1
|
Li QY, Li Y, Inoue A, Lu R, Xu A, Ruan KH. Reversing thromboxane A2 receptor activity from calcium to cAMP signaling by shifting Gαq to Gαs covalently linked to the receptor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Malik RU, Dysthe M, Ritt M, Sunahara RK, Sivaramakrishnan S. ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells. Sci Rep 2017; 7:7749. [PMID: 28798477 PMCID: PMC5552854 DOI: 10.1038/s41598-017-08029-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
FRET and BRET approaches are well established for detecting ligand induced GPCR-G protein interactions in cells. Currently, FRET/BRET assays rely on co-expression of GPCR and G protein, and hence depend on the stoichiometry and expression levels of the donor and acceptor probes. On the other hand, GPCR-G protein fusions have been used extensively to understand the selectivity of GPCR signaling pathways. However, the signaling properties of fusion proteins are not consistent across GPCRs. In this study, we describe and characterize novel sensors based on the Systematic Protein Affinity Strength Modulation (SPASM) technique. Sensors consist of a GPCR and G protein tethered by an ER/K linker flanked by FRET probes. SPASM sensors are tested for the β2-, α1-, and α2- adrenergic receptors, and adenosine type 1 receptor (A1R), tethered to Gαs-XL, Gαi2, or Gαq subunits. Agonist stimulation of β2-AR and α2-AR increases FRET signal comparable to co-expressed FRET/BRET sensors. SPASM sensors also retain signaling through the endogenous G protein milieu. Importantly, ER/K linker length systematically tunes the GPCR-G protein interaction, with consequent modulation of second messenger signaling for cognate interactions. SPASM GPCR sensors serve the dual purpose of detecting agonist-induced changes in GPCR-G protein interactions, and linking these changes to downstream signaling.
Collapse
Affiliation(s)
- Rabia U Malik
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthew Dysthe
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
5-HT6 receptor signal transduction second messenger systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 94:89-110. [PMID: 21081203 DOI: 10.1016/b978-0-12-384976-2.00004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
Smith NJ, Milligan G. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 2011; 62:701-25. [PMID: 21079041 DOI: 10.1124/pr.110.002667] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
For many years seven transmembrane domain G protein-coupled receptors (GPCRs) were thought to exist and function exclusively as monomeric units. However, evidence both from native cells and heterologous expression systems has demonstrated that GPCRs can both traffic and signal within higher-order complexes. As for other protein-protein interactions, conformational changes in one polypeptide, including those resulting from binding of pharmacological ligands, have the capacity to alter the conformation and therefore the response of the interacting protein(s), a process known as allosterism. For GPCRs, allosterism across homo- or heteromers, whether dimers or higher-order oligomers, represents an additional topographical landscape that must now be considered pharmacologically. Such effects may offer the opportunity for novel therapeutic approaches. Allosterism at GPCR heteromers is particularly exciting in that it offers additional scope to provide receptor subtype selectivity and tissue specificity as well as fine-tuning of receptor signal strength. Herein, we introduce the concept of allosterism at both GPCR homomers and heteromers and discuss the various questions that must be addressed before significant advances can be made in drug discovery at these GPCR complexes.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Laboratory,University Avenue, University of Glasgow, Glasgow, Scotland
| | | |
Collapse
|
5
|
Charlton SJ, Vauquelin G. Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Br J Pharmacol 2010; 161:1250-65. [PMID: 20977466 PMCID: PMC3000651 DOI: 10.1111/j.1476-5381.2010.00863.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 11/28/2022] Open
Abstract
UNLABELLED Calcium is a key intracellular signal that controls manifold cellular processes over a wide temporal range. The development of calcium-sensitive fluorescent dyes and proteins revolutionized our ability to visualize this important second messenger and its complex signalling characteristics. The subsequent advent of high throughput plate-based fluorescence readers has resulted in the calcium assay becoming the most widely utilized assay system for the characterization of novel receptor ligands. In this review we discuss common approaches to calcium assays, paying particular attention to the potential issues associated with interpretation of receptor pharmacology using this system. Topics covered include dye saturation and forced-coupling of receptors to the calcium pathway, but special consideration is given to the influence of non-equilibrium conditions in this rapid signalling system. Modelling the calcium transient in a kinetic mode allows the influence of ligand kinetics, receptor reserve and read time to be explored. This demonstrates that observed ligand pharmacology at very early time points can be quite different to that determined after longer incubations, even resulting in reversal of agonist potency orders that may be misinterpreted as agonist biased signalling. It also shows that estimates of antagonist affinity, whether by Schild analysis or inhibition curves, are similarly affected by hemi-equilibrium conditions. Finally we end with a discussion on practical approaches to accurately estimate the affinity of insurmountable antagonists using calcium assays. LINKED ARTICLES This article is part of a themed section on Analytical Receptor Pharmacology in Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2010.161.issue-6.
