1
|
Correa M, Projetti M, Siegler IA, Vignais N. Mechanomyographic Analysis for Muscle Activity Assessment during a Load-Lifting Task. SENSORS (BASEL, SWITZERLAND) 2023; 23:7969. [PMID: 37766025 PMCID: PMC10535044 DOI: 10.3390/s23187969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The purpose of this study was to compare electromyographic (EMG) with mechanomyographic (MMG) recordings during isometric conditions, and during a simulated load-lifting task. Twenty-two males (age: 25.5 ± 5.3 years) first performed maximal voluntary contractions (MVC) and submaximal isometric contractions of upper limb muscles at 25%, 50% and 75% MVC. Participants then executed repetitions of a functional activity simulating a load-lifting task above shoulder level, at 25%, 50% and 75% of their maximum activity (based on MVC). The low-frequency part of the accelerometer signal (<5 Hz) was used to segment the six phases of the motion. EMG and MMG were both recorded during the entire experimental procedure. Root mean square (RMS) and mean power frequency (MPF) were selected as signal extraction features. During isometric contractions, EMG and MMG exhibited similar repeatability scores. They also shared similar RMS vs. force relationship, with RMS increasing to 75% MVC and plateauing to 100%. MPF decreased with increasing force to 75% MVC. In dynamic condition, RMSMMG exhibited higher sensitivity to changes in load than RMSEMG. These results confirm the feasibility of MMG measurements to be used during functional activities outside the laboratory. It opens new perspectives for future applications in sports science, ergonomics and human-machine interface conception.
Collapse
Affiliation(s)
- Matthieu Correa
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Saclay, CEDEX, 91405 Orsay, France; (I.A.S.); (N.V.)
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université d’Orléans, 45067 Orléans, France
- Moten Technologies, 92800 Puteaux, France
| | | | - Isabelle A. Siegler
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Saclay, CEDEX, 91405 Orsay, France; (I.A.S.); (N.V.)
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université d’Orléans, 45067 Orléans, France
| | - Nicolas Vignais
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Saclay, CEDEX, 91405 Orsay, France; (I.A.S.); (N.V.)
- Laboratoire CIAMS (Complexité, Innovation, Activités Motrices et Sportives), Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
2
|
Kimoto A, Fujiyama H, Machida M. A Wireless Multi-Layered EMG/MMG/NIRS Sensor for Muscular Activity Evaluation. SENSORS (BASEL, SWITZERLAND) 2023; 23:1539. [PMID: 36772579 PMCID: PMC9919115 DOI: 10.3390/s23031539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
A wireless multi-layered sensor that allows electromyography (EMG), mechanomyography (MMG) and near-infrared spectroscopy (NIRS) measurements to be carried out simultaneously is presented. The multi-layered sensor comprises a thin silver electrode, transparent piezo-film and photosensor. EMG and MMG measurements are performed using the electrode and piezo-film, respectively. NIRS measurements are performed using the photosensor. Muscular activity is then analyzed in detail using the three types of data obtained. In experiments, the EMG, MMG and NIRS signals were measured for isometric ramp contraction at the forearm and cycling exercise of the lateral vastus muscle with stepped increments of the load using the layered sensor. The results showed that it was possible to perform simultaneous EMG, MMG and NIRS measurements at a local position using the proposed sensor. It is suggested that the proposed sensor has the potential to evaluate muscular activity during exercise, although the detection of the anaerobic threshold has not been clearly addressed.
Collapse
|
3
|
Displacement Mechanomyography Reflects Mechanical Pedaling Force of Muscle Associated with Changes in Cadence and Work Rate During Pedaling. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
FUKUHARA S, OKA H. Pedaling stroke length effects on the muscle mechanical and electrical activity during recumbent cycling. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.20.04516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Fukuhara S, Kawashima T, Oka H. Indices reflecting muscle contraction performance during exercise based on a combined electromyography and mechanomyography approach. Sci Rep 2021; 11:21208. [PMID: 34707172 PMCID: PMC8551164 DOI: 10.1038/s41598-021-00671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Electromyography (EMG) and mechanomyography (MMG) have been used to directly evaluate muscle function through the electromechanical aspect of muscle contraction. The purpose of this study was to establish new absolute indices to describe muscle contraction performance during dynamic exercise by combining EMG and displacement MMG (dMMG) measured simultaneously using our previously developed MMG/EMG hybrid transducer system. Study participants were eight healthy male non-athletes (controls) and eight male athletes. EMG and dMMG of the vastus medialis were measured for 30 s during four cycles of recumbent bicycle pedaling (30, 60, 90, and 120 W) and on passive joint movement. Total powers were calculated based on the time domain waveforms of both signals. Muscle contraction performance was verified with the slope of regression line (SRL) and the residual sum of squares (RSS) obtained from EMG and dMMG correlation. EMG and dMMG has increased with the work rate. Force and EMG were similar between groups, but dMMG showed a significant difference with load increase. Athletes had significantly higher SRL and significantly lower RSS than controls. The average value divided by SRL and RSS was higher in athletes than in controls. The indices presented by the combined approach of EMG and dMMG showed a clear contrast between the investigated groups and may be parameters that reflect muscle contraction performance during dynamic exercise.
Collapse
Affiliation(s)
- Shinichi Fukuhara
- Department of Medical Engineering, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 701-0193, Japan.
| | - Takaki Kawashima
- Department of Physical Therapist, Kawasaki Junior College of Rehabilitation, Kurashiki, Okayama, 701-0192, Japan
| | - Hisao Oka
- Graduate School of Interdisciplinary Science and Engineering of Health Systems, Okayama University, Okayama, 700-0082, Japan
| |
Collapse
|
6
|
Fuglsang-Damgaard L, Harrison A, Vitger A. Altered muscle activation in agility dogs performing warm-up exercises: an acoustic myography study. COMPARATIVE EXERCISE PHYSIOLOGY 2021. [DOI: 10.3920/cep190076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agility is physically demanding and dogs encounter a considerable risk of injury during training and competition. Pre-performance warm-up is used routinely among human athletes to prepare the tissues for these physical demands, but in canine sports evidence for effects of warm-up is lacking. The aim of this study was to investigate the effects of warm-up in dogs on two major muscles involved in locomotion. It was hypothesised that, after warm-up, the muscles would be used more efficiently (more fibre resting time/total time), recruit fewer fibres (reduced spatial summation) and/or activated with a lower firing frequency (reduced temporal summation). The following factors ‘sex, age, weight, height, training level and agility experience’ were evaluated for their potential impact on muscle function parameters. Fourteen large (≥46 cm at the withers) agility dogs of different breeds and training levels performed a 5 min warm-up program three times, with a 2 min break between the programs for recording purposes. Acoustic myography sensors were attached on the skin over the muscles m. triceps brachii (TB) and m. gluteus superficialis (GS). Recordings of muscle activity were made, while the dogs trotted before warm-up and after each 5 min warm-up program. The dogs used TB more efficiently after 5 min (P<0.05), 10 min (P<0.05) and 15 min (P<0.001) of exercise compared to pre-warm-up values. No changes were found in the activity of GS. For well-trained dogs, TB recruited fewer muscle fibres after 10 and 15 min of warm-up compared to dogs that trained less than 1 h weekly (P<0.03). For dogs with more than 2 years of experience, GS had a lower firing frequency before and after 10 min warm-up compared to dogs with less experience. The results indicate that warm-up alters muscle activation by an increased muscular efficiency. Training level and experience have an influence on muscle function parameters.
