1
|
Krüger M, Ruppelt A, Kappler B, Van Soest E, Samsom RA, Grinwis GCM, Geijsen N, Helms JB, Stijnen M, Kock LM, Rasponi M, Kooistra HS, Spee B. Normothermic Ex Vivo Liver Platform Using Porcine Slaughterhouse Livers for Disease Modeling. Bioengineering (Basel) 2022; 9:bioengineering9090471. [PMID: 36135018 PMCID: PMC9495507 DOI: 10.3390/bioengineering9090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic and toxic liver disorders, such as fatty liver disease (steatosis) and drug-induced liver injury, are highly prevalent and potentially life-threatening. To allow for the study of these disorders from the early stages onward, without using experimental animals, we collected porcine livers in a slaughterhouse and perfused these livers normothermically. With our simplified protocol, the perfused slaughterhouse livers remained viable and functional over five hours of perfusion, as shown by hemodynamics, bile production, indocyanine green clearance, ammonia metabolism, gene expression and histology. As a proof-of-concept to study liver disorders, we show that an infusion of free fatty acids and acetaminophen results in early biochemical signs of liver damage, including reduced functionality. In conclusion, the present platform offers an accessible system to perform research in a functional, relevant large animal model while avoiding using experimental animals. With further improvements to the model, prolonged exposure could make this model a versatile tool for studying liver diseases and potential treatments.
Collapse
Affiliation(s)
- Melanie Krüger
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Alicia Ruppelt
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Correspondence:
| | | | | | - Roos Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Guy C. M. Grinwis
- Veterinary Pathology Diagnostic Centre, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marco Stijnen
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
| | - Linda M. Kock
- LifeTec Group BV, 5611 ZS Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Marco Rasponi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Hans S. Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
2
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
3
|
Schurink IJ, Willemse J, Verstegen MM, van der Laan LJ, de Jonge J. Long-Term Perfusion of the Liver Outside the Body: Warming Up for Ex Vivo Therapies? Hepatology 2020; 72:1485-1487. [PMID: 33464565 PMCID: PMC7702161 DOI: 10.1002/hep.31474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Kunst RF, Niemeijer M, van der Laan LJW, Spee B, van de Graaf SFJ. From fatty hepatocytes to impaired bile flow: Matching model systems for liver biology and disease. Biochem Pharmacol 2020; 180:114173. [PMID: 32717228 DOI: 10.1016/j.bcp.2020.114173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
A large variety of model systems are used in hepatobiliary research. In this review, we aim to provide an overview of established and emerging models for specific research questions. We specifically discuss the value and limitations of these models for research on metabolic associated fatty liver disease (MAFLD), (previously named non-alcoholic fatty liver diseases/non-alcoholic steatohepatitis (NAFLD/NASH)) and cholestasis-related diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). The entire range of models is discussed varying from immortalized cell lines, mature or pluripotent stem cell-based models including organoids/spheroids, to animal models and human ex vivo models such as normothermic machine perfusion of livers and living liver slices. Finally, the pros and cons of each model are discussed as well as the need in the scientific community for continuous innovation in model development to better mimic the human (patho)physiology.
Collapse
Affiliation(s)
- Roni F Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marije Niemeijer
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Porcine Isolated Liver Perfusion for the Study of Ischemia Reperfusion Injury: A Systematic Review. Transplantation 2019; 102:1039-1049. [PMID: 29509572 DOI: 10.1097/tp.0000000000002156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Understanding ischemia reperfusion injury (IRI) is essential to further improve outcomes after liver transplantation (LT). Porcine isolated liver perfusion (ILP) is increasingly used to reproduce LT-associated IRI in a strictly controlled environment. However, whether ILP is a reliable substitute of LT was never validated. METHODS We systematically reviewed the current experimental setups for ILP and parameters of interest reflecting IRI. RESULTS Isolated liver perfusion was never compared with transplantation in animals. Considerable variability exists between setups, and comparative data are unavailable. Experience so far suggests that centrifugal pump(s) with continuous flow are preferred to reduce the risk of embolism. Hepatic outflow can be established by cannulation of the inferior vena cava or freely drained in an open bath. Whole blood at approximately 38°C, hematocrit of 20% or greater, and the presence of leukocytes to trigger inflammation is considered the optimal perfusate. A number of parameters related to the 4 liver compartments (hepatocyte, cholangiocyte, endothelium, immune cells) are available; however, their significance and relation to clinical outcomes is not well described. CONCLUSIONS Porcine ILP provides a reproducible model to study early IRI events. As all models, it has its limitations. A standardization of the setup would allow comparison of data and progress in the field.