Collapse
|
6
|
Marino SF. High-level production and characterization of a G-protein coupled receptor signaling complex. FEBS J 2009; 276:4515-28. [PMID: 19645726 DOI: 10.1111/j.1742-4658.2009.07158.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of the molecular details of signal transduction through G-protein coupled receptors (GPCRs) awaits the solution of high-resolution structures of the receptor species involved in passing the extracellular information across the plasma membrane. The critical challenge in this effort is the production of sufficient quantities of active and homogeneous receptor species amenable to crystallization screening. We describe here the high-level expression in mammalian cells and characterization of a fusion complex between the kappa opioid receptor and its cognate G-protein alpha subunit, G alpha(i1). Optimization of growth conditions resulted in the highest level of active binding sites reported to date for either opioid receptors or GPCR-G alpha fusions. In cells, the kappa opioid receptor was stabilized against proteolysis in the context of the fusion protein and was competent to bind both agonists and antagonists. Coupling of the kappa opioid receptor with the G alpha subunit was demonstrated by changes in agonist affinity in the presence of guanine nucleotides and by agonist-induced increases in the rate of guanine nucleotide hydrolysis. In addition to representing a physiologically relevant signaling complex, the additional hydrophilic surface area provided by the G-protein may enhance the chances of producing well-diffracting crystals from the purified complex.
Collapse
Affiliation(s)
- Stephen F Marino
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Janero DR, Makriyannis A. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerg Drugs 2009; 14:43-65. [PMID: 19249987 DOI: 10.1517/14728210902736568] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued pharmacological profiling, as the prelude to first-in-man testing of CB1 receptor antagonists with unique modes of targeting/pharmacological action, represents an exciting translational frontier in the critical path to CB receptor blockers as medicines.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Center for Drug Discovery, Boston, MA 02115-5000, USA.
| | | |
Collapse
|
8
|
Suga H, Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochem Int 2007; 51:140-64. [PMID: 17659814 DOI: 10.1016/j.neuint.2007.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.
Collapse
Affiliation(s)
- Hinako Suga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
9
|
Abstract
G protein-coupled receptor (GPCR)-Galpha fusion proteins were first characterized more than 10 years ago as a strategy for studying receptor-G protein signaling. A large number of studies have used this approach to characterize receptor coupling to members of the Gs, Gi, and Gq families of Galpha subunits, but this strategy has not been widely used to study Galpha12 and Galpha13. As described in the article by Zhang et al. in this issue of Molecular Pharmacology (p. 1433) characterization of the signaling properties of thromboxane A2 receptor (TPalpha) -Galpha12 and -Galpha13 fusion constructs demonstrates the applicability of this strategy to members of this unique family of Galpha subunits, and how this strategy can be used to resolve otherwise difficult problems of receptor pharmacology associated with these proteins. The general strategy of making receptor-Galpha fusion constructs has wide applicability to a number of research problems, but there are perhaps also "hidden messages" in how different receptor-Galpha subunit fusion pairs behave.
Collapse
Affiliation(s)
- John D Hildebrandt
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, 173 Ashley Ave., 303BSB, Charleston, SC 29425, USA.
| |
Collapse
|
10
|
Gazi L, Wurch T, Lopéz-Giménez JF, Pauwels PJ, Strange PG. Pharmacological analysis of a dopamine D(2Short):G(alphao) fusion protein expressed in Sf9 cells. FEBS Lett 2003; 545:155-60. [PMID: 12804767 DOI: 10.1016/s0014-5793(03)00520-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A dopamine D(2Short) receptor:G(alphao) fusion protein was expressed in Sf9 cells using the baculovirus expression system. [(3)H]Spiperone bound to D(2Short):G(alphao) with a pK(d) approximately 10. Dopamine stimulated the binding of [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) to D(2Short):G(alphao) expressed with Gbeta(1)gamma(2) (E(max)>460%; pEC(50) 5.43+/-0.06). Most of the putative D(2) antagonists behaved as inverse agonists (suppressing basal [(35)S]GTPgammaS binding) at D(2Short):G(alphao)/Gbeta(1)gamma(2) although (-)-sulpiride and ziprasidone were neutral antagonists. Competition of [(3)H]spiperone binding by dopamine and 10,11-dihydroxy-N-n-propylnorapomorphine revealed two binding sites of different affinities, even in the presence of GTP (100 micro M). The D(2Short):G(alphao) fusion protein is therefore a good model for characterising D(2) receptors.