Collapse
Affiliation(s)
| | - A.P. Harrison
- University of Copenhagen, PAS (Physiology), Faculty of Health and Medical Sciences, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| | - A.D. Vitger
- DVM, University of Copenhagen, Faculty of Health and Medical Sciences, Veterinary Clinical Sciences, Dyrlægevej 16, 1870 Frederiksberg C, Denmark
| |
Collapse
|
7
|
Fukuhara S, Oka H. A Simplified Analysis of Real-time Monitoring of Muscle Contraction during Dynamic Exercise Using an MMG/EMG Hybrid Transducer System. ADVANCED BIOMEDICAL ENGINEERING 2019. [DOI: 10.14326/abe.8.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Shinichi Fukuhara
- Department of Medical Engineering, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
| | - Hisao Oka
- Graduate School of Interdisciplinary Science and Engineering of Health Systems, Okayama University
| |
Collapse
|
8
|
Dzulkifli MA, Hamzaid NA, Davis GM, Hasnan N. Neural Network-Based Muscle Torque Estimation Using Mechanomyography During Electrically-Evoked Knee Extension and Standing in Spinal Cord Injury. Front Neurorobot 2018; 12:50. [PMID: 30147650 PMCID: PMC6095961 DOI: 10.3389/fnbot.2018.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/18/2018] [Indexed: 11/29/2022] Open
Abstract
This study sought to design and deploy a torque monitoring system using an artificial neural network (ANN) with mechanomyography (MMG) for situations where muscle torque cannot be independently quantified. The MMG signals from the quadriceps were used to derive knee torque during prolonged functional electrical stimulation (FES)-assisted isometric knee extensions and during standing in spinal cord injured (SCI) individuals. Three individuals with motor-complete SCI performed FES-evoked isometric quadriceps contractions on a Biodex dynamometer at 30° knee angle and at a fixed stimulation current, until the torque had declined to a minimum required for ANN model development. Two ANN models were developed based on different inputs; Root mean square (RMS) MMG and RMS-Zero crossing (ZC) which were derived from MMG. The performance of the ANN was evaluated by comparing model predicted torque against the actual torque derived from the dynamometer. MMG data from 5 other individuals with SCI who performed FES-evoked standing to fatigue-failure were used to validate the RMS and RMS-ZC ANN models. RMS and RMS-ZC of the MMG obtained from the FES standing experiments were then provided as inputs to the developed ANN models to calculate the predicted torque during the FES-evoked standing. The average correlation between the knee extension-predicted torque and the actual torque outputs were 0.87 ± 0.11 for RMS and 0.84 ± 0.13 for RMS-ZC. The average accuracy was 79 ± 14% for RMS and 86 ± 11% for RMS-ZC. The two models revealed significant trends in torque decrease, both suggesting a critical point around 50% torque drop where there were significant changes observed in RMS and RMS-ZC patterns. Based on these findings, both RMS and RMS-ZC ANN models performed similarly well in predicting FES-evoked knee extension torques in this population. However, interference was observed in the RMS-ZC values at a time around knee buckling. The developed ANN models could be used to estimate muscle torque in real-time, thereby providing safer automated FES control of standing in persons with motor-complete SCI.
Collapse
Affiliation(s)
- Muhammad Afiq Dzulkifli
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Glen M Davis
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.,Discipline of Exercise and Sports Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Fukuhara S, Watanabe S, Oka H. Novel Mechanomyogram/electromyogram Hybrid Transducer Measurements Reflect Muscle Strength during Dynamic Exercise — Pedaling of Recumbent Bicycle —. ADVANCED BIOMEDICAL ENGINEERING 2018. [DOI: 10.14326/abe.7.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Shinichi Fukuhara
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
- Department of Medical Engineering, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| | - Hisao Oka
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University
| |
Collapse
|
10
|
Comparing electro- and mechano-myographic muscle activation patterns in self-paced pediatric gait. J Electromyogr Kinesiol 2017; 36:73-80. [PMID: 28753521 DOI: 10.1016/j.jelekin.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/12/2017] [Accepted: 07/09/2017] [Indexed: 11/22/2022] Open
Abstract
Electromyography (EMG) is the standard modality for measuring muscle activity. However, the convenience and availability of low-cost accelerometer-based wearables makes mechanomyography (MMG) an increasingly attractive alternative modality for clinical applications. Literature to date has demonstrated a strong association between EMG and MMG temporal alignment in isometric and isokinetic contractions. However, the EMG-MMG relationship has not been studied in gait. In this study, the concurrence of EMG- and MMG-detected contractions in the tibialis anterior, lateral gastrocnemius, vastus lateralis, and biceps femoris muscles were investigated in children during self-paced gait. Furthermore, the distribution of signal power over the gait cycle was statistically compared between EMG-MMG modalities. With EMG as the reference, muscular contractions were detected based on MMG with balanced accuracies between 88 and 94% for all muscles except the gastrocnemius. MMG signal power differed from that of EMG during certain phases of the gait cycle in all muscles except the biceps femoris. These timing and power distribution differences between the two modalities may in part be related to muscle fascicle length changes that are unique to muscle motion during gait. Our findings suggest that the relationship between EMG and MMG appears to be more complex during gait than in isometric and isokinetic contractions.
Collapse
|
11
|
Cochrane-Snyman KC, Housh TJ, Smith CM, Hill EC, Jenkins NDM, Schmidt RJ, Johnson GO. Inter-individual variability in the patterns of responses for electromyography and mechanomyography during cycle ergometry using an RPE-clamp model. Eur J Appl Physiol 2016; 116:1639-49. [PMID: 27325528 DOI: 10.1007/s00421-016-3394-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/06/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE To examine inter-individual variability versus composite models for the patterns of responses for electromyography (EMG) and mechanomyography (MMG) versus time relationships during moderate and heavy cycle ergometry using a rating of perceived exertion (RPE) clamp model. METHODS EMG amplitude (amplitude root-mean-square, RMS), EMG mean power frequency (MPF), MMG-RMS, and MMG-MPF were collected during two, 60-min rides at a moderate (RPE at the gas exchange threshold; RPEGET) and heavy (RPE at 15 % above the GET; RPEGET+15 %) intensity when RPE was held constant (clamped). Composite (mean) and individual responses for EMG and MMG parameters were compared during each 60-min ride. RESULTS There was great inter-individual variability for each EMG and MMG parameters at RPEGET and RPEGET+15 %. Composite models showed decreases in EMG-RMS (r (2) = -0.92 and R (2) = 0.96), increases in EMG-MPF (R (2) = 0.90), increases in MMG-RMS (r (2) = 0.81 and 0.55), and either no change or a decrease (r (2) = 0.34) in MMG-MPF at RPEGET and RPEGET+15 %, respectively. CONCLUSIONS The results of the present study indicated that there were differences between composite and individual patterns of responses for EMG and MMG parameters during moderate and heavy cycle ergometry at a constant RPE. Thus, composite models did not represent the unique muscle activation strategies exhibited by individual responses when cycling in the moderate and heavy intensity domains when using an RPE-clamp model.
