1
|
Muzi-Filho H, Souza AM, Bezerra CGP, Boldrini LC, Takiya CM, Oliveira FL, Nesi RT, Valença SS, Silva AMS, Zapata-Sudo G, Sudo RT, Einicker-Lamas M, Vieyra A, Lara LS, Cunha VMN. Rats undernourished in utero have altered Ca2+ signaling and reduced fertility in adulthood. Physiol Rep 2015; 3:3/10/e12587. [PMID: 26508737 PMCID: PMC4632956 DOI: 10.14814/phy2.12587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca(2+)- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca(2+) transport due to the uncoupling of Ca(2+)-stimulated ATP hydrolysis and ATP-driven Ca(2+) flux, and the downregulation of both sarco-endoplasmic reticulum Ca(2+)-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats.
Collapse
Affiliation(s)
- Humberto Muzi-Filho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Alessandro M Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila G P Bezerra
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo C Boldrini
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Directorate of Metrology Applied Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe L Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T Nesi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ananssa M S Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Lucienne S Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Valeria M N Cunha
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Alencar AKN, Pereira SL, da Silva FE, Mendes LVP, Cunha VDMN, Lima LM, Montagnoli TL, Caruso-Neves C, Ferraz EB, Tesch R, Nascimento JHM, Sant'anna CMR, Fraga CAM, Barreiro EJ, Sudo RT, Zapata-Sudo G. N-acylhydrazone derivative ameliorates monocrotaline-induced pulmonary hypertension through the modulation of adenosine AA2R activity. Int J Cardiol 2014; 173:154-62. [PMID: 24630383 DOI: 10.1016/j.ijcard.2014.02.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a disease that results in right ventricular (RV) dysfunction. While pulmonary vascular disease is the primary pathological focus, RV hypertrophy and RV dysfunction are the major determinants of prognosis in PAH. The aim of this study was to investigate the effects of (E)-N'-(3,4-dimethoxybenzylidene)-4-methoxybenzohydrazide (LASSBio-1386), an N-acylhydrazone derivative, on the lung vasculature and RV dysfunction induced by experimental PAH. METHODS Male Wistar rats were injected with a single dose (60mg/kg, i.p.) of monocrotaline (MCT) and given LASSBio-1386 (50mg/kg, p.o.) or vehicle for 14 days. The hemodynamic, exercise capacity (EC), endothelial nitric oxide synthase (eNOS), adenosine A2A receptor (A2AR), sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a), phospholamban (PLB) expression, Ca(2+)-ATPase activity and vascular activity of LASSBio-1386 were evaluated. RESULTS AND CONCLUSIONS The RV systolic pressure was elevated in the PAH model and reduced from 49.6 ± 5.0 mm Hg (MCT group) to 27.2 ± 2.1 mm Hg (MCT+LASSBio-1386 group; P<0.05). MCT administration also impaired the EC, increased the RV and pulmonary arteriole size, and promoted endothelial dysfunction of the pulmonary artery rings. In the PAH group, the eNOS, A2AR, SERCA2a, and PLB levels were changed compared with the control; in addition, the Ca(2+)-ATPase activity was reduced. These alterations were related with MCT-injected rats, and LASSBio-1386 had favorable effects that prevented the development of PAH. LASSBio-1386 is effective at preventing endothelial and RV dysfunction in PAH, a finding that may have important implications for ongoing clinical evaluation of A2AR agonists for the treatment of PAH.
Collapse
Affiliation(s)
- Allan K N Alencar
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sharlene L Pereira
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia E da Silva
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiza V P Mendes
- Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Valéria do M N Cunha
- Programa de Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lidia M Lima
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu L Montagnoli
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle B Ferraz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roberta Tesch
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos M R Sant'anna
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Carlos A M Fraga
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eliezer J Barreiro
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Roberto T Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gisele Zapata-Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Muzi-Filho H, Bezerra CGP, Souza AM, Boldrini LC, Takiya CM, Oliveira FL, Nesi RT, Valença SS, Einicker-Lamas M, Vieyra A, Lara LS, Cunha VMN. Undernutrition affects cell survival, oxidative stress, Ca2+ handling and signaling pathways in vas deferens, crippling reproductive capacity. PLoS One 2013; 8:e69682. [PMID: 23922775 PMCID: PMC3724910 DOI: 10.1371/journal.pone.0069682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Background The aim of this work was to investigate the mechanisms by which chronic malnutrition (CM) affects vas deferens function, leading to compromised reproductive capacity. Previous studies have shown that maternal malnutrition affects the reproductive tracts of adult male offspring. However, little is known about the effects of CM, a widespread life-long condition that persists from conception throughout growth to adult life. Methodology/Principal Findings Young adult male rats, which were chronically malnourished from weaning, presented decreased total and haploid cells in the vas deferens, hypertrophy of the muscle layer in the epididymal portion of the vas deferens and intense atrophy of the muscular coat in its prostatic portion. At a molecular level, the vas deferens tissue of CM rats exhibited a huge rise in lipid peroxidation and protein carbonylation, evidence of an accentuated increase in local reactive oxygen species levels. The kinetics of plasma membrane Ca2+-ATPase activity and its kinase-mediated phosphorylation by PKA and PKC in the vas deferens revealed malnutrition-induced modifications in velocity, Ca2+ affinity and regulation of Ca2+ handling proteins. The severely crippled content of the 12-kDa FK506 binding protein, which controls passive Ca2+ release from the sarco(endo) plasmic reticulum, revealed another target of malnutrition related to intracellular Ca2+ handling, with a potential effect on forward propulsion of sperm cells. As a possible compensatory response, malnutrition led to enhanced sarco(endo) plasmic reticulum Ca2+-ATPase activity, possibly caused by stimulatory PKA-mediated phosphorylation. Conclusions/Significance The functional correlates of these cellular and molecular hallmarks of chronic malnutrition on the vas deferens were an accentuated reduction in fertility and fecundity.
