1
|
Oliver BG, Huang X, Yarak R, Bai X, Wang Q, Zakarya R, Reddy KD, Donovan C, Kim RY, Morkaya J, Wang B, Lung Chan Y, Saad S, Faiz A, Reyk DV, Verkhratsky A, Yi C, Chen H. Chronic maternal exposure to low-dose PM 2.5 impacts cognitive outcomes in a sex-dependent manner. ENVIRONMENT INTERNATIONAL 2024; 191:108971. [PMID: 39180775 DOI: 10.1016/j.envint.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
There is no safe level of air pollution for human health. Traffic-related particulate matter (PM2.5) is a major in-utero toxin, mechanisms of action of which are not fully understood. BALB/c dams were exposed to an Australian level of traffic PM2.5 (5 µg/mouse/day, intranasal, 6 weeks before mating, during gestation and lactation). Male offspring had reduced memory in adulthood, whereas memory was normal in female littermates, similar to human responses. Maternal PM2.5 exposure resulted in oxidative stress and abnormal mitochondria in male, but not female, brains. RNA-sequencing analysis showed unique sex-related changes in newborn brains. Two X-chromosome-linked histone lysine demethylases, Kdm6a and Kdm5c, demonstrated higher expression in female compared to male littermates, in addition to upregulated genes with known functions to support mitochondrial function, synapse growth and maturation, cognitive function, and neuroprotection. No significant changes in Kdm6a and Kdm5c were found in male littermates, nor other genes, albeit significantly impaired memory function after birth. In primary foetal cortical neurons, PM2.5 exposure suppressed neuron and synaptic numbers and induced oxidative stress, which was prevented by upregulation of Kdm6a or Kdm5c. Therefore, timely epigenetic adaptation by histone demethylation to open DNA for translation before birth may be the key to protecting females against prenatal PM2.5 exposure-induced neurological disorders, which fail to occur in males associated with their poor cognitive outcomes.
Collapse
Affiliation(s)
- Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Xiaomin Huang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Rochelle Yarak
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Qi Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Razia Zakarya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Karosham D Reddy
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - Richard Y Kim
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - James Morkaya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Sonia Saad
- Renal Group, Kolling Institute of Medical Research, University of Sydney, NSW 2065, Australia
| | - Alen Faiz
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - David van Reyk
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Neurosciences, University of the Basque Country, Leioa 48940, Bizkaia, Spain; IKERBASQUE Basque Foundation for Science, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
2
|
Gjervan SC, Ozgoren OK, Gow A, Stockler-Ipsiroglu S, Pouladi MA. Claudin-11 in health and disease: implications for myelin disorders, hearing, and fertility. Front Cell Neurosci 2024; 17:1344090. [PMID: 38298375 PMCID: PMC10827939 DOI: 10.3389/fncel.2023.1344090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Claudin-11 plays a critical role in multiple physiological processes, including myelination, auditory function, and spermatogenesis. Recently, stop-loss mutations in CLDN11 have been identified as a novel cause of hypomyelinating leukodystrophy (HLD22). Understanding the multifaceted roles of claudin-11 and the potential pathogenic mechanisms in HLD22 is crucial for devising targeted therapeutic strategies. This review outlines the biological roles of claudin-11 and the implications of claudin-11 loss in the context of the Cldn11 null mouse model. Additionally, HLD22 and proposed pathogenic mechanisms, such as endoplasmic reticulum stress, will be discussed.