Collapse
Affiliation(s)
- Kristen C Cochrane-Snyman
- Department of Nutrition and Health Sciences, 110 Ruth Leverton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Terry J Housh
- Department of Nutrition and Health Sciences, 110 Ruth Leverton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Cory M Smith
- Department of Nutrition and Health Sciences, 110 Ruth Leverton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Ethan C Hill
- Department of Nutrition and Health Sciences, 110 Ruth Leverton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Nathaniel D M Jenkins
- Department of Nutrition and Health Sciences, 110 Ruth Leverton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, 110 Ruth Leverton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, 110 Ruth Leverton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
12
|
Cochrane KC, Housh TJ, Jenkins NDM, Bergstrom HC, Smith CM, Hill EC, Johnson GO, Schmidt RJ, Cramer JT. Electromyographic, mechanomyographic, and metabolic responses during cycle ergometry at a constant rating of perceived exertion. Appl Physiol Nutr Metab 2015; 40:1178-85. [PMID: 26481288 DOI: 10.1139/apnm-2015-0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ten subjects performed four 8-min rides (65%-80% peak oxygen consumption) to determine the physical working capacity at the OMNI rating of perceived exertion (RPE) threshold (PWCOMNI). Polynomial regression analyses were used to examine the patterns of responses for surface electromyographic (EMG) amplitude (EMG AMP), EMG mean power frequency (EMG MPF), mechanomyographic (MMG) AMP, and MMG MPF of the vastus lateralis as well as oxygen consumption rate, respiratory exchange ratio (RER), and power output (PO) were examined during a 1-h ride on a cycle ergometer at a constant RPE that corresponded to the PWCOMNI. EMG AMP and MMG MPF tracked the decreases in oxygen consumption rate, RER, and PO, while EMG MPF and MMG AMP tracked RPE. The decreases in EMG AMP and MMG MPF were likely attributable to decreases in motor unit (MU) recruitment and firing rate, while the lack of change in MMG AMP may have resulted from a balance between MU de-recruitment as PO decreased, and an increase in the ability of activated fibers to oscillate. The current findings suggested that during submaximal cycle ergometry at a constant RPE, MU de-recruitment and mechanical changes within the muscle may influence the perception of effort via feedback from group III and IV afferents.
Collapse
Affiliation(s)
- Kristen C Cochrane
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Terry J Housh
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Nathaniel D M Jenkins
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Haley C Bergstrom
- b Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, USA
| | - Cory M Smith
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Ethan C Hill
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Glen O Johnson
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Richard J Schmidt
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Joel T Cramer
- a Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| |
Collapse
|
13
|
Kuznetsov SY, Popov DV, Borovik AS, Vinogradova OL. Determination of aerobic–anaerobic transition in the working muscle using EMG and near-infrared spectroscopy data. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s0362119715050096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Uchiyama T, Saito K, Shinjo K. Muscle stiffness estimation using a system identification technique applied to evoked mechanomyogram during cycling exercise. J Electromyogr Kinesiol 2015; 25:847-52. [PMID: 26493234 DOI: 10.1016/j.jelekin.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/01/2015] [Accepted: 09/28/2015] [Indexed: 12/01/2022] Open
Abstract
The aims of this study were to develop a method to extract the evoked mechanomyogram (MMG) during cycling exercise and to clarify muscle stiffness at various cadences, workloads, and power. Ten young healthy male participants were instructed to pedal a cycle ergometer at cadences of 40 and 60 rpm. The loads were 4.9, 9.8, 14.7, and 19.6 N, respectively. One electrical stimulus per two pedal rotations was applied to the vastus lateralis muscle at a knee angle of 80° in the down phase. MMGs were measured using a capacitor microphone, and the MMGs were divided into stimulated and non-stimulated sequences. Each sequence was synchronously averaged. The synchronously averaged non-stimulated MMG was subtracted from the synchronously averaged stimulated MMG to extract an evoked MMG. The evoked MMG system was identified and the poles of the transfer function were calculated. The poles and mass of the vastus lateralis muscle were used to estimate muscle stiffness. Results showed that muscle stiffness was 186-626 N /m and proportional to the workloads and power. In conclusion, our method can be used to assess muscle stiffness proportional to the workload and power.
Collapse
Affiliation(s)
- Takanori Uchiyama
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kaito Saito
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Katsuya Shinjo
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Eason T, Gavel CR, Hawley KA, Galen SS, Malek MH. Reliability of the log-transformed EMG amplitude-power output relationship for incremental knee-extensor ergometry. Muscle Nerve 2015; 52:428-34. [DOI: 10.1002/mus.24561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 12/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Travis Eason
- Integrative Physiology of Exercise Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences; 259 Mack Avenue, Room 2248 Detroit Michigan 48201 USA
- Physical Therapy Program, Wayne State University, College of Pharmacy and Health Sciences, Department of Health Care Sciences; Detroit Michigan USA
| | - Christine R. Gavel
- Integrative Physiology of Exercise Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences; 259 Mack Avenue, Room 2248 Detroit Michigan 48201 USA
- Physical Therapy Program, Wayne State University, College of Pharmacy and Health Sciences, Department of Health Care Sciences; Detroit Michigan USA
| | - Kyle A. Hawley
- Integrative Physiology of Exercise Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences; 259 Mack Avenue, Room 2248 Detroit Michigan 48201 USA
- Physical Therapy Program, Wayne State University, College of Pharmacy and Health Sciences, Department of Health Care Sciences; Detroit Michigan USA
| | - Sujay S. Galen
- Physical Therapy Program, Wayne State University, College of Pharmacy and Health Sciences, Department of Health Care Sciences; Detroit Michigan USA
| | - Moh H. Malek
- Integrative Physiology of Exercise Laboratory, Eugene Applebaum College of Pharmacy & Health Sciences; 259 Mack Avenue, Room 2248 Detroit Michigan 48201 USA
- Physical Therapy Program, Wayne State University, College of Pharmacy and Health Sciences, Department of Health Care Sciences; Detroit Michigan USA
| |
Collapse
|
16
|
Mechanomyographic parameter extraction methods: an appraisal for clinical applications. SENSORS 2014; 14:22940-70. [PMID: 25479326 PMCID: PMC4299047 DOI: 10.3390/s141222940] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022]
Abstract
The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity.
Collapse
|
17
|
Ibitoye MO, Hamzaid NA, Zuniga JM, Abdul Wahab AK. Mechanomyography and muscle function assessment: a review of current state and prospects. Clin Biomech (Bristol, Avon) 2014; 29:691-704. [PMID: 24856875 DOI: 10.1016/j.clinbiomech.2014.04.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023]
Abstract
Previous studies have explored to saturation the efficacy of the conventional signal (such as electromyogram) for muscle function assessment and found its clinical impact limited. Increasing demand for reliable muscle function assessment modalities continues to prompt further investigation into other complementary alternatives. Application of mechanomyographic signal to quantify muscle performance has been proposed due to its inherent mechanical nature and ability to assess muscle function non-invasively while preserving muscular neurophysiologic information. Mechanomyogram is gaining accelerated applications in evaluating the properties of muscle under voluntary and evoked muscle contraction with prospects in clinical practices. As a complementary modality and the mechanical counterpart to electromyogram; mechanomyogram has gained significant acceptance in analysis of isometric and dynamic muscle actions. Substantial studies have also documented the effectiveness of mechanomyographic signal to assess muscle performance but none involved comprehensive appraisal of the state of the art applications with highlights on the future prospect and potential integration into the clinical practices. Motivated by the dearth of such critical review, we assessed the literature to investigate its principle of acquisition, current applications, challenges and future directions. Based on our findings, the importance of rigorous scientific and clinical validation of the signal is highlighted. It is also evident that as a robust complement to electromyogram, mechanomyographic signal may possess unprecedented potentials and further investigation will be enlightening.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B. 1515 Ilorin, Nigeria.
