1
|
Germe TRM, Bush NG, Baskerville VM, Saman D, Benesch JLP, Maxwell A. Rapid, DNA-induced interface swapping by DNA gyrase. eLife 2024; 12:RP86722. [PMID: 38856655 PMCID: PMC11164529 DOI: 10.7554/elife.86722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (-1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface 'swapping' (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed 'swivelling' mechanism for DNA gyrase (Gubaev et al., 2016).
Collapse
Affiliation(s)
- Thomas RM Germe
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Natassja G Bush
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Victoria M Baskerville
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Dominik Saman
- Department of Chemistry, Biochemistry Building, University of OxfordOxfordUnited Kingdom
| | - Justin LP Benesch
- Department of Chemistry, Biochemistry Building, University of OxfordOxfordUnited Kingdom
| | - Anthony Maxwell
- Department Biochemistry & Metabolism, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
- Department of Molecular Microbiology, John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
2
|
Bates AD, Berger JM, Maxwell A. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res 2011; 39:6327-39. [PMID: 21525132 PMCID: PMC3159449 DOI: 10.1093/nar/gkr258] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/27/2022] Open
Abstract
Type II DNA topoisomerases (topos) catalyse changes in DNA topology by passing one double-stranded DNA segment through another. This reaction is essential to processes such as replication and transcription, but carries with it the inherent danger of permanent double-strand break (DSB) formation. All type II topos hydrolyse ATP during their reactions; however, only DNA gyrase is able to harness the free energy of hydrolysis to drive DNA supercoiling, an energetically unfavourable process. A long-standing puzzle has been to understand why the majority of type II enzymes consume ATP to support reactions that do not require a net energy input. While certain type II topos are known to 'simplify' distributions of DNA topoisomers below thermodynamic equilibrium levels, the energy required for this process is very low, suggesting that this behaviour is not the principal reason for ATP hydrolysis. Instead, we propose that the energy of ATP hydrolysis is needed to control the separation of protein-protein interfaces and prevent the accidental formation of potentially mutagenic or cytotoxic DSBs. This interpretation has parallels with the actions of a variety of molecular machines that catalyse the conformational rearrangement of biological macromolecules.
Collapse
Affiliation(s)
- Andrew D Bates
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| | | | | |
Collapse
|
3
|
Kantidze OL, Razin SV. Chromatin loops, illegitimate recombination, and genome evolution. Bioessays 2009; 31:278-86. [PMID: 19260023 DOI: 10.1002/bies.200800165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromosomal rearrangements frequently occur at specific places ("hot spots") in the genome. These recombination hot spots are usually separated by 50-100 kb regions of DNA that are rarely involved in rearrangements. It is quite likely that there is a correlation between the above-mentioned distances and the average size of DNA loops fixed at the nuclear matrix. Recent studies have demonstrated that DNA loop anchorage regions can be fairly long and can harbor DNA recombination hot spots. We previously proposed that chromosomal DNA loops may constitute the basic units of genome organization in higher eukaryotes. In this review, we consider recombination between DNA loop anchorage regions as a possible source of genome evolution.
Collapse
Affiliation(s)
- Omar L Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
4
|
Umanskaya ON, Lebedeva SS, Gavrilov AA, Bystritskiy AA, Razin SV. Inhibition of DNA topoisomerase II may trigger illegitimate recombination in living cells: Experiments with a model system. J Cell Biochem 2006; 99:598-608. [PMID: 16676353 DOI: 10.1002/jcb.20938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have developed a plasmid test system to study recombination in vitro and in mammalian cells in vivo, and to analyze the possible role of DNA topoisomerase II. The system is based on a plasmid construct containing an inducible marker gene ccdB ("killer" (KIL) gene) whose product is lethal for bacterial cells, flanked by two different potentially recombinogenic elements. The plasmids were subjected to recombinogenic conditions in vitro or in vivo after transient transfection into COS-1 cells, and subsequently transformed into E. coli which was then grown in the presence of the ccdB gene inducer. Hence, all viable colonies contained recombinant plasmids since only recombination between the flanking regions could remove the KIL gene. Thus, it was possible to detect recombination events and to estimate their frequency. We found that the frequency of topoisomerase II-mediated recombination in vivo is significantly higher than in a minimal in vitro system. The presence of VM-26, an inhibitor of the religation step of the topoisomerase II reaction, increased the recombination frequency by 60%. We propose that cleavable complexes of topoisomerase II are either not religated, triggering error-prone repair of the DNA breaks, or are incorrectly religated resulting in strand exchange. We also studied the influence of sequences known to contain preferential breakpoints for recombination in vivo after chemotherapy with topoisomerase II-targeting drugs, but no preferential stimulation of recombination by these sequences was detected in this non-chromosomal context.