Collapse
|
6
|
Nagel S, Hegemann O, Groneberg DA, Grosse-Siestrup C. An Improved Model of Isolated Hemoperfused Porcine Livers Using Pneumatically Driven Pulsating Blood Pumps. Toxicol Pathol 2016; 33:434-40. [PMID: 16036860 DOI: 10.1080/01926230590958164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Existing liver perfusion models are largely limited by high degrees of ischemic and reperfusion injury and the lack of standardization. To establish a highly standardized perfusion model and minimize reperfusion injury, a porcine liver perfusion model was developed using an artificial heart pump (Buecherl Artificial Heart). This model is characterized by pneumatically driven and pressure controlled blood pumps with pulsating flow characteristics. The perfusion parameters and the integrity of the perfused organ were assessed using hemodynamic and hepatic function tests. In eight porcine liver perfusion experiments the system allowed maintaining stable and physiologic organ function over 3 hours by bile production (5.5 ±3.1 ml/30 minutes, resp. 22.9 ±8.4 ml cumulative at 180 minutes), oxygen consumption (2.2 ±0.2 ml/min/100 g overall mean) and significantly better liver enzyme levels (AST 19.5 ± 10.1 U/l/100 g, ALT 2.1 ± 0.8 U/l/min, LDH 57.8 ± 24.2 U/l/100 g) compared to previous studies. It was also possible to reduce the circulating blood volume to 1,000 ml and to create a compact perfusion system that is adoptable to other organ systems such as the kidneys. The compact size and the absence of magnetic components also allow a use for advanced imaging techniques. In conclusion this optimized perfusion system provides a sound basis for future studies in the area of hepatotoxicity and pharmacology.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Comparative Medicine and Experimental Animal Science, Charité-University Medicine Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | |
Collapse
|
7
|
Izamis ML, Efstathiades A, Keravnou C, Leen EL, Averkiou MA. Dynamic contrast-enhanced ultrasound of slaughterhouse porcine livers in machine perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2217-2230. [PMID: 25023101 DOI: 10.1016/j.ultrasmedbio.2014.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to enable investigations into novel imaging and surgical techniques by developing a readily accessible, versatile liver machine perfusion system. Slaughterhouse pig livers were used, and dynamic contrast-enhanced ultrasound was introduced to optimize the procurement process and provide real-time perfusion monitoring. The system comprised a single pump, oxygenator, bubble trap and two flowmeters for pressure-controlled perfusion of the vessels using an off-the-shelf perfusate at room temperature. Successful livers exhibited homogeneous perfusion in both the portal vein and hepatic artery with dynamic contrast-enhanced ultrasound, which correlated with stable oxygen uptake, bile production and hepatic resistance and normal histology at the end of 3 h of perfusion. Dynamic contrast-enhanced ultrasound revealed perfusion abnormalities invisible to the naked eye, thereby providing context to the otherwise systemic biochemical/hemodynamic measurements and focal biopsy findings. The model developed here is a simple, cost-effective approach for stable ex vivo whole-organ machine perfusion.
