014; 70:1445-67. [PMID: 25372810 PMCID: PMC4231845 DOI: 10.1107/s2053230x14019670] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/31/2014] [Indexed: 11/11/2022] Open
Abstract
For the successful X-ray structure determination of macromolecules, it is first necessary to identify, usually by matrix screening, conditions that yield some sort of crystals. Initial crystals are frequently microcrystals or clusters, and often have unfavorable morphologies or yield poor diffraction intensities. It is therefore generally necessary to improve upon these initial conditions in order to obtain better crystals of sufficient quality for X-ray data collection. Even when the initial samples are suitable, often marginally, refinement of conditions is recommended in order to obtain the highest quality crystals that can be grown. The quality of an X-ray structure determination is directly correlated with the size and the perfection of the crystalline samples; thus, refinement of conditions should always be a primary component of crystal growth. The improvement process is referred to as optimization, and it entails sequential, incremental changes in the chemical parameters that influence crystallization, such as pH, ionic strength and precipitant concentration, as well as physical parameters such as temperature, sample volume and overall methodology. It also includes the application of some unique procedures and approaches, and the addition of novel components such as detergents, ligands or other small molecules that may enhance nucleation or crystal development. Here, an attempt is made to provide guidance on how optimization might best be applied to crystal-growth problems, and what parameters and factors might most profitably be explored to accelerate and achieve success.
Collapse
Affiliation(s)
- Alexander McPherson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Bob Cudney
- Hampton Research, 34 Journey, Aliso Viejo, CA 92656-3317, USA
| |
Collapse
|
9
|
Sherman EM, Holmes S, Ye JD. Specific RNA-binding antibodies with a four-amino-acid code. J Mol Biol 2014; 426:2145-57. [PMID: 24631830 DOI: 10.1016/j.jmb.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/23/2023]
Abstract
Numerous large non-coding RNAs are rapidly being discovered, and many of them have been shown to play vital roles in gene expression, gene regulation, and human diseases. Given their often structured nature, specific recognition with an antibody fragment becomes feasible and may help define the structure and function of these non-coding RNAs. As demonstrated for protein antigens, specific antibodies may aid in RNA crystal structure elucidation or the development of diagnostic tools and therapeutic drugs targeting disease-causing RNAs. Recent success and limitation of RNA antibody development has made it imperative to generate an effective antibody library specifically targeting RNA molecules. Adopting the reduced chemical diversity design and further restricting the interface diversity to tyrosines, serines, glycines, and arginines only, we have constructed a RNA-targeting Fab library. Phage display selection and downstream characterization showed that this library yielded high-affinity Fabs for all three RNA targets tested. Using a quantitative specificity assay, we found that these Fabs are highly specific, possibly due to the alternate codon design we used to avoid consecutive arginines in the Fab interface. In addition, the effectiveness of the minimal Fab library may challenge our view of the protein-RNA binding interface and provide a unique solution for future design of RNA-binding proteins.
Collapse
Affiliation(s)
- Eileen M Sherman
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
| | - Sean Holmes
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA
| | - Jing-Dong Ye
- Department of Chemistry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366, USA.
| |
Collapse
|
10
|
Sheth P, Cervantes-Cervantes M, Nagula A, Laing C, Wang JTL. Novel features for identifying A-minors in three-dimensional RNA molecules. Comput Biol Chem 2013; 47:240-5. [PMID: 24211672 DOI: 10.1016/j.compbiolchem.2013.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 01/08/2023]
Abstract
RNA tertiary interactions or tertiary motifs are conserved structural patterns formed by pairwise interactions between nucleotides. They include base-pairing, base-stacking, and base-phosphate interactions. A-minor motifs are the most common tertiary interactions in the large ribosomal subunit. The A-minor motif is a nucleotide triple in which minor groove edges of an adenine base are inserted into the minor groove of neighboring helices, leading to interaction with a stabilizing base pair. We propose here novel features for identifying and predicting A-minor motifs in a given three-dimensional RNA molecule. By utilizing the features together with machine learning algorithms including random forests and support vector machines, we show experimentally that our approach is capable of predicting A-minor motifs in the given RNA molecule effectively, demonstrating the usefulness of the proposed approach. The techniques developed from this work will be useful for molecular biologists and biochemists to analyze RNA tertiary motifs, specifically A-minor interactions.