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Jorge M Zuniga
- Department of Exercise Science, Creighton University, 2500 California Plaza, Kiewit Fitness center 228, Omaha, NE 68178, United States.
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Influence of duty cycle on the power-duration relationship: observations and potential mechanisms. Respir Physiol Neurobiol 2013; 192:102-11. [PMID: 24361503 DOI: 10.1016/j.resp.2013.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022]
Abstract
The highest sustainable rate of aerobic metabolism [critical power (CP)] and the finite amount of work that can be performed above CP (W' [curvature constant]) were determined under two muscle contraction duty cycles. Eight men completed at least three constant-power handgrip tests to exhaustion to determine CP and W' for 50% and 20% duty cycles, while brachial artery blood flow (Q̇BA) and deoxygenated-[hemoglobin + myoglobin] (deoxy-[Hb+Mb]) were measured. CP was lower for the 50% duty cycle (3.9 ± 0.9 W) than the 20% duty cycle (5.1 ± 0.8 W; p < 0.001), while W' was not significantly different (50% duty cycle: 452 ± 141 J vs. 20% duty cycle: 432 ± 130 J; p > 0.05). At the same power output, Q̇BA and deoxy-[Hb + Mb] achieved higher end-exercise values for the 20% duty cycle (9.87 ± 1.73 ml·s(-1); 51.7 ± 4.7 μM) than the 50% duty cycle (7.37 ± 1.76 ml·s(-1), p < 0.001; 44.3 ± 2.4 μM, p < 0.03). These findings indicate that blood flow influences CP, but not W'.
Collapse
|
19
|
LEI KINFONG, CHENG SHIHCHUNG, LEE MINGYIH, LIN WENYEN. MEASUREMENT AND ESTIMATION OF MUSCLE CONTRACTION STRENGTH USING MECHANOMYOGRAPHY BASED ON ARTIFICIAL NEURAL NETWORK ALGORITHM. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2013. [DOI: 10.4015/s1016237213500208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle contraction strength estimation using mechanomyographic (MMG) signal is typically calculated by the root mean square (RMS) amplitude. Raw MMG signal is processed by rectification, low-pass filtering, and mapping. In this work, beside RMS amplitude, another significant parameter of MMG signal, i.e. frequency variance (VAR), is introduced and used for constructing an algorithm for estimating the muscle contraction strength. Seven participants produced isometric contractions about the elbow while MMG signal and generated torque (resultant of muscle contraction strength) of biceps brachii were recorded. We found that MMG RMS increased monotonously and VAR decreased under incremental voluntary contractions. Based on these results, a two-layer neural network was utilized for the model of estimating the muscle contraction strength from MMG RMS and VAR. Experimental evaluation was performed under constant posture and sinusoidal contractions at 0.5 Hz, 0.25 Hz, 0.125 Hz, and random frequency. The results of the proposed algorithm and MMG RMS linear mapping were also compared. The proposed algorithm has better accuracy than linear mapping for all contraction frequencies. The mean absolute error decreased 6% for the 0.5Hz contraction, 43% for 0.25 Hz contraction, 52% for 0.125 Hz contraction, and 30% for random frequency contraction.
Collapse
Affiliation(s)
- KIN FONG LEI
- Graduate Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - SHIH-CHUNG CHENG
- Graduate Institute of Athletics Coaching Science, National Taiwan Sport University, Tao-Yuan, Taiwan
| | - MING-YIH LEE
- Graduate Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - WEN-YEN LIN
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Department of Electrical Engineering, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
20
|
Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO. Metabolic and neuromuscular responses at critical power from the 3-min all-out test. Appl Physiol Nutr Metab 2013; 38:7-13. [DOI: 10.1139/apnm-2012-0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the specific metabolic and neuromuscular responses at critical power (CP) from the 3-min all-out test. Nine men (mean ± SD: aged 23.7 ± 3.3 years) performed an incremental test for the determination of peak oxygen consumption (V̇O2peak) and gas exchange threshold. CP was estimated for each subject from the 3-min all-out test. Oxygen consumption (V̇O2), the ventilation versus carbon dioxide production ratio (V̇E/V̇CO2 ratio), electromyographic (EMG) amplitude, and EMG mean power frequency (MPF) were examined during exhaustive rides at CP for each subject. There was no significant difference between the V̇O2 at exhaustion (40.6 ± 7.5 mL·kg−1·min−1) and V̇O2peak (42.9 ± 7.3 mL·kg−1·min−1). Furthermore, there were significant increases in EMG amplitude and the V̇E/V̇CO2 ratio during the exhaustive rides at CP. There was, however, no significant change in EMG MPF over time. Therefore, the current findings indicated that the 3-min all-out test overestimated CP and the demarcation between the heavy- and severe-intensity domains. Specifically, the V̇O2, ventilatory, and EMG amplitude responses were consistent with those observed during continuous exercise in the severe exercise intensity domain. It is likely that the ventilatory and EMG amplitude responses were associated with a common mechanism of fatigue that is different from what affects EMG MPF.
Collapse
Affiliation(s)
- Haley C. Bergstrom
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Terry J. Housh
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Jorge M. Zuniga
- Department of Exercise Science, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Daniel A. Traylor
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Robert W. Lewis
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Clayton L. Camic
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, 142 Mitchell Hall, La Crosse, WI 54601, USA
| | - Richard J. Schmidt
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| | - Glen O. Johnson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA
| |
Collapse
|
21
|
Malek MH, Coburn JW. The utility of electromyography and mechanomyography for assessing neuromuscular function: a noninvasive approach. Phys Med Rehabil Clin N Am 2012; 23:23-32, ix. [PMID: 22239871 DOI: 10.1016/j.pmr.2011.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article introduces the utility of electromyography (EMG) and mechanomyography (MMG) for the assessment of neuromuscular function, and discusses the interpretation of the EMG and MMG signals for various exercise perturbations. The results of these studies suggest that the use of EMG and MMG to determine muscle fatigue is robust. Future studies with clinical populations are needed, however, to determine the optimal use of EMG and/or MMG for assessing muscle function in rehabilitative settings.
Collapse
Affiliation(s)
- Moh H Malek
- Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
22
|
Variation of force amplitude and its effects on local fatigue. Eur J Appl Physiol 2012; 112:3865-79. [PMID: 22407330 DOI: 10.1007/s00421-012-2375-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/28/2012] [Indexed: 11/25/2022]
Abstract
Trends in industry are leaning toward stereotyped jobs with low workloads. Physical variation is an intervention to reduce fatigue and potentially musculoskeletal disorders in such jobs. Controlled laboratory studies have provided some insight into the effectiveness of physical variation, but very few have been devoted to force variation without muscular rest as a component. This study was undertaken to determine multiple physiological responses to five isometric elbow extension protocols with the same mean amplitude (15% maximum voluntary contraction, MVC), cycle time (6 s), and duty cycle (50 %). Sustained (15 %Sus) and intermittent contractions including zero force (0-30 %Int) differed significantly in 19 of 27 response variables. Contractions varying by half the mean force (7.5-22.5 %Int) led to 8 and 7 measured responses that were significantly different from 0-30 %Int and 15 %Sus, respectively. A sinusoidal condition (0-30 %Sine) resulted in 2 variables that were significantly different from 0-30 %Int, and 16 different from 15 %Sus. Finally, ten response variables suggested that varying forces with 1 % as the lower contraction level was significantly less fatiguing than 15 %Sus, while no responses were significantly different from 0-30 %Int. Sustained contractions led to decreased twitch force 24-h post-exercise, whereas recovery was complete within 60 min after intermittent contractions. This suggests that time-varying force may be a useful intervention to reduce local fatigue in workers performing low-load tasks, and also that rest per se did not seem to cause any extraordinary effects beyond those predictable from the force variation amplitude.