Collapse
Affiliation(s)
- Maria-Louisa Izamis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | | | - Christina Keravnou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Edward L Leen
- Department of Medicine, Imperial College, London, United Kingdom
| | - Michalakis A Averkiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
8
|
The autologous normothermic ex vivo perfused porcine liver-kidney model: improving the circuit's biochemical and acid-base environment. Am J Surg 2012; 204:518-26. [PMID: 23010618 DOI: 10.1016/j.amjsurg.2011.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ex vivo porcine liver perfused model isolates the organ from extrinsic regulatory mechanisms, facilitating an improved understanding of the organ physiology and reaction to various conditions. We have assessed the influence of the addition of a porcine kidney to the circuit. METHODS Eight livers were harvested and perfused for 6 hours. In 5 additional experiments a kidney also was connected in parallel. Hourly arterial blood gases were collected to analyze glucose, acid base, and renal parameters. The primary end point was an evaluation of the influence of the kidney on glucose, pH, and electrolyte levels. RESULTS In the combined porcine liver-kidney circuit all the parameters significantly improved compared with the liver circuit alone. This was particularly evident for glucose values because normoglycemia was reached by the end of the perfusion, and for pH and electrolyte values that were maintained at initial levels. CONCLUSIONS The addition of a porcine kidney to the perfusion circuit improves the biochemical milieu. This might produce more consistent and reliable results, particularly during studies requiring a steady-state environment.
Collapse
|
9
|
Bikhchandani J, Metcalfe M, Illouz S, Puls F, Dennison A. Extracorporeal liver perfusion system for artificial liver support across a membrane. J Surg Res 2011; 171:e139-47. [PMID: 21920550 DOI: 10.1016/j.jss.2011.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/30/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND An extracorporeal porcine liver perfusion (ECPLP) system circumvents the limitations of hepatocyte based bio-artificial liver, but its clinical application has been limited so far due to the potential risk of transmission of porcine endogenous retroviruses. The aim of this study was to develop an ECPLP model that can provide artificial hepatic support across a semi-permeable membrane, which has the potential to block porcine viruses due to its pore size. MATERIALS AND METHODS Livers from white landrace pigs were perfused with normothermic oxygenated blood using Medtronic BP560 centrifugal pump (Medtronic, Inc., Minneapolis. MN). This ECPLP system was used to support a "surrogate" patient across the filter Evaclio-EC4A. Function of liver was measured by indocyanine green retention at 15 min (ICGR15). Clearance of galactose, ammonia, and para-aminobenzoic acid infused into the "surrogate" patient circulation was calculated to assess liver support across the membrane. The study was designed as test (n = 15) versus control (n = 5), with control experiments having no liver in the circuit. RESULTS For the test experiments, we perfused 15 livers with mean hepatic artery pressure of 87 mm Hg and flows of 1.2 L/min. ICGR15 in test experiments was 11%. Ammonia clearance was 945 mg/min/kg, galactose metabolic rate was 111.7 mg/min/Kg, and the hippurate ratio was 91% in the test. In contrast, the control experiments did not show any significant change in the concentration of any of these compounds. CONCLUSION Our ECPLP model was able to provide hepatic support in an experimental setting across a hollow fiber filter. Further work on an anhepatic animal is needed prior to application in human trials.
Collapse
Affiliation(s)
- Jai Bikhchandani
- Department of Hepatobiliary Pancreatic Surgery, University Hospitals of Leicester, Leicester, United Kingdom.
| | | | | | | | | |
Collapse
|
10
|
Schmidt M, Pei L. Synthetic toxicology: where engineering meets biology and toxicology. Toxicol Sci 2010; 120 Suppl 1:S204-24. [PMID: 21068213 DOI: 10.1093/toxsci/kfq339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This article examines the implications of synthetic biology (SB) for toxicological sciences. Starting with a working definition of SB, we describe its current subfields, namely, DNA synthesis, the engineering of DNA-based biological circuits, minimal genome research, attempts to construct protocells and synthetic cells, and efforts to diversify the biochemistry of life through xenobiology. Based on the most important techniques, tools, and expected applications in SB, we describe the ramifications of SB for toxicology under the label of synthetic toxicology. We differentiate between cases where SB offers opportunities for toxicology and where SB poses challenges for toxicology. Among the opportunities, we identified the assistance of SB to construct novel toxicity testing platforms, define new toxicity-pathway assays, explore the potential of SB to improve in vivo biotransformation of toxins, present novel biosensors developed by SB for environmental toxicology, discuss cell-free protein synthesis of toxins, reflect on the contribution to toxic use reduction, and the democratization of toxicology through do-it-yourself biology. Among the identified challenges for toxicology, we identify synthetic toxins and novel xenobiotics, biosecurity and dual-use considerations, the potential bridging of toxic substances and infectious agents, and do-it-yourself toxin production.