Collapse
Affiliation(s)
- Palak Sheth
- Bioinformatics Program, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | | | | |
Collapse
|
11
|
Rowinska-Zyrek M, Skilandat M, Sigel RKO. Hexaamminecobalt(III) - Probing Metal Ion Binding Sites in Nucleic Acids by NMR Spectroscopy. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Piccirilli JA, Koldobskaya Y. Crystal structure of an RNA polymerase ribozyme in complex with an antibody fragment. Philos Trans R Soc Lond B Biol Sci 2012; 366:2918-28. [PMID: 21930583 DOI: 10.1098/rstb.2011.0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All models of the RNA world era invoke the presence of ribozymes that can catalyse RNA polymerization. The class I ligase ribozyme selected in vitro 15 years ago from a pool of random RNA sequences catalyses formation of a 3',5'-phosphodiester linkage analogous to a single step of RNA polymerization. Recently, the three-dimensional structure of the ligase was solved in complex with U1A RNA-binding protein and independently in complex with an antibody fragment. The RNA adopts a tripod arrangement and appears to use a two-metal ion mechanism similar to protein polymerases. Here, we discuss structural implications for engineering a true polymerase ribozyme and describe the use of the antibody framework both as a portable chaperone for crystallization of other RNAs and as a platform for exploring steps in evolution from the RNA world to the RNA-protein world.
Collapse
Affiliation(s)
- Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Gordon Center for Integrative Science, Room W406, Chicago, IL 60637, USA.
| | | |
Collapse
|
13
|
Kazantsev AV, Rambo RP, Karimpour S, Santalucia J, Tainer JA, Pace NR. Solution structure of RNase P RNA. RNA (NEW YORK, N.Y.) 2011; 17:1159-71. [PMID: 21531920 PMCID: PMC3096047 DOI: 10.1261/rna.2563511] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/30/2011] [Indexed: 05/25/2023]
Abstract
The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of MCD Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
14
|
A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nat Struct Mol Biol 2010; 18:100-6. [PMID: 21151117 PMCID: PMC3058332 DOI: 10.1038/nsmb.1945] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 10/01/2010] [Indexed: 02/03/2023]
Abstract
RNA crystallization and phasing represent major bottlenecks in RNA structure determination. Seeking to exploit antibody fragments as RNA crystallization chaperones, we have used an arginine-enriched synthetic Fab library displayed on phage to obtain Fabs against the class I ligase ribozyme. We solved the structure of a Fab:ligase complex at 3.1Å using molecular replacement with Fab coordinates, confirming the ribozyme architecture and revealing the chaperone’s role in RNA recognition and crystal contacts. The epitope resides in the GAAACAC sequence that caps the P5 helix and retains high-affinity Fab binding within the context of other structured RNAs. This portable epitope provides a new RNA crystallization chaperone system that easily can be screened in parallel to the U1A RNA-binding protein, with the advantages of the smaller size of the loop and high molecular weight, large surface area, and phasing power provided by Fabs.
Collapse
|
15
|
Abstract
A number of RNAs ranging from small helices to large megadalton ribonucleoprotein complexes have been solved to atomic resolution using X-ray crystallography. As with proteins, RNA crystallography involves a number of screening trials in which the concentration of macromolecule, precipitant, salt, and temperature are varied, an approach known as searching "condition space." In contrast to proteins, the nature of base pairing in nucleic acids creates predictable secondary structure that facilitates the rational design of RNA variants, allowing "sequence space" to be screened in parallel. This chapter reviews RNA-specific techniques and considerations for RNA crystallography and presents a complete workflow used by our laboratory for solving RNA structures starting with initial library construction, methods to investigate and improve RNA crystal quality, and finally phase determination and structure solution.
Collapse
Affiliation(s)
- Francis E Reyes
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | | | | |
Collapse
|
16
|
Spitale RC, Wedekind JE. Exploring ribozyme conformational changes with X-ray crystallography. Methods 2009; 49:87-100. [PMID: 19559088 PMCID: PMC2782588 DOI: 10.1016/j.ymeth.2009.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/28/2009] [Accepted: 06/05/2009] [Indexed: 11/18/2022] Open
Abstract
Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the "gold standard" for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed 'fourth generation' radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of 'conventional' RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems.
Collapse
Affiliation(s)
- Robert C. Spitale
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| | - Joseph E. Wedekind
- Department of Biochemistry & Biophysics, 601 Elmwood Avenue Box 712, Rochester New York 14642
- Department of Chemistry, Biological Chemistry Cluster, RC Box 270216, Rochester, NY 14627-0216
| |
Collapse
|
17
|
Vicens Q, Gooding AR, Duarte LF, Batey RT. Preparation of group I introns for biochemical studies and crystallization assays by native affinity purification. PLoS One 2009; 4:e6740. [PMID: 19710925 PMCID: PMC2729099 DOI: 10.1371/journal.pone.0006740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/27/2009] [Indexed: 11/19/2022] Open
Abstract
The study of functional RNAs of various sizes and structures requires efficient methods for their synthesis and purification. Here, 23 group I intron variants ranging in length from 246 to 341 nucleotides—some containing exons—were subjected to a native purification technique previously applied only to shorter RNAs (<160 nucleotides). For the RNAs containing both exons, we adjusted the original purification protocol to allow for purification of radiolabeled molecules. The resulting RNAs were used in folding assays on native gel electrophoresis and in self-splicing assays. The intron-only RNAs were subjected to the regular native purification scheme, assayed for folding and employed in crystallization screens. All RNAs that contained a 3′ overhang of one nucleotide were efficiently cleaved off from the support and were at least 90% pure after the non-denaturing purification. A representative subset of these RNAs was shown to be folded and self-splicing after purification. Additionally, crystals were grown for a 286 nucleotide long variant of the Clostridium botulinum intron. These results demonstrate the suitability of the native affinity purification method for the preparation of group I introns. We hope these findings will stimulate a broader application of this strategy to the preparation of other large RNA molecules.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA.