Collapse
Affiliation(s)
- Humberto Muzi-Filho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Camila G. P. Bezerra
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro M. Souza
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo C. Boldrini
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe L. Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T. Nesi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S. Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | - Lucienne S. Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
- * E-mail:
| | - Valeria M. N. Cunha
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Rodriguez J, Muzi-Filho H, Valverde R, Quintas L, Noel F, Einicker-Lamas M, Cunha V. Rat vas deferens SERCA2 is modulated by Ca2+/calmodulin protein kinase II-mediated phosphorylation. Braz J Med Biol Res 2013; 46:227-34. [PMID: 23558856 PMCID: PMC3854380 DOI: 10.1590/1414-431x20122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022] Open
Abstract
Ca2+ pumps are important players in smooth muscle contraction.
Nevertheless, little information is available about these pumps in the vas
deferens. We have determined which subtype of sarco(endo)plasmic reticulum
Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens
(RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The
thapsigargin-sensitive Ca2+-ATPase from a membrane fraction
containing the highest SERCA levels in the RVD homogenate has the same molecular
mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high
affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity
to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is
present in the RVD. Immunoblotting for CaM and
Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the
expression of these two regulatory proteins. Ca2+ and CaM increased
serine-phosphorylated residues of the 115-kDa protein, indicating the
involvement of CaMKII in the regulatory phosphorylation of SERCA2.
Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive
Ca2+ accumulation in the lumen of vesicles derived from these
membranes. These data establish that SERCA2 in the RVD is modulated by
Ca2+ and CaM, possibly via CaMKII, in a process that results in
stimulation of Ca2+ pumping activity.
Collapse
Affiliation(s)
| | | | | | | | - F. Noel
- Universidade Federal do Rio de Janeiro, Brasil
| | - M. Einicker-Lamas
- Universidade Federal do Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Brasil
| | | |
Collapse
|
5
|
Scaramello CB, Muzi-Filho H, Zapata-Sudo G, Sudo RT, Cunha VDM. FKBP12 Depletion Leads to Loss of Sarcoplasmic Reticulum Ca2+ Stores in Rat Vas Deferens. J Pharmacol Sci 2009; 109:185-92. [DOI: 10.1254/jphs.08064fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Insights into the mechanism of Na+,K+-ATPase inhibition by 2-methoxy-3,8,9-trihydroxy coumestan. Bioorg Med Chem 2008; 16:8801-5. [DOI: 10.1016/j.bmc.2008.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/26/2008] [Accepted: 09/04/2008] [Indexed: 11/24/2022]
|
7
|
Quintas LEM, Cunha VMN, Scaramello CBV, da Silva CLM, Caricati-Neto A, Lafayette SSL, Jurkiewicz A, Noël F. Adaptive expression pattern of different proteins involved in cellular calcium homeostasis in denervated rat vas deferens. Eur J Pharmacol 2005; 525:54-9. [PMID: 16289527 DOI: 10.1016/j.ejphar.2005.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 08/23/2005] [Accepted: 10/07/2005] [Indexed: 11/15/2022]
Abstract
The activity and protein expression of plasma membrane and sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPases and ryanodine receptors were investigated in surgically denervated rat vas deferens. The function of thapsigargin-sensitive but not thapsigargin-resistant (Ca2+-Mg2+)ATPase (from sarco(endo)plasmic reticulum and plasma membrane, respectively), evidenced by enzyme activity and Ca2+ uptake experiments, was significantly depressed by 30-50% when compared to innervated vas. Western blots showed that such reduction in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase performance was accompanied by a decrement of similar magnitude in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase type 2 protein expression, without any significant change in plasma membrane (Ca2+-Mg2+)ATPase expression. Finally, [3H]ryanodine binding revealed that the density of ryanodine binding sites was reduced by 45% after denervation without modification in affinity. The present findings demonstrate that sarco(endo)plasmic reticulum proteins involved in intracellular calcium homeostasis are clearly down-regulated and brings further evidence of a modified calcium translocation in denervated rat vas deferens.
Collapse
Affiliation(s)
- Luis Eduardo M Quintas
- Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|