Collapse
Affiliation(s)
- Sophia C. Gjervan
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Oguz K. Ozgoren
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sylvia Stockler-Ipsiroglu
- Department of Pediatrics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
- Division of Biochemical Genetics, The University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Sun Y, Zhou S, Zhu B, Li F, Fu K, Guo Y, Men J, Han J, Zhang W, Yang L, Zhou B. Multi- and Transgenerational Developmental Impairments Are Induced by Decabromodiphenyl Ethane (DBDPE) in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2887-2897. [PMID: 36779393 DOI: 10.1021/acs.est.3c00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant; hence, the knowledge of its long-term toxic effects and underlying mechanism would be critical for further health risk assessment. In the present study, the multi- and transgenerational toxicity of DBDPE was investigated in zebrafish upon a life cycle exposure at environmentally relevant concentrations. The significantly increased malformation rate and declined survival rate specifically occurred in unexposed F2 larvae suggested transgenerational development toxicity by DBDPE. The changing profiles revealed by transcriptome and DNA methylome confirmed an increased susceptibility in F2 larvae and figured out potential disruptions of glycolipid metabolism, mitochondrial energy metabolism, and neurodevelopment. The changes of biochemical indicators such as ATP production confirmed a disturbance in the energy metabolism, whereas the alterations of neurotransmitter contents and light-dark stimulated behavior provided further evidence for multi- and transgenerational neurotoxicity in zebrafish. Our findings also highlighted the necessity for considering the long-term impacts when evaluating the health of wild animals as well as human beings by emerging pollutants.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Li
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyu Fu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyong Guo
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Men
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Edgar JM, McGowan E, Chapple KJ, Möbius W, Lemgruber L, Insall RH, Nave K, Boullerne A. Río-Hortega's drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin. J Anat 2021; 239:1241-1255. [PMID: 34713444 PMCID: PMC8602028 DOI: 10.1111/joa.13577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
A century ago this year, Pío del Río-Hortega (1921) coined the term 'oligodendroglia' for the 'interfascicular glia' with very few processes, launching an extensive discovery effort on his new cell type. One hundred years later, we review his original contributions to our understanding of the system of cytoplasmic channels within myelin in the context of what we observe today using light and electron microscopy of genetically encoded fluorescent reporters and immunostaining. We use the term myelinic channel system to describe the cytoplasm-delimited spaces associated with myelin; being the paranodal loops, inner and outer tongues, cytoplasm-filled spaces through compact myelin and further complex motifs associated to the sheath. Using a central nervous system myelinating cell culture model that contains all major neural cell types and produces compact myelin, we find that td-tomato fluorescent protein delineates the myelinic channel system in a manner reminiscent of the drawings of adult white matter by Río-Hortega, despite that he questioned whether some cytoplasmic figures he observed represented artefact. Together, these data lead us to propose a slightly revised model of the 'unrolled' sheath. Further, we show that the myelinic channel system, while relatively stable, can undergo subtle dynamic shape changes over days. Importantly, we capture an under-appreciated complexity of the myelinic channel system in mature myelin sheaths.
Collapse
Affiliation(s)
- Julia M. Edgar
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Eleanor McGowan
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Katie J. Chapple
- Axo‐Glial GroupInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Wiebke Möbius
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
- Electron Microscopy Core UnitMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Leandro Lemgruber
- Glasgow Imaging FacilityInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Klaus‐Armin Nave
- Department of NeurogeneticsMax Planck Institute of Experimental MedicineGöttingenGermany
| | - Anne Boullerne
- Department of AnesthesiologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
5
|