Collapse
|
23
|
Travis LA, Arthmire SJ, Baig AM, Goldberg A, Malek MH. Intersession reliability of the electromyographic signal during incremental cycle ergometry: Quadriceps Femoris. Muscle Nerve 2011; 44:937-46. [DOI: 10.1002/mus.22211] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Zuniga JM, Housh TJ, Camic CL, Russell Hendrix C, Bergstrom HC, Schmidt RJ, Johnson GO. The effects of skinfold thicknesses and innervation zone on the mechanomyographic signal during cycle ergometry. J Electromyogr Kinesiol 2011; 21:789-94. [DOI: 10.1016/j.jelekin.2011.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/22/2011] [Accepted: 05/25/2011] [Indexed: 11/15/2022] Open
|
25
|
Mechanomyographic responses are not influenced by the innervation zone for the vastus medialis. Muscle Nerve 2011; 44:424-31. [DOI: 10.1002/mus.22116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2011] [Indexed: 11/07/2022]
|
26
|
Al-Mulla MR, Sepulveda F, Colley M. A review of non-invasive techniques to detect and predict localised muscle fatigue. SENSORS (BASEL, SWITZERLAND) 2011; 11:3545-94. [PMID: 22163810 PMCID: PMC3231314 DOI: 10.3390/s110403545] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 11/16/2022]
Abstract
Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.
Collapse
Affiliation(s)
- Mohamed R. Al-Mulla
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK; E-Mails: (F.S.); (M.C.)
| | - Francisco Sepulveda
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK; E-Mails: (F.S.); (M.C.)
| | - Martin Colley
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK; E-Mails: (F.S.); (M.C.)
| |
Collapse
|
27
|
Decker M, Griffin L, Abraham L, Brandt L. Alternating stimulation of synergistic muscles during functional electrical stimulation cycling improves endurance in persons with spinal cord injury. J Electromyogr Kinesiol 2010; 20:1163-9. [DOI: 10.1016/j.jelekin.2010.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 04/27/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022] Open
|
28
|
Guo JY, Zheng YP, Xie HB, Chen X. Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions. Med Eng Phys 2010; 32:1032-42. [DOI: 10.1016/j.medengphy.2010.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/25/2010] [Accepted: 07/08/2010] [Indexed: 11/29/2022]
|
29
|
Malek MH, Coburn JW, York R, Ng J, Rana SR. Comparison of mechanomyographic sensors during incremental cycle ergometry for the quadriceps femoris. Muscle Nerve 2010; 42:394-400. [DOI: 10.1002/mus.21686] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Zuniga JM, Housh TJ, Camic CL, Hendrix CR, Mielke M, Schmidt RJ, Johnson GO. The effects of accelerometer placement on mechanomyographic amplitude and mean power frequency during cycle ergometry. J Electromyogr Kinesiol 2010; 20:719-25. [PMID: 20122849 DOI: 10.1016/j.jelekin.2010.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/28/2009] [Accepted: 01/11/2010] [Indexed: 11/28/2022] Open
Abstract
The purposes of this study were threefold: (1) to compare the power output related patterns of absolute and normalized MMG amplitude and MPF responses for proximal and distal accelerometer placements on the vastus lateralis (VL) muscle during incremental cycle ergometry; (2) to examine the influence of accelerometer placements on mean absolute MMG amplitude and MPF values; and (3) to determine the effects of normalization on mean MMG amplitude and MPF values from proximal and distal accelerometer placements. Fifteen adults (10 men and 5 women; mean+/-SD age=23.9+/-3.1 years) performed incremental cycle ergometry tests to exhaustion. Two accelerometers were placed proximal and distal on the VL muscle. Paired t-tests indicated that absolute MMG amplitude values for the proximal accelerometer were greater (p<0.05) than the distal accelerometer at all power outputs. The normalized MMG amplitude also had greater values for the proximal accelerometer at all power outputs, except 50W. There were no differences, however, between proximal and distal accelerometers for absolute MMG MPF, except at 75W, and normalization eliminated this difference. Twenty-seven percent of the subjects exhibited different power output related patterns of responses between accelerometer placements for MMG amplitude and 47% exhibited different patterns for MPF. These findings indicated that normalization did not eliminate the influence of accelerometer placement on MMG amplitude and highlighted the importance of standardizing accelerometer placements to compare MMG values during cycle ergometry.
Collapse
Affiliation(s)
- Jorge M Zuniga
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Zuniga JM, Housh TJ, Hendrix CR, Camic CL, Mielke M, Schmidt RJ, Johnson GO. The effects of electrode orientation on electromyographic amplitude and mean power frequency during cycle ergometry. J Neurosci Methods 2009; 184:256-62. [DOI: 10.1016/j.jneumeth.2009.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/13/2009] [Indexed: 11/16/2022]
|
33
|
Antonelli MG, Zobel PB, Giacomin J. Use of MMG signals for the control of powered orthotic devices: development of a rectus femoris measurement protocol. Assist Technol 2009; 21:1-12. [PMID: 19719058 DOI: 10.1080/10400430902945678] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
A test protocol is defined for the purpose of measuring rectus femoris mechanomyographic (MMG) signals. The protocol is specified in terms of the following: measurement equipment, signal processing requirements, human postural requirements, test rig, sensor placement, sensor dermal fixation, and test procedure. Preliminary tests of the statistical nature of rectus femoris MMG signals were performed, and Gaussianity was evaluated by means of a two-sided Kolmogorov-Smirnov test. For all 100 MMG data sets obtained from the testing of two volunteers, the null hypothesis of Gaussianity was rejected at the 1%, 5%, and 10% significance levels. Most skewness values were found to be greater than 0.0, while all kurtosis values were found to be greater than 3.0. A statistical convergence analysis also performed on the same 100 MMG data sets suggested that 25 MMG acquisitions should prove sufficient to statistically characterize rectus femoris MMG. This conclusion is supported by the qualitative characteristics of the mean rectus femoris MMG power spectral densities obtained using 25 averages.