Collapse
Affiliation(s)
- Lucien Gazi
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, RG6 6AJ, Reading, UK
| | | | | | | | | |
Collapse
|
11
|
Wurch T, Colpaert FC, Pauwels PJ. Mutation in a protein kinase C phosphorylation site of the 5-HT1A receptor preferentially attenuates Ca2+ responses to partial as opposed to higher-efficacy 5-HT1A agonists. Neuropharmacology 2003; 44:873-81. [PMID: 12726819 DOI: 10.1016/s0028-3908(03)00097-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Thr(149)Ala mutation in a putative protein kinase C phosphorylation site of the 5-HT(1A) receptor's second intracellular loop has been shown to affect the closing of Ca(2+) channels and Ca(2+) mobilisation without interfering with the inhibitory cAMP pathway (Mol Pharmacol 52 (1997) 164). Here, the Ca(2+) responses for a series of 5-HT(1A) agonists were compared between the wild-type (wt) and mutant Thr(149)Ala 5-HT(1A) receptor as part of a fusion protein containing a G(alpha)(15) protein. Neither the mutation nor the fusion process modified the [(3)H]WAY 100635-based ligand binding profile of the fusion proteins as compared to the wt 5-HT(1A) receptor protein. Whereas at the wt 5-HT(1A) receptor, 5-HT induced a Ca(2+) response in CHO-K1 cells via endogenous G(i/o) proteins, the Ca(2+) response to 5-HT at the mutant Thr(149)Ala 5-HT(1A) receptor was fully dependent on either the co-expression or the fusion to a recombinant G(alpha)(15) protein. Buspirone, flesinoxan and 8-OH-DPAT produced a graded partial response (26 to 62%) at the wt 5-HT(1A):G(alpha)(15) fusion protein; F 13640, 5-CT and F 14679 behaved as higher-efficacy agonists with maximal Ca(2+) responses similar to 5-HT. The maximal Ca(2+) responses at the mutant Thr(149)Ala 5-HT(1A):G(alpha)(15) fusion protein were significantly attenuated for flesinoxan and 8-OH-DPAT (-45 and -36%, respectively); the response to the other 5-HT agonists was not significantly affected. A similar effect was observed upon treatment with phorbol 12-myristate 13-acetate at the Thr(149)Ala 5-HT(1A):G(alpha)(15) fusion protein. In conclusion, the amplitude of the Ca(2+) responses induced by partial, but not that to fuller 5-HT(1A) receptor agonists, is affected by the Thr(149)Ala mutation of the 5-HT(1A):G(alpha)(15) fusion protein.
Collapse
Affiliation(s)
- T Wurch
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17, avenue Jean Moulin, 81106 Castres Cédex, France
| | | | | |
Collapse
|
12
|
Molinari P, Ambrosio C, Riitano D, Sbraccia M, Grò MC, Costa T. Promiscuous coupling at receptor-Galpha fusion proteins. The receptor of one covalent complex interacts with the alpha-subunit of another. J Biol Chem 2003; 278:15778-88. [PMID: 12598520 DOI: 10.1074/jbc.m300731200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fusion proteins between heptahelical receptors (GPCR) and G protein alpha-subunits show enhanced signaling efficiency in transfected cells. This is believed to be the result of molecular proximity, because the interaction between linked modules of one protein chain, if not constrained by structure, should be strongly favored compared with the same in which partners react as free species. To test this assumption we made a series of fusion proteins (type 1 and 4 opioid receptors with G(o) and beta(2) adrenergic and dopamine 1 receptors with G(sL)) and some mutated analogs carrying different tags and defective GPCR or Galpha subunits. Using cotransfection experiments with readout protocols able to distinguish activation at fused and non-fused alpha-subunits, we found that both the GPCR and the Galpha limb of one fusion protein can freely interact with non-fused proteins and the tethered partners of a neighboring fusion complex. Moreover, a bulky polyanionic inhibitor can suppress with identical potency receptor-Galpha interaction, either when occurring between latched domains of a fused system or separate elements of distinct molecules, indicating that the binding surfaces are equally accessible in both cases. These data demonstrate that there is no entropy drive from the linked condition of fusion proteins and suggest that their signaling may result from the GPCR of one complex interacting with the alpha-subunit of another. Moreover, the enhanced coupling efficiency commonly observed for fusion proteins is not due to the receptor tether, but to the transmembrane helix that anchors Galpha to the membrane.