| | | | | | | |
Collapse
|
18
|
Edwards AL, Garst AD, Batey RT. Determining structures of RNA aptamers and riboswitches by X-ray crystallography. Methods Mol Biol 2009; 535:135-63. [PMID: 19377976 DOI: 10.1007/978-1-59745-557-2_9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structural biology plays a central role in gaining a full understanding of the myriad roles of RNA in biology. In recent years, innovative approaches in RNA purification and crystallographic methods have lead to the visualization of an increasing number of unique structures, providing new insights into its function at the atomic level. This article presents general protocols which have streamlined the process of obtaining a homogeneous sample of properly folded and active RNA in high concentrations that crystallizes well in the presence of a suitable heavy-atom for phasing. Of particular importance are approaches toward RNA crystallography that include exploring "construct space" as opposed to "condition space". Moreover, development of a highly flexible method for experimentally phasing RNA crystals may open the door to a relatively simple means of solving these structures.
Collapse
Affiliation(s)
- Andrea L Edwards
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | | | | |
Collapse
|
19
|
Key labeling technologies to tackle sizeable problems in RNA structural biology. Int J Mol Sci 2008; 9:1214-1240. [PMID: 19325801 PMCID: PMC2635727 DOI: 10.3390/ijms9071214] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/06/2008] [Accepted: 07/14/2008] [Indexed: 01/09/2023] Open
Abstract
The ability to adopt complex three-dimensional (3D) structures that can rapidly interconvert between multiple functional states (folding and dynamics) is vital for the proper functioning of RNAs. Consequently, RNA structure and dynamics necessarily determine their biological function. In the post-genomic era, it is clear that RNAs comprise a larger proportion (>50%) of the transcribed genome compared to proteins (< or =2%). Yet the determination of the 3D structures of RNAs lags considerably behind those of proteins and to date there are even fewer investigations of dynamics in RNAs compared to proteins. Site specific incorporation of various structural and dynamic probes into nucleic acids would likely transform RNA structural biology. Therefore, various methods for introducing probes for structural, functional, and biotechnological applications are critically assessed here. These probes include stable isotopes such as (2)H, (13)C, (15)N, and (19)F. Incorporation of these probes using improved RNA ligation strategies promises to change the landscape of structural biology of supramacromolecules probed by biophysical tools such as nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography and Raman spectroscopy. Finally, some of the structural and dynamic problems that can be addressed using these technological advances are outlined.
Collapse
|
20
|
Keel AY, Rambo RP, Batey RT, Kieft JS. A general strategy to solve the phase problem in RNA crystallography. Structure 2007; 15:761-72. [PMID: 17637337 PMCID: PMC1995091 DOI: 10.1016/j.str.2007.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
X-ray crystallography of biologically important RNA molecules has been hampered by technical challenges, including finding heavy-atom derivatives to obtain high-quality experimental phase information. Existing techniques have drawbacks, limiting the rate at which important new structures are solved. To address this, we have developed a reliable means to localize heavy atoms specifically to virtually any RNA. By solving the crystal structures of thirteen variants of the G*U wobble pair cation binding motif, we have identified a version that when inserted into an RNA helix introduces a high-occupancy cation binding site suitable for phasing. This "directed soaking" strategy can be integrated fully into existing RNA crystallography methods, potentially increasing the rate at which important structures are solved and facilitating routine solving of structures using Cu-Kalpha radiation. This method already has been used to solve several crystal structures.