Collapse
Affiliation(s)
- Michele Gabrio Antonelli
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università degli Studi di L'Aquila, Roio Poggio, Italy.
| | | | | |
Collapse
|
34
|
Malek MH, Coburn JW, Tedjasaputra V. Comparison of electromyographic responses for the superficial quadriceps muscles: Cycle versus knee-extensor ergometry. Muscle Nerve 2009; 39:810-8. [DOI: 10.1002/mus.21295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Comparison of mechanomyographic amplitude and mean power frequency for the rectus femoris muscle: Cycle versus knee-extensor ergometry. J Neurosci Methods 2009; 181:89-94. [DOI: 10.1016/j.jneumeth.2009.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/22/2022]
|
36
|
Xie HB, Zheng YP, Guo JY. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiol Meas 2009; 30:441-57. [PMID: 19349648 DOI: 10.1088/0967-3334/30/5/002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Effects of Age and Stimulus on Submental Mechanomyography Signals During Swallowing. Dysphagia 2009; 24:265-73. [DOI: 10.1007/s00455-008-9200-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
|
38
|
Frequency features of mechanomyographic signals of human soleus muscle during quiet standing. J Neurosci Methods 2008; 173:241-8. [DOI: 10.1016/j.jneumeth.2008.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/06/2008] [Accepted: 06/11/2008] [Indexed: 11/20/2022]
|
39
|
Time/frequency events of surface mechanomyographic signals resolved by nonlinearly scaled wavelets. Biomed Signal Process Control 2008. [DOI: 10.1016/j.bspc.2008.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Beck TW, Housh TJ, Mielke M, Cramer JT, Weir JP, Malek MH, Johnson GO. The influence of electrode placement over the innervation zone on electromyographic amplitude and mean power frequency versus isokinetic torque relationships. J Neurosci Methods 2006; 162:72-83. [PMID: 17275093 DOI: 10.1016/j.jneumeth.2006.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/29/2022]
Abstract
The purpose of this investigation was to examine the influence of electrode placement over the estimated innervation zone (IZ) for the vastus lateralis, as well as proximal and distal to the estimated IZ, on the torque-related patterns for electromyographic (EMG) amplitude and mean power frequency (MPF) during concentric and eccentric isokinetic muscle actions of the leg extensors. Eleven men performed randomly ordered, submaximal to maximal concentric and eccentric isokinetic muscle actions of the dominant leg extensors in 10% increments from 10 to 90% peak torque (PT). Surface EMG signals were recorded simultaneously from the vastus lateralis muscle with bipolar electrode arrangements placed over the estimated IZ, as well as proximal and distal to the estimated IZ. The results indicated that there were no consistent differences among the proximal, IZ, and distal electrode placement sites for the patterns of responses for absolute and normalized EMG amplitude and MPF versus torque, or the mean absolute and normalized EMG amplitude and MPF values. Thus, these findings suggested that during concentric and eccentric isokinetic muscle actions of the leg extensors, electrode placement over the estimated IZ for the vastus lateralis had no effect on the patterns of responses or mean values for absolute and normalized EMG amplitude and MPF versus torque.
Collapse
Affiliation(s)
- Travis W Beck
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68588-0229, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Beck TW, Housh TJ, Weir JP, Cramer JT, Vardaxis V, Johnson GO, Coburn JW, Malek MH, Mielke M. An examination of the Runs Test, Reverse Arrangements Test, and modified Reverse Arrangements Test for assessing surface EMG signal stationarity. J Neurosci Methods 2006; 156:242-8. [PMID: 16621017 DOI: 10.1016/j.jneumeth.2006.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to examine the accuracy of the Runs Test, Reverse Arrangements Test, and modified Reverse Arrangements Test for assessing stationarity of surface electromyographic (EMG) signals. Five stationary signals were generated by custom programs written with LabVIEW programming software. These signals consisted of sine waves, sums of sine waves, and sums of sine waves and random noise. The sixth signal was a stationary computer generated surface EMG signal downloaded from the surface EMG for the non-invasive assessment of muscles (SENIAM) project database. There were no changes in the amplitude or frequency contents of the stationary signals over time. Several nonstationary signals were also created, including a nonstationary chirp signal generated with LabVIEW programming software, a nonstationary computer generated surface EMG signal downloaded from the SENIAM project database, and a real surface EMG signal recorded from the biceps brachii during a concentric isokinetic muscle action of the forearm flexors at a velocity of 30 degrees s(-1). Both the stationary and nonstationary signals were tested for stationarity using the Runs Test, Reverse Arrangements Test, and modified Reverse Arrangements Test. The results indicated that each of the three stationarity tests demonstrated at least one form of inaccuracy (i.e. false positive and/or false negative results) in examining the stationarity of the test signals. These findings may reflect the fact that these tests were designed to determine whether or not a signal is random, rather than examine signal stationarity exclusively. Thus, the Runs Test, Reverse Arrangements Test, and modified Reverse Arrangements Test may not be appropriate for assessing stationarity in surface EMG signals.
Collapse
Affiliation(s)
- Travis W Beck
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583-0806, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, Malek MH. Comparison of a piezoelectric contact sensor and an accelerometer for examining mechanomyographic amplitude and mean power frequency versus torque relationships during isokinetic and isometric muscle actions of the biceps brachii. J Electromyogr Kinesiol 2006; 16:324-35. [PMID: 16243542 DOI: 10.1016/j.jelekin.2005.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to compare a piezoelectric contact sensor with an accelerometer for measuring the mechanomyographic (MMG) signal from the biceps brachii during submaximal to maximal isokinetic and isometric forearm flexion muscle actions. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), 10 adults (mean+/-SD age=22.8+/-2.7yrs) performed randomly ordered, submaximal step muscle actions of the dominant forearm flexors in 20% increments from 20% to 80% PT and MVC. Surface MMG signals were recorded simultaneously from a contact sensor and an accelerometer placed over the belly of the biceps brachii muscle. During the isokinetic and isometric muscle actions, the contact sensor and accelerometer resulted in linear increases in normalized MMG amplitude with torque (r(2) range=0.84-0.97) but the linear slope of the normalized MMG amplitude versus isokinetic torque relationship for the accelerometer was less (p<0.10) than that of the contact sensor. There was no significant (p>0.05) relationship for normalized MMG mean power frequency (MPF, %max) versus isokinetic and isometric torque for the contact sensor, but the accelerometer demonstrated a quadratic (R(2)=0.94) or linear (r(2)=0.83) relationship for the isokinetic and isometric muscle actions, respectively. There were also a number of significant (p<0.05) mean differences between the contact sensor and accelerometer for normalized MMG amplitude or MPF values. These findings indicated that in some cases involving dynamic and isometric muscle actions, the contact sensor and accelerometer resulted in different torque-related responses that may affect the interpretation of the motor control strategies involved.
Collapse
Affiliation(s)
- Travis W Beck
- Department of Nutrition and Health Sciences, Human Performance Laboratory, Center for Youth Fitness and Sports Research, University of Nebraska-Lincoln, Lincoln, NE 68588-0229, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Malek MH, Coburn JW, Weir JP, Beck TW, Housh TJ. The effects of innervation zone on electromyographic amplitude and mean power frequency during incremental cycle ergometry. J Neurosci Methods 2006; 155:126-33. [PMID: 16510193 DOI: 10.1016/j.jneumeth.2006.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 01/18/2006] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to examine the effects of electrode placements over the innervation zone (IZ), as well as proximal and distal to the IZ, on the patterns for the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus power output relationships during incremental cycle ergometry. Fifteen men [mean +/- S.D. age = 24.3 +/- 2.4 years; VO2max = 47.3 +/- 4.9 ml kg(-1) min(-1)] performed incremental cycle ergometry tests to exhaustion. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed on the vastus lateralis (VL) muscle over the IZ, as well as proximal and distal to the IZ. Polynomial regression analyses were used to describe the relationships for absolute and normalized EMG amplitude (microVrms and %max) and MPF (Hz and %max) versus power output (%max) for each subject at the three electrode placement sites. In addition, separate one-way repeated measures ANOVAs were used to examine mean differences between the three sites for absolute and normalized EMG amplitude and MPF at power outputs of 80, 110, 140, and 170 W. The results of the polynomial regression analyses revealed that the best fit model for each site for the absolute and normalized EMG amplitude versus power output relationship was linear for 11 subjects and quadratic for 2 subjects. The remaining two subjects exhibited both linear and quadratic patterns that were site-dependent. For EMG MPF, 10 subjects exhibited significant relationships (linear and/or quadratic) across power outputs for at least one site. In addition, there were significant (P < 0.05) mean differences between the electrode placement sites for absolute EMG amplitude, but not absolute EMG MPF at 80, 110, 140, and 170 W. There were no significant (P > 0.05) mean differences, however, between the three sites for normalized EMG amplitude or MPF at 80, 110, 140, and 170 W. These findings indicated that the placement of bipolar electrodes over the IZ, as well as proximal and distal to the IZ, had no effect on the pattern of the normalized EMG amplitude versus power output relationship or the mean normalized EMG amplitude and MPF values. Thus, during cycle ergometry, normalized EMG amplitude values (but not absolute values) can be compared between studies that have utilized various electrode placement sites on the VL.