Collapse
Affiliation(s)
- Olga N Umanskaya
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str. 34/5, 119334 Moscow, Russia.
| | | | | | | | | |
Collapse
|
5
|
Richardson C, Jasin M. Recombination between two chromosomes: implications for genomic integrity in mammalian cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:553-60. [PMID: 12760073 DOI: 10.1101/sqb.2000.65.553] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Richardson
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York, USA
| | | |
Collapse
|
6
|
Affiliation(s)
- Jerrylaine V Walker
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA
| | | |
Collapse
|
7
|
Abstract
DNA topoisomerases are double-edged swords. They are essential for many vital functions of DNA during normal cell growth. However, they are also highly vulnerable under various physiological and nonphysiological stresses because of their delicate act on breaking and rejoining DNA. These stresses (e.g. exposure to topoisomerase poisons, acidic pH, and oxidative stresses) can convert DNA topoisomerases into DNA-breaking nucleases, resulting in cell death and/or genomic instability. The importance of topoisomerase-mediated DNA cleavage in tumor cell death and carcinogenesis has been recognized. This review focuses on recent findings concerning the molecular mechanisms of the stress responses to topoisomerase-mediated DNA damage. The involvement of ubiquitin/26S proteasome and SUMO/UBC9 in these processes, as well as the role of topoisomerase cleavable complexes in apoptotic cell death are discussed.
Collapse
Affiliation(s)
- T K Li
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
8
|
Heddle JG, Lu T, Zhao X, Drlica K, Maxwell A. gyrB-225, a mutation of DNA gyrase that compensates for topoisomerase I deficiency: investigation of its low activity and quinolone hypersensitivity. J Mol Biol 2001; 309:1219-31. [PMID: 11399091 DOI: 10.1006/jmbi.2001.4733] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The B subunit of DNA gyrase (GyrB) consists of a 43 kDa N-terminal domain, containing the site of ATP binding and hydrolysis, and a 47 kDa C-terminal domain that is thought to play a role in interactions with GyrA and DNA. In cells containing a deletion of topA (the gene encoding DNA topoisomerase I) a compensatory mutation is found in gyrB. This mutation (gyrB-225) results in a two amino acid insertion in the N-terminal domain of GyrB. We found that cells containing this mutation are more sensitive than wild-type cells to quinolone drugs with respect to bacteriostatic and lethal action. We have characterised the mutant GyrB protein in vitro and found it to have reduced DNA supercoiling, relaxation, ATPase, and cleavage activities. The mutant enzyme is up to threefold more sensitive to quinolones than wild-type. The mutation also increases the affinity of GyrB for GyrA and DNA, while the affinity of quinolone for the enzyme-DNA complex is unaffected. We propose that the loss in activity is due to misfolding of the GyrB-225 protein, providing an example in which misfolding of one protein, DNA gyrase, suppresses a deficiency of another, topoisomerase I. The increased quinolone sensitivity is proposed to be a consequence of an altered conformation of the protein that renders quinolones better able to disrupt, rather than generate, gyrase-drug-DNA complexes.
Collapse
MESH Headings
- Adenosine Triphosphatases/antagonists & inhibitors
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Alleles
- Amino Acid Substitution/genetics
- Anti-Infective Agents/metabolism
- Anti-Infective Agents/pharmacology
- Ciprofloxacin/metabolism
- Ciprofloxacin/pharmacology
- DNA Gyrase
- DNA Topoisomerases, Type I/deficiency
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type II/chemistry
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Drug Tolerance
- Escherichia coli/drug effects
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genetic Complementation Test
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Oxolinic Acid/metabolism
- Oxolinic Acid/pharmacology
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Protein Binding/drug effects
- Protein Folding
- Protein Structure, Tertiary
- Suppression, Genetic/genetics
- Surface Plasmon Resonance
- Thermodynamics
- Topoisomerase II Inhibitors
Collapse
Affiliation(s)
- J G Heddle
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH, UK
| | | | | | | | | |
Collapse
|
9
|
Richardson C, Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 2000; 405:697-700. [PMID: 10864328 DOI: 10.1038/35015097] [Citation(s) in RCA: 367] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The faithful repair of DNA damage such as chromosomal double-strand breaks (DSBs) is crucial for genomic integrity. Aberrant repair of these lesions can result in chromosomal rearrangements, including translocations, which are associated with numerous tumours. Models predict that some translocations arise from DSB-induced recombination in differentiating lymphoid cell types or from aberrant repair of DNA damage induced by irradiation or other agents; however, a genetic system to study the aetiology of these events has been lacking. Here we use a mouse embryonic stem cell system to examine the role of DNA damage on the formation of translocations. We find that two DSBs, each on different chromosomes, are sufficient to promote frequent reciprocal translocations. The results are in striking contrast with interchromosomal repair of a single DSB in an analogous system in which translocations are not recovered. Thus, while interchromosomal DNA repair does not result in genome instability per se, the presence of two DSBs in a single cell can alter the spectrum of repair products that are recovered.