Collapse
Affiliation(s)
- Amanda Y. Keel
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO, 80045
| | - Robert P. Rambo
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
| | - Robert T. Batey
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309-0215
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO, 80045
- *to whom correspondence should be addressed: , Phone: 303-724-3257, Fax: 303-724-3215
| |
Collapse
|
21
|
Bevilacqua PC, Cerrone-Szakal AL, Siegfried NA. Insight into the functional versatility of RNA through model-making with applications to data fitting. Q Rev Biophys 2007; 40:55-85. [PMID: 17391549 DOI: 10.1017/s0033583507004593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNA World hypothesis posits that life emerged from self-replicating RNA molecules. For any single biopolymer to be the basis for life, it must both store information and perform diverse functions. It is well known that RNA can store information. Advances in recent years have revealed that RNA can exhibit remarkable functional versatility as well. In an effort to judge the functional versatility of RNA and thereby the plausibility that RNA was at one point the basis for life, a statistical chemical approach is adopted. Essential biological functions are reduced to simple molecular models in a minimalist, biopolymer-independent fashion. The models dictate requisite states, populations of states, and physical and chemical changes occurring between the states. Next, equations are derived from the models, which lead to complex phenomenological constants such as observed and functional constants that are defined in terms of familiar elementary chemical descriptors: intrinsic rate constants, microscopic ligand equilibrium constants, secondary structure stability, and ligand concentration. Using these equations, simulations of functional behavior are performed. These functional models provide practical frameworks for fitting and organizing real data on functional RNAs such as ribozymes and riboswitches. At the same time, the models allow the suitability of RNA as a basis for life to be judged. We conclude that RNA, while inferior to extant proteins in most, but not all, functional respects, may be more versatile than proteins, performing a wider range of elementary biological functions at a tolerable level. Inspection of the functional models and various RNA structures uncovers several surprising ways in which the nucleobases can conspire to afford chemical catalysis and evolvability. These models support the plausibility that RNA, or a closely related informational biopolymer, could serve as the basis for a fairly simple form of life.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
22
|
Abstract
RNA-binding proteins play crucial roles in many biological processes, such as transcription, pre-mRNA splicing, nuclear-cytoplasmic transport of RNA, and translation of mRNA. Specific RNA-protein interactions are key to the correct assembly of ribonucleoprotein complexes and their biological functions. To date, more than 100 unique RNA-protein crystals have been prepared and there are more than 300 entries of RNA-protein complex structures in the Protein Data Bank. This chapter focuses on methods of RNA-protein complex crystallization discussed in six sections: determination of protein-binding sites in RNA, preparation of RNA, preparation of protein, annealing of RNA, reconstitution of RNA-protein complex, and searching crystallization conditions.
Collapse
Affiliation(s)
- Eiji Obayashi
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
23
|
Kieft JS, Costantino DA, Filbin ME, Hammond J, Pfingsten JS. Structural methods for studying IRES function. Methods Enzymol 2007; 430:333-71. [PMID: 17913644 DOI: 10.1016/s0076-6879(07)30013-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Internal ribosome entry sites (IRESs) substitute RNA sequences for some or all of the canonical translation initiation protein factors. Therefore, an important component of understanding IRES function is a description of the three-dimensional structure of the IRES RNA underlying this mechanism. This includes determining the degree to which the RNA folds, the global RNA architecture, and higher resolution information when warranted. Knowledge of the RNA structural features guides ongoing mechanistic and functional studies. In this chapter, we present a roadmap to structurally characterize a folded RNA, beginning from initial studies to define the overall architecture and leading to high-resolution structural studies. The experimental strategy presented here is not unique to IRES RNAs but is adaptable to virtually any RNA of interest, although characterization of RNA-protein interactions requires additional methods. Because IRES RNAs have a specific function, we present specific ways in which the data are interpreted to gain insight into that function. We provide protocols for key experiments that are particularly useful for studying IRES RNA structure and that provide a framework onto which additional approaches are integrated. The protocols we present are solution hydroxyl radical probing, RNase T1 probing, native gel electrophoresis, sedimentation velocity analytical ultracentrifugation, and strategies to engineer RNA for crystallization and to obtain initial crystals.
Collapse
Affiliation(s)
- Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, USA
| | | | | | | | | |
Collapse
|
24
|
Chase E, Golden BL. Crystallization and preliminary diffraction analysis of a group I ribozyme from bacteriophage Twort. Acta Crystallogr Sect F Struct Biol Cryst Commun 2004; 61:71-4. [PMID: 16508095 PMCID: PMC1952367 DOI: 10.1107/s1744309104028337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/03/2004] [Indexed: 11/10/2022]
Abstract
Group I introns are catalytic RNAs that are capable of performing a variety of phosphotransesterification reactions including self-splicing and RNA cleavage. The reactions are efficient, accurate and dependent only on the presence of guanosine-nucleotide substrate and sufficient magnesium ion to stabilize the structure of the RNA. To understand how the group I intron active-site facilitates catalysis, crystals of a 242-nucleotide ribozyme bound to a four-nucleotide product RNA have been produced that diffract to 3.6 A resolution. The space group of these crystals is I2(1)2(1)2(1) and the unit-cell parameters are a = 94.6, b = 141.0, c = 210.9 A. A single heavy-atom derivative has been synthesized by covalent modification of the product RNA with iodine.
Collapse
Affiliation(s)
- Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
- Correspondence e-mail:
| |
Collapse
|