Li J, Zhang D, Jefferson PA, Ward KM, Ayene IS. A bioactive probe for glutathione-dependent antioxidant capacity in breast cancer patients: implications in measuring biological effects of arsenic compounds.
J Pharmacol Toxicol Methods 2013;
69:39-48. [PMID:
24149024 DOI:
10.1016/j.vascn.2013.10.004]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/17/2023]
Abstract
INTRODUCTION
Glutathione, a major cellular non-protein thiol (NPSH), serves a central role in repairing damage induced by cancer drugs, pollutants and radiation and in the detoxification of several cancer chemotherapeutic drugs and toxins. Current methods measure glutathione levels only, which require cellular extraction, rather than the glutathione recycling dependent antioxidant activity in intact cells. Here, we present a novel method using a bioactive probe of the oxidative pentose phosphate cycle, termed the OxPhos™ test, to quantify glutathione recycling dependent antioxidant activity in whole blood and intact human and rodent cells without the need for the isolation and cytoplasm extraction of cells.
METHODS
OxPhos™ test kit (Rockland Immunochemicals, USA), which uses hydroxyethyldisulfide (HEDS) as a probe for the oxidative pentose phosphate cycle, was used in these studies. The results with OxPhos™ test kit in human blood and intact cells were compared with total thiol and high pressure liquid chromatography/electrochemical detection of HEDS metabolism.
RESULTS
The OxPhos™ test measured glutathione-dependent antioxidant activity both in intact human and rodent cells and breast cancer patient's blood with a better correlation coefficient and biological variability than the thiol assay. Additionally, human blood and mammalian cells treated with various arsenicals showed a concentration-dependent decrease in activity.
DISCUSSION
The results demonstrate the application of this test for measuring the antioxidant capacity of blood and the effects of environmental pollutants/toxins. It opens up new avenues for an easy and reliable assessment of glutathione-dependent antioxidant capacity in various diseases such as stroke, blood borne diseases, infection, cardiovascular disease and other oxidative stress related diseases and as a prognostic indicator of chemotherapy response and toxicity. The use of this approach in pharmacology/toxicology including screening drugs that improve the glutathione-dependent antioxidant capacity and not just the glutathione level is clinically relevant since mammalian cells require glutathione dependent pathways for antioxidant activity.
Collapse