Collapse
Affiliation(s)
- C Richardson
- Cell Biology Program, Memorial Sloan-Kettering Cancer Centre and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
10
|
Richardson C, Moynahan ME, Jasin M. Homologous recombination between heterologs during repair of a double-strand break. Suppression of translocations in normal cells. Ann N Y Acad Sci 2000; 886:183-6. [PMID: 10667215 DOI: 10.1111/j.1749-6632.1999.tb09412.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- C Richardson
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
11
|
Shammas MA, Shmookler Reis RJ. Recombination and its roles in DNA repair, cellular immortalization and cancer. AGE 1999; 22:71-88. [PMID: 23604399 PMCID: PMC3455241 DOI: 10.1007/s11357-999-0009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genetic recombination is the creation of new gene combinations in a cell or gamete, which differ from those of progenitor cells or parental gametes. In eukaryotes, recombination may occur at mitosis or meiosis. Mitotic recombination plays an indispensable role in DNA repair, which presumably directed its early evolution; the multiplicity of recombination genes and pathways may be best understood in this context, although they have acquired important additional functions in generating diversity, both somatically (increasing the immune repertoire) and in germ line (facilitating evolution). Chromosomal homologous recombination and HsRad51 recombinase expression are increased in both immortal and preimmortal transformed cells, and may favor the occurrence of multiple oncogenic mutations. Tumorigenesis in vivo is frequently associated with karyotypic instability, locus-specific gene rearrangements, and loss of heterozygosity at tumor suppressor loci - all of which can be recombinationally mediated. Genetic defects which increase the rate of somatic mutation (several of which feature elevated recombination) are associated with early incidence and high risk for a variety of cancers. Moreover, carcinogenic agents appear to quite consistently stimulate homologous recombination. If cells with high recombination arise, either spontaneously or in response to "recombinogens," and predispose to the development of cancer, what selective advantage could favor these cells prior to the occurrence of growth-promoting mutations? We propose that the augmentation of telomere-telomere recombination may provide just such an advantage, to hyper-recombinant cells within a population of telomerase-negative cells nearing their replicative (Hayflick) limit, by extending telomeres in some progeny cells and thus allowing their continued proliferation.
Collapse
Affiliation(s)
- Masood A. Shammas
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| | - Robert J. Shmookler Reis
- />Dept. of Geriatrics, University of Arkansas for Medical Sciences, USA
- />Dept. of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, USA
- />Dept. of Medicine, University of Arkansas for Medical Sciences, USA
- />J.L. McClellan Veterans Medical Center — Research 151, 4300 West 7th Street, Little Rock, AR 72205
| |
Collapse
|
12
|
Topoisomerase I-targeting drugs. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-568x(98)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Lanza A, Tornaletti S, Rodolfo C, Scanavini MC, Pedrini AM. Human DNA topoisomerase I-mediated cleavages stimulated by ultraviolet light-induced DNA damage. J Biol Chem 1996; 271:6978-86. [PMID: 8636127 DOI: 10.1074/jbc.271.12.6978] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
DNA topoisomerases have been proposed as the proteins involved in the formation of the DNA-protein cross-links detected after ultraviolet light (UV) irradiation of cellular DNA. This possibility has been investigated by studying the effects of UV-induced DNA damage on human DNA topoisomerase I action. UV lesions impaired the enzyme's ability to relax negatively supercoiled DNA. Decreased relaxation activity correlated with the stimulation of cleavable complexes. Accumulation of cleavable complexes resulted from blockage of the rejoining step of the cleavage-religation reaction. Mapping of cleavage sites on the pAT153 genome indicated UV-induced cleavage at discrete positions corresponding to sites stimulated also by the topoisomerase I inhibitor camptothecin, except for one. Subsequent analysis at nucleotide level within the sequence encompassing the UV-specific cleavage site revealed the precise positions of sites stimulated by camptothecin with respect to those specific for UV irradiation. Interestingly, one of the UV-stimulated cleavage sites was formed within a sequence that did not contain dimerized pyrimidines, suggesting transmission of the distortion, caused by photodamage to DNA, into the neighboring sequences. These results support the proposal that DNA structural alterations induced by UV lesions can be sufficient stimulus to induce cross-linking of topoisomerase I to cellular DNA.
Collapse
Affiliation(s)
- A Lanza
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Via Abbiategrasso, 207-27100 Pavia, Italy
| | | | | | | | | |
Collapse
|