Riedhammer KM, Stockler S, Ploski R, Wenzel M, Adis-Dutschmann B, Ahting U, Alhaddad B, Blaschek A, Haack TB, Kopajtich R, Lee J, Murcia Pienkowski V, Pollak A, Szymanska K, Tarailo-Graovac M, van der Lee R, van Karnebeek CD, Meitinger T, Krägeloh-Mann I, Vill K. De novo stop-loss variants in CLDN11 cause hypomyelinating leukodystrophy. Brain 2021; 144:411-419. [PMID: 33313762 DOI: 10.1093/brain/awaa410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Claudin-11, a tight junction protein, is indispensable in the formation of the radial component of myelin. Here, we report de novo stop-loss variants in the gene encoding claudin-11, CLDN11, in three unrelated individuals presenting with an early-onset spastic movement disorder, expressive speech disorder and eye abnormalities including hypermetropia. Brain MRI showed a myelin deficit with a discrepancy between T1-weighted and T2-weighted images and some progress in myelination especially involving the central and peripheral white matter. Exome sequencing identified heterozygous stop-loss variants c.622T>C, p.(*208Glnext*39) in two individuals and c.622T>G, p.(*208Gluext*39) in one individual, all occurring de novo. At the RNA level, the variant c.622T>C did not lead to a loss of expression in fibroblasts, indicating this transcript is not subject to nonsense-mediated decay and most likely translated into an extended protein. Extended claudin-11 is predicted to form an alpha helix not incorporated into the cytoplasmic membrane, possibly perturbing its interaction with intracellular proteins. Our observations suggest that stop-loss variants in CLDN11 expand the genetically heterogeneous spectrum of hypomyelinating leukodystrophies.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Sylvia Stockler
- Division of Biochemical Diseases, Department of Pediatrics, B.C. Children's Hospital, The University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
| | - Maren Wenzel
- Genetikum, Genetic Counseling and Diagnostics, Neu-Ulm, 89231, Germany
| | | | - Uwe Ahting
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Bader Alhaddad
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Astrid Blaschek
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, 80337, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Jessica Lee
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics and Pediatrics, The University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | | | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
| | - Krystyna Szymanska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics and Pediatrics, The University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Clara D van Karnebeek
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics and Pediatrics, The University of British Columbia, Vancouver, BC V6H 0B3, Canada.,Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud University Medical centre, Nijmegen, 6525 GA, The Netherlands
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, 72076, Germany
| | - Katharina Vill
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, 80337, Germany
| |
Collapse
|
6
|
Seya D, Ihara D, Shirai M, Kawamura T, Watanabe Y, Nakagawa O. A role of Hey2 transcription factor for right ventricle development through regulation of Tbx2-Mycn pathway during cardiac morphogenesis. Dev Growth Differ 2021; 63:82-92. [PMID: 33410138 DOI: 10.1111/dgd.12707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023]
Abstract
A basic helix-loop-helix transcription factor Hey2 is expressed in the ventricular myocardium and endocardium of mouse embryos, and Hey2 null mice die perinatally showing ventricular septal defect, dysplastic tricuspid valve and hypoplastic right ventricle. In order to understand region-specific roles of Hey2 during cardiac morphogenesis, we generated Hey2 conditional knockout (cKO) mice using Mef2c-AHF-Cre, which was active in the anterior part of the second heart field and the right ventricle and outflow tract of the heart. Hey2 cKO neonates reproduced three anomalies commonly observed in Hey2 null mice. An earliest morphological defect was the lack of right ventricular extension along the apico-basal axis at midgestational stages. Underdevelopment of the right ventricle was present in all cKO neonates including those without apparent atresia of right-sided atrioventricular connection. RNA sequencing analysis of cKO embryos identified that the gene expression of a non-chamber T-box factor Tbx2 was ectopically induced in the chamber myocardium of the right ventricle. Consistently, mRNA expression of the Mycn transcription factor, which was a cell cycle regulator transcriptionally repressed by Tbx2, was down regulated, and the number of S-phase cells was significantly decreased in the right ventricle of cKO heart. These results suggest that Hey2 plays an important role in right ventricle development during cardiac morphogenesis, at least in part, through mitigating Tbx2-dependent inhibition of Mycn expression.
Collapse
Affiliation(s)
- Daiki Seya
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Dai Ihara
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
7
|
Cheng JJ, Guo Q, Wu XG, Ma S, Gao Y, Ya-Zhen S. Scutellaria barbata flavonoids improve the composited Aβ-induced abnormal changes of glial cells in rats' brain. Comb Chem High Throughput Screen 2020; 25:64-76. [PMID: 33297910 DOI: 10.2174/1386207323666201209092358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/21/2020] [Accepted: 11/15/2020] [Indexed: 11/22/2022]
Abstract