Collapse
Affiliation(s)
- Markus Schmidt
- Organization for International Dialogue and Conflict Management, Biosafety Working Group, 1070 Vienna, Austria.
| | | |
Collapse
|
11
|
|
12
|
Gaffke G, Nagel S, Hegemann O, Speck U, Grosse-Siestrup C, Jungnickel K, Stroszczynski C. [Introduction of a MR-compatible system for extracorporal perfusion of vital organs for MR-guided procedures--first-experiences]. Z Med Phys 2009; 19:21-8. [PMID: 19459582 DOI: 10.1016/j.zemedi.2008.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To represent a MRI-compatible perfusion-system for extracorporeal perfusion of vital organs which permits the realisation of realistic experiments in a MR scanner. MATERIAL AND METHODS We performed MR examinations of explanted porcine livers and MR-guided interventions in porcine livers. Explanted organs were hemo-perfused under physiological conditions during the experiments. MR-sequences for diagnostic and interventional examinations were used. RESULTS The evaluated system was MRI-compatible. The achieved image quality of the used sequences showed excellent anatomical resolution. Planned experiments can be carried out with relatively low expenditure. Diagnostic as well as interventional investigations can be carried out. The used organs showed a stable function within physiological parameters up to 4 hours. CONCLUSION It is possible to perform ex vivo experiments under in vivo conditions with this system. With the used MR-compatible system MR-guided experimental interventions and thermal ablations can be carried out in explanted organs under in vivo conditions.
Collapse
Affiliation(s)
- Gunnar Gaffke
- Universitätsklinikum Magdeburg, Klinik für Radiologie und Nuklearmedizin, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Unger V, Grosse-Siestrup C, Fehrenberg C, Fischer A, Meissler M, Groneberg DA. Reference values and physiological characterization of a specific isolated pig kidney perfusion model. J Occup Med Toxicol 2007; 2:1. [PMID: 17261183 PMCID: PMC1800586 DOI: 10.1186/1745-6673-2-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/29/2007] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Models of isolated and perfused kidneys are used to study the effects of drugs, hazardous or toxic substances on renal functions. Since physiological and morphological parameters of small laboratory animal kidneys are difficult to compare to human renal parameters, porcine kidney perfusion models have been developed to simulate closer conditions to the human situation, but exact values of renal parameters for different collection and perfusion conditions have not been reported so far. If the organs could be used out of regular slaughtering processes animal experiments may be avoided. METHODS To assess renal perfusion quality, we analyzed different perfusion settings in a standardized model of porcine kidney hemoperfusion with organs collected in the operating theatre (OP: groups A-D) or in a public abattoir (SLA: group E) and compared the data to in vivo measurements in living animals (CON). Experimental groups had defined preservation periods (0, 2 and 24 hrs), one with additional albumin in the perfusate (C) for edema reduction. RESULTS Varying perfusion settings resulted in different functional values (mean +/- SD): blood flow (RBF [ml/min*100 g]: (A) 339.9 +/- 61.1; (C) 244.5 +/- 53.5; (D) 92.8 +/- 25.8; (E) 153.8 +/- 41.5); glomerular filtration (GFR [ml/min*100 g]: (CON) 76.1 +/- 6.2; (A) 59.2 +/- 13.9; (C) 25.0 +/- 10.6; (D) 1.6 +/- 1.3; (E) 16.3 +/- 8.2); fractional sodium reabsorption (RFNa [%] (CON) 99.8 +/- 0.1; (A) 82.3 +/- 8.1; (C) 86.8 +/- 10.3; (D) 38.4 +/- 24.5; (E) 88.7 +/- 5.8). Additionally the tubular coupling-ratio of Na-reabsorption/O2-consumption was determined (TNa/O2-cons [mmol-Na/mmol- O2] (CON) 30.1; (A) 42.0, (C) 80.6; (D) 17.4; (E) 23.8), exhibiting OP and SLA organs with comparable results. CONCLUSION In the present study functional values for isolated kidneys with different perfusion settings were determined to assess organ perfusion quality. It can be summarized that the hemoperfused porcine kidney can serve as a biological model with acceptable approximation to in vivo renal physiology, also if the organs originate from usual slaughtering processes.