Collapse
Affiliation(s)
- Moh H Malek
- University of Nebraska-Lincoln, Human Performance Laboratory, Department of Nutrition and Health Sciences, Lincoln, NE 68583-0806, USA.
| | | | | | | | | |
Collapse
|
44
|
Ebersole KT, O'Connor KM, Wier AP. Mechanomyographic and electromyographic responses to repeated concentric muscle actions of the quadriceps femoris. J Electromyogr Kinesiol 2006; 16:149-57. [PMID: 16139522 DOI: 10.1016/j.jelekin.2005.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 05/02/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022] Open
Abstract
In comparison to isometric muscle action models, little is known about the electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) responses to fatiguing dynamic muscle actions. Simultaneous examination of the EMG and MMG amplitude and MPF may provide additional insight with regard to the motor control strategies utilized by the superficial muscles of the quadriceps femoris during a concentric fatiguing task. Thus, the purpose of this study was to examine the EMG and MMG amplitude and MPF responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during repeated, concentric muscle actions of the dominant leg. Seventeen adults (21.8+/-1.7 yr) performed 50 consecutive, maximal concentric muscle actions of the dominant leg extensors on a Biodex System 3 Dynamometer at velocities of 60 degrees s(-1) and 300 degrees s(-1). Bipolar surface electrode arrangements were placed over the mid portion of the VL, RF, and VM muscles with a MMG contact sensor placed adjacent to the superior EMG electrode on each muscle. Torque, MMG and EMG amplitude and MPF values were calculated for each of the 50 repetitions. All values were normalized to the value recorded during the first repetition and then averaged across all subjects. The cubic decreases in torque at 60 degrees s(-1) (R2 = 0.972) and 300 degrees s(-1) (R2 = 0.931) was associated with a decline in torque of 59+/-24% and 53+/-11%, respectively. The muscle and velocity specific responses for the MMG amplitude and MPF demonstrated that each of the superficial muscles of the quadriceps femoris uniquely contributed to the control of force output across the 50 repetitions. These results suggested that the MMG responses for the VL, RF, VM during a fatiguing task may be influenced by a number of factors such as fiber type differences, alterations in activation strategy including motor unit recruitment and firing rate and possibly muscle wisdom.
Collapse
Affiliation(s)
- Kyle T Ebersole
- Department of Human Movement Sciences, Athletic Training Research Laboratory, University of Wisconsin-Milwaukee, Enderis Hall 411, PO Box 413, Milwaukee, WI 53201-0413, USA.
| | | | | |
Collapse
|
45
|
Malek MH, Housh TJ, Coburn JW, Weir JP, Schmidt RJ, Beck TW. The effects of interelectrode distance on electromyographic amplitude and mean power frequency during incremental cycle ergometry. J Neurosci Methods 2006; 151:139-47. [PMID: 16122806 DOI: 10.1016/j.jneumeth.2005.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/24/2005] [Accepted: 06/28/2005] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to examine the effects of interelectrode distance (IED) on the relationships of absolute and normalized EMG amplitude and mean power frequency (MPF) versus power output during incremental cycle ergometry. Eleven adults (mean +/- S.D. age = 24.2 +/- 2.6 y; V(O2max) = 49.4 +/- 8.3 ml kg(-1) min(-1)) performed incremental cycle ergometry tests. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the VL muscle with IEDs of 20, 40, and 60 mm. Polynomial regression analyses were used to describe the relationships for absolute and normalized EMG amplitude (muV(rms) and % max) and MPF (Hz and % max) versus power output (%max) for each subject at the three IEDs. In addition, separate one-way repeated measures ANOVAs were used to examine mean differences between the three IEDs for absolute and normalized EMG amplitude and MPF at power outputs of 80, 110, 140, and 170 W. The results of the polynomial regression revealed that the best fit model for each IED for the absolute and normalized EMG amplitude was linear for six of the 11 subjects and quadratic for five of the subjects. For EMG MPF, four of the 11 subjects exhibited significant relationships (linear or quadratic) across power outputs for at least one IED. The one-way repeated measures ANOVAs revealed significant mean differences between the IEDs for absolute EMG amplitude and MPF at 80, 110, 140, and 170 W. There were no significant mean differences, however, between the IEDs for normalized EMG amplitude or MPF at 80, 110, 140, and 170 W. The results of the study indicated that there were no consistent patterns of responses between individual subjects for EMG amplitude or MPF versus power output relationships for IEDs of 20, 40, and 60 mm during incremental cycle ergometry. The current findings supported the process of normalization for EMG amplitude and MPF data obtained during cycle ergometry when comparisons are made for different IEDs.
Collapse
Affiliation(s)
- Moh H Malek
- Human Performance Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Ribeiro SR, Tierra-Criollo CJ, Martins RÁBL. Efeitos de diferentes esforços de luta de judô na atividade enzimática, atividade elétrica muscular e parâmetros biomecânicos de atletas de elite. REV BRAS MED ESPORTE 2006. [DOI: 10.1590/s1517-86922006000100006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
O treinamento esportivo provoca adaptações neuromusculares e alterações metabólicas visando a performance durante a competição. Nas competições de judô, o número de lutas a que os atletas são submetidos e suas respectivas durações e intervalos são aleatórios, fatores que podem influenciar a performance objetivada no treinamento. O presente estudo investigou a hipótese de que diferentes durações de lutas, 90s, 180s e 300s, poderiam influenciar a atividade enzimática, elétrica muscular e a produção do pico de torque. Antes e após cada luta, foram coletadas amostras sanguíneas dos atletas; em seguida, os mesmos realizaram cinco contrações dinâmicas (90º/s) com a utilização de um dinamômetro isocinético (Biodex System 3). Simultaneamente registrou-se o sinal eletromiográfico dos músculos agonista, antagonista e sinergista do movimento avaliado. Não se verificou alteração no torque. As enzimas AST e ALT apresentaram aumento na atividade, nas lutas de 90s (p = 0,0033/p = 0,00059), 180s (p = 0,0044/p = 0,0033) e 300s (p = 0,0044/p = 0,0033). Aumento (p = 0,0180) da atividade da CK após a luta de 300s foi verificado. A LDH diminuiu após a luta de 90s (p = 0,0392). Na análise intermuscular observou-se após a luta de 90s aumento do sinal eletromiográfico do agonista (p = 0,005); na luta de 180s, aumento do antagonista (p = 0,0129) e na luta de 300s, diminuição (p = 0,0137) da atividade do músculo agonista. Observou-se que os esforços da luta de 300s podem ter induzido lesões no tecido muscular caracterizadas pela elevação da CK plasmática, embora a lesão não tenha sido suficiente para detectar fadiga através da dinamometria isocinética. Conclui-se que o protocolo proposto foi suficiente para alteração enzimática e eletromiográfica, sugerindo adaptações metabólicas e neurais a partir do estresse das lutas de judô.