Collapse
Affiliation(s)
- Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Ligand regulation of the binding of [35S]GTPgammaS is one of the most widely used methods to measure receptor activation of heterotrimeric G proteins. However, until recently this method was largely restricted to receptors that interact with members of the family of pertussis-toxin-sensitive G proteins. Here, the reasons for this restriction are discussed and recent approaches that have extended the utility of this method such that it is now suitable for analysis of the activation of any heterotrimeric G protein are reviewed.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK.
| |
Collapse
|
14
|
Welsby PJ, Carr IC, Wilkinson G, Milligan G. Regulation of the avidity of ternary complexes containing the human 5-HT(1A) receptor by mutation of a receptor contact site on the interacting G protein alpha subunit. Br J Pharmacol 2002; 137:345-52. [PMID: 12237254 PMCID: PMC1573502 DOI: 10.1038/sj.bjp.0704880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 07/10/2002] [Accepted: 07/19/2002] [Indexed: 11/08/2022] Open
Abstract
1 Fusion proteins were constructed between the human 5-HT(1A) receptor and pertussis toxin-resistant forms of both G(i1)alpha and G(o1)alpha mutated at residue(351) from cysteine to either glycine or isoleucine. Each of these was expressed stably in HEK293 cells. 2 Increasing concentrations of GDP inhibited binding of the agonist [(3)H]-8-OH-DPAT but not the antagonist [(3)H]-MPPF to each construct. 3 The IC(50) for GDP was greater for constructs containing isoleucine at residue(351) of the G proteins compared to those with glycine at this position. 4 The G protein antagonist suramin had similar effects to GDP on the binding of [(3)H]-8-OH-DPAT. 5 The proportion of 5-HT(1A) receptor binding sites detected by [(3)H]-MPPF that displayed high affinity for 8-OH-DPAT was significantly greater when the interacting G protein contained isoleucine rather than glycine at residue(351). 6 The 5-HT(1A) receptor displayed similar avidity of interaction with G(i1)alpha and G(o1)alpha. 7 These results indicate that a higher avidity ternary complex is formed between 8-OH-DPAT, the 5-HT(1A) receptor and G proteins when isoleucine rather than glycine is located at residue(351) of the interacting G protein.
Collapse
Affiliation(s)
- Philip J Welsby
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ
| | - I Craig Carr
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ
| | - Graeme Wilkinson
- Molecular Pharmacology and Biochemistry, Department of Enabling Science and Technology, Astra-Zeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG
| | - Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ
| |
Collapse
|
15
|
Welsby PJ, Kellett E, Wilkinson G, Milligan G. Enhanced detection of receptor constitutive activity in the presence of regulators of G protein signaling: applications to the detection and analysis of inverse agonists and low-efficacy partial agonists. Mol Pharmacol 2002; 61:1211-21. [PMID: 11961140 DOI: 10.1124/mol.61.5.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fusion proteins between the human 5-hydroxytryptamine (5-HT)(1A) receptor and either wild type or certain pertussis toxin-resistant forms of G(o1)alpha and G(i1)alpha display constitutive GTPase activity that can be inhibited by the inverse agonist spiperone. Addition of recombinant regulator of G protein signaling (RGS) 1 or RGS16 to membranes expressing these fusion proteins resulted in elevation of this constitutive GTPase activity without significantly altering the binding affinity of antagonist/inverse agonist ligands. For a 5-HT(1A) receptor-(Cys(351)Ile)G(o1)alpha fusion protein the increase in basal GTPase activity was greater than 4-fold. Enzyme kinetic analysis demonstrated that the effect of RGS1 was as a GTPase-activating protein for the fusion construct. In the presence of the RGS proteins, both agonists and inverse agonists produced much more robust regulation of high-affinity GTPase activity than in their absence. This allowed detection of the partial agonist nature of WAY100635, which has been described previously as a neutral antagonist at the 5-HT(1A) receptor. Of a range of ligands studied, only haloperidol functioned as a neutral ligand in the presence of RGS1. These studies show that addition of a recombinant RGS protein provides a simple and novel means to elevate the fraction of basal membrane GTPase activity contributed by the constitutive activity of a receptor. By so doing, it also greatly enhances the ability to detect and analyze the effects of inverse agonists and to discriminate between neutral ligands and those with low levels of positive intrinsic efficacy.
Collapse
Affiliation(s)
- Philip J Welsby
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | | |
Collapse
|