Collapse
Affiliation(s)
- Volker Unger
- Department of Comparative Medicine and Facilities of Experimental Animal Sciences, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Christian Grosse-Siestrup
- Department of Comparative Medicine and Facilities of Experimental Animal Sciences, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Claudia Fehrenberg
- Department of Comparative Medicine and Facilities of Experimental Animal Sciences, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Axel Fischer
- Allergy-Centre-Charité, Otto-Heubner-Centre, Pneumology and Immunology, Charité – Universitätsmedizin Berlin; Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Michael Meissler
- Department of Comparative Medicine and Facilities of Experimental Animal Sciences, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - David A Groneberg
- Institute of Occupational Medicine, Charité – Universitätsmedizin Berlin, Ostpreussendamm 111, D-12207 Berlin, Germany
- Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Str. 1 OE 6870, D-30625 Hannover, Germany
| |
Collapse
|
14
|
Bessems M, Doorschodt BM, Dinant S, de Graaf W, van Gulik TM. Machine perfusion preservation of the pig liver using a new preservation solution, polysol. Transplant Proc 2006; 38:1238-42. [PMID: 16797272 DOI: 10.1016/j.transproceed.2006.02.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The current gold standard for donor liver preservation is cold storage in a preservation solution (4 degrees C), such as Celsior or the University of Wisconsin solution (UW). Recent studies have suggested the benefits of machine perfusion (MP) over cold storage. To improve the results of MP, an enriched preservation solution (named Polysol) was developed, which in a rat liver preservation model proved to be superior to the UW-gluconate solution. The aim of this study was to assess Polysol in a pig liver preservation model. MATERIALS AND METHODS Female pigs (35 to 40 kg) were used as liver donors. After heparinization, the liver was washed out using Ringer's lactate, followed by the preservation solution (4 degrees C). The liver was preserved for 24 hours by either cold storage using Celsior (n=5) or MP using Polysol (n=5). For analysis of liver damage and function, livers were reperfused for 60 minutes using oxygenated Krebs-Henseleit buffer. RESULTS CS-Celsior caused significantly more damage compared with MP-Polysol (t=60, AST: 622+/-215 versus 222+/-55; ALT: 17+/-6 versus 5+/-1). Intravascular resistance during reperfusion was significantly higher after CS-Celsior compared with MP-Polysol (t=0, 0.20+/-0.01 and 0.11+/-0.02 mm Hg/mL/min, respectively). No differences were seen regarding ammonia clearance and urea production. In both groups, no bile was produced during reperfusion. CONCLUSIONS In an ex vivo pig liver preservation model significantly less damage was observed after machine perfusion preservation using Polysol, in comparison to cold storage using Celsior.
Collapse
Affiliation(s)
- M Bessems
- Surgical Laboratory, Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Grosse-Siestrup C, Unger V, Pfeffer J, Dinh QT, Nagel S, Springer J, Witt C, Wussow A, Groneberg DA. Hepatotoxic effects of polidocanol in a model of autologously perfused porcine livers. Arch Toxicol 2004; 78:697-705. [PMID: 15502969 DOI: 10.1007/s00204-004-0587-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 06/08/2004] [Indexed: 01/05/2023]
Abstract
Polidocanol is an effective sclerosing agent that consists of 95% hydroxypolyethoxydodecane and 5% ethyl alcohol and is known to have a low risk of complications. However, since the compound has been proposed for the local treatment of liver diseases, the potential for topical hepatic side effects should be examined. Therefore, the new model of normothermic-hemoperfused isolated porcine slaughterhouse livers was used to examine polidocanol-hepatotoxicity encompassing the advantages of slaughterhouse organs to reduce animal experiments and autologous blood as an optimal perfusate. Polidocanol was administered via the hepatic artery and portal vein and the effects of the sclerosant on organ function parameters were compared with those in an untreated control group. In contrast to the untreated control organs, significant differences were found in the polidocanol group for parameters such as alanine aminotransferase or organ weight after perfusion. The most striking differences were found for hepatic bile flow, which dropped in the polidocanol group to 0.24+/-0.02 ml/min per 1000 g after administration of the compound compared with 3.80+/-1.08 ml/min per 1000 g in the control group. In summary, the present observations indicate a risk of hepatotoxic effects of polidocanol. Clinicians should be aware of this problem and the use of polidocanol for intrahepatic sclerosing should be restricted to specialized centers.