Collapse
|
47
|
Beck TW, Housh TJ, Johnson GO, Cramer JT, Weir JP, Coburn JW, Malek MH. Comparison of the fast Fourier transform and continuous wavelet transform for examining mechanomyographic frequency versus eccentric torque relationships. J Neurosci Methods 2006; 150:59-66. [PMID: 16051373 DOI: 10.1016/j.jneumeth.2005.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 05/20/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to compare the eccentric torque-related patterns for mechanomyographic (MMG) center frequencies (mean power frequency (MPF), median frequency (MDF), and average instantaneous mean power frequency (AIMPF)) determined by the fast Fourier transform (FFT) and continuous wavelet transform (CWT). Eight adults (mean+/-S.D. age=22.5+/-2.4 years) performed submaximal to maximal, eccentric isokinetic muscle actions of the biceps brachii on a Cybex 6,000 dynamometer. The mean MMG MPF, MDF, and AIMPF values for both the absolute and normalized data from 10 to 100% eccentric peak torque (PT) were highly intercorrelated at r=0.908-0.985. Linear models provided the best fit for the absolute MMG MPF (r=0.873), MDF (r=0.831), and AIMPF (r=0.924), as well as normalized MMG MPF (r=0.869), MDF (r=0.816), and AIMPF (r=0.920) versus percentage eccentric PT relationships. There were no significant differences (p>0.05) among the linear slope coefficients for the MMG MPF, MDF, and AIMPF versus percentage eccentric PT relationships for either the absolute or normalized data. These results suggested that Fourier or wavelet transform procedures can be used to examine the patterns of MMG responses during eccentric muscle actions of the biceps brachii.
Collapse
Affiliation(s)
- Travis W Beck
- Department of Nutrition and Health Sciences, Human Performance Laboratory, 104K Ruth Leverton Hall, University of Nebraska at Lincoln, Lincoln, NE 68588-0229, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Beck TW, Housh TJ, Cramer JT, Weir JP, Johnson GO, Coburn JW, Malek MH, Mielke M. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomed Eng Online 2005; 4:67. [PMID: 16364182 PMCID: PMC1343566 DOI: 10.1186/1475-925x-4-67] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 12/19/2005] [Indexed: 11/21/2022] Open
Abstract
The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG.
Collapse
Affiliation(s)
- Travis W Beck
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Terry J Housh
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Joel T Cramer
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA 73019
| | - Joseph P Weir
- Applied Physiology Laboratory, Division of Physical Therapy, Des Moines University, Osteopathic Medical Center, Des Moines, IA, USA 50312
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Jared W Coburn
- Department of Kinesiology, California State University, Fullerton, Fullerton, CA, USA 92834
| | - Moh H Malek
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| | - Michelle Mielke
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, NE, USA 68583
| |
Collapse
|
49
|
Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, Malek MH. Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii. J Electromyogr Kinesiol 2005; 15:190-9. [PMID: 15664148 DOI: 10.1016/j.jelekin.2004.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The primary purpose of the present study was to compare the fast Fourier transform (FFT) with the discrete wavelet transform (DWT) for determining the mechanomyographic (MMG) and electromyographic (EMG) center frequency [mean power frequency (mpf), median frequency (mdf), or wavelet center frequency (cf)] patterns during fatiguing isokinetic muscle actions of the biceps brachii. Seven men (mean+/-SD age=23+/-3 years) volunteered to perform 50 consecutive maximal, concentric isokinetic muscle actions of the dominant forearm flexors at a velocity of 180 degrees s(-1). Non-parametric "run" tests indicated significant (p<0.05) trends in the MMG and EMG signals for the 5th, 25th, and 45th muscle actions for all subjects, thereby confirming non-stationarity of the MMG and EMG signals. There were significant (p<0.05) correlations among the average normalized mpf, mdf, and cf values for contractions 1-50 for both MMG (r=0.671-0.935) and EMG (r=0.956-0.987). Polynomial regression analyses demonstrated quadratic decreases in normalized MMG mpf (R2=0.439), MMG mdf (R2=0.258), MMG cf (R2=0.359), EMG mpf (R2=0.952), EMG mdf (R2=0.914) and EMG cf (R2=0.888) across repetitions. The primary finding of this study was the similarity in the mpf, mdf, and cf patterns for both MMG and EMG, which suggested that, despite the concerns over non-stationarity, Fourier based methods are acceptable for determining the patterns for normalized MMG and EMG center frequency during fatiguing dynamic muscle actions at moderate velocities.
Collapse
Affiliation(s)
- Travis W Beck
- Department of Nutrition and Health Sciences, Human Performance Laboratory, Center for Youth Fitness and Sports Research, University of Nebraska-Lincoln, 104K Ruth Leverton Hall, Lincoln, NE 68588-0229, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Beck TW, Housh TJ, Johnson GO, Weir JP, Cramer JT, Coburn JW, Malek MH. Gender Comparisons of Mechanomyographic Amplitude and Mean Power Frequency versus Isometric Torque Relationships. J Appl Biomech 2005; 21:96-109. [PMID: 16131708 DOI: 10.1123/jab.21.1.96] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study compared the patterns of mechanomyographic (MMG) amplitude and mean power frequency vs. torque relationships in men and women during isometric muscle actions of the biceps brachii. Seven men (mean age 23.9 ± 3.5 yrs) and 8 women (mean 21.0 ± 1.3 yrs) performed submaximal to maximal isometric muscle actions of the dominant forearm flexors. Following determination of the isometric maximum voluntary contraction (MVC), they randomly performed submaximal step muscle actions in 10% increments from 10% to 90% MVC. Polynomial regression analyses indicated that the MMG amplitude vs. isometric torque relationship for the men was best fit with a cubic model (R2= 0.983), where MMG amplitude increased slightly from 10% to 20% MVC, increased rapidly from 20% to 80% MVC, and plateaued from 80% to 100% MVC. For the women, MMG amplitude increased linearly (r2= 0.949) from 10% to 100% MVC. Linear models also provided the best fit for the MMG mean power frequency vs. isometric torque relationship in both the men (r2= 0.813) and women (r2= 0.578). The results demonstrated gender differences in the MMG amplitude vs. isometric torque relationship, but similar torque-related patterns for MMG mean power frequency. These findings suggested that the plateau in MMG amplitude at high levels of isometric torque production for the biceps brachii in the men, but not the women, may have been due to greater isometric torque, muscle stiffness, and/or intramuscular fluid pressure in the men, rather than to differences in motor unit activation strategies for modulating isometric torque production.
Collapse
Affiliation(s)
- Travis W Beck
- Dept. of Nutrition and Health Sciences, University of Nebraska- Lincoln, 68588, USA
| | | | | | | | | | | | | |
Collapse
|