Collapse
Affiliation(s)
- Christian Grosse-Siestrup
- Department of Comparative Medicine and Experimental Animal Sciences, Charité School of Medicine, Free University and Humboldt-University, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fehrenberg C, von Baeyer H, Unger V, Schmitt R, Haider W, Quarcoo D, Groneberg DA, Grosse-Siestrup C. Protective effects of B2 preservation solution in comparison to a standard solution (histidine-tryptophan-ketoglutarate/Bretschneider) in a model of isolated autologous hemoperfused porcine kidney. Nephron Clin Pract 2004; 96:p52-8. [PMID: 14988662 DOI: 10.1159/000076408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 11/12/2003] [Indexed: 11/19/2022] Open
Abstract
Reperfusion injuries after organ transplantation affect graft function and influence long-term graft survival. As hypothermic storage, which minimizes the extent of unspecific tissue injury after ischemia and reperfusion, is significantly influenced by the composition of preservation solutions, strategies to optimize the different components may lead to longer graft survival. In the present study the effects of the preservation solution B2 on early renal function and histopathological changes were compared to histidine-tryptophan-ketoglutarate solution (HTK, Bretschneider) in a model of isolated blood-perfused porcine kidneys. B2-preserved kidneys displayed a lower renal resistance and significantly better creatinine clearance as compared to HTK. Mean differences were also found for filtration fraction and sodium fraction reabsorption. The functional data were also related to histopathological changes. Together, these data indicate that the recently developed preservation solution B2 offers new principles of preservation and is a useful preservation solution for experimental isolated perfused kidney models. B2 may also be an interesting model for optimizing preservation within other organ perfusion models.
Collapse
Affiliation(s)
- Claudia Fehrenberg
- Department of Comparative Medicine and Experimental Animal Science, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dittrich S, Groneberg DA, von Loeper J, Lippek F, Hegemann O, Grosse-Siestrup C, Lange PE. Influence of Cold Storage on Renal Ischemia Reperfusion Injury after Non-Heart-Beating Donor Explantation. ACTA ACUST UNITED AC 2004; 96:e97-102. [PMID: 15056986 DOI: 10.1159/000076751] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 11/05/2003] [Indexed: 11/19/2022]
Abstract
BACKGROUND Due to the increasing need for kidney donors, transplantation from non-heart-beating donors (NHBD) is currently being practiced more extensively. As detailed studies on the reperfusion injury of these kidneys do not exist so far, a comparison of renal ischemia reperfusion injury scores immediately after organ explantation with injury scores after NHBD organ explantation with subsequent cold storage would be useful. METHODS Non-stored kidneys were compared to a group of kidneys stored for 6.9 +/- 1.8 h. Functional analyses were made during 145 min of ex vivo perfusion. Quantitative histological analyses were performed in all kidneys after termination of perfusion. RESULTS During ex vivo reperfusion, renal vascular resistance was elevated, while creatinine clearance, filtration fraction, renal oxygen consumption, and sodium reabsorption were below normal after non-heart-beating explantation and further decreased after subsequent washing and cold storage. In the kidneys subjected to cold preservation, histologically tubular damage was enhanced, and the total count, as well that for the intraglomerular neutrophil granulocytes were also elevated. CONCLUSIONS Explantation from NHBD causes renal ischemia reperfusion injury. Cold storage augmented deterioration of the kidney as histologically and functionally demonstrated. Thus, preservation times for non-heart-beating kidneys should be carefully reappraised.
Collapse
Affiliation(s)
- Sven Dittrich
- Department of Congenital Heart Diseases, German Heart Center, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|