AIM It has been reported that glial cells are involved in Alzheimer's disease (AD). According to our previous research, Scutellaria barbata flavonoids (SBFs) can protect the neuronal disorder and memory impairment for AD-like rats, while the effect of SBFs on the glial cells disorder in AD-like rats has been less well studied. The effects of SBFs on astrocytes(ASs), microglial cells (MGs) and oligodendrocytes (Ols), as well as heat shock proteins 70 (Hsp70) and apolipoprotein E (ApoE) were investigated in the present study. METHODS The successful model rats, screened by Morris water maze, were daily orally administrated with 35, 70 and 140 mg/kg SBFs for 36 d. The numbers of brain's astrocytes (ASs), microglial cells (MGs) and oligodendrocytes (Ols) were examined by immunohistochemistry. The cortical glial fibrillary acidic protein (GFAP), leukocyte common antigen (LCA) (CD45), Claudin 11 and heat shock proteins 70 (Hsp70) protein expression were assayed by Western blotting, and apolipoprotein E (ApoE) mRNA expression was analyzed by real-time quantitative polymerase chain reaction (qPCR). RESULTS Compared with the sham-operated group, the numbers of ASs and MGs in the brain were significantly increased in the model group (P<0.05, P<0.01), and accompanied with increases of GFAP, CD45 and Hsp70 protein and ApoE mRNA expression (P<0.05, P<0.01). Both Ols number and Claudin 11 protein expression decreased in the brain in the model group (P<0.05, P<0.01). However, the above abnormal changes induced by composited Aβ were differently reversed by treatment of SBFs at three doses of 35, 70 and 140 mg/kg (P<0.05, P<0.01). CONCLUSIONS SBFs can dramatically improve the abnormal changes of glial cells in rats' brain induced by composited Aβ, which may be a helpful treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian-Jun Cheng
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei 067000. China
| | - Qing Guo
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011. China
| | - Xiao-Guang Wu
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei 067000. China
| | - Shuai Ma
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei 067000. China
| | - Yang Gao
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei 067000. China
| | - Shang Ya-Zhen
- Institute of Traditional Chinese Medicine, Chengde Medical College, Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia, Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei 067000. China
| |
Collapse
|
8
|
Ashitha SNM, Ramachandra NB. Integrated Functional Analysis Implicates Syndromic and Rare Copy Number Variation Genes as Prominent Molecular Players in Pathogenesis of Autism Spectrum Disorders. Neuroscience 2020; 438:25-40. [DOI: 10.1016/j.neuroscience.2020.04.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023]
|
9
|
Alqadah A, Hsieh YW, Xiong R, Chuang CF. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0407. [PMID: 27821536 DOI: 10.1098/rstb.2015.0407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
10
|
Hagen SJ. Non-canonical functions of claudin proteins: Beyond the regulation of cell-cell adhesions. Tissue Barriers 2017; 5:e1327839. [PMID: 28548895 PMCID: PMC5501131 DOI: 10.1080/21688370.2017.1327839] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Tight junctions form a barrier to the diffusion of apical and basolateral membrane proteins thus regulating membrane polarity. They also regulate the paracellular movement of ions and water across epithelial and endothelial cells so that functionally they constitute an important permselective barrier. Permselectivity at tight junctions is regulated by claudins, which confer anion or cation permeability, and tightness or leakiness, by forming several highly regulated pores within the apical tight junction complex. One interesting feature of claudins is that they are, more often than not, localized to the basolateral membrane, in intracellular cytoplasmic vesicles, or in the nucleus rather than to the apical tight junction complex. These intracellular pools of claudin molecules likely serve important functions in the epithelium. This review will address the widespread prevalence of claudins that are not associated with the apical tight junction complex and discuss the important and emerging non-traditional functions of these molecules in health and disease.
Collapse
Affiliation(s)
- Susan J. Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Denninger AR, Breglio A, Maheras KJ, LeDuc G, Cristiglio V, Demé B, Gow A, Kirschner DA. Claudin-11 Tight Junctions in Myelin Are a Barrier to Diffusion and Lack Strong Adhesive Properties. Biophys J 2016; 109:1387-97. [PMID: 26445439 DOI: 10.1016/j.bpj.2015.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/20/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022] Open
Abstract
The radial component is a network of interlamellar tight junctions (TJs) unique to central nervous system myelin. Ablation of claudin-11, a TJ protein, results in the absence of the radial component and compromises the passive electrical properties of myelin. Although TJs are known to regulate paracellular diffusion, this barrier function has not been directly demonstrated for the radial component, and some evidence suggests that the radial component may also mediate adhesion between myelin membranes. To investigate the physical properties of claudin-11 TJs, we compared fresh, unfixed Claudin 11-null and control nerves using x-ray and neutron diffraction. In Claudin 11-null tissue, we detected no changes in myelin structure, stability, or membrane interactions, which argues against the notion that myelin TJs exhibit significant adhesive properties. Moreover, our osmotic stressing and D2O-H2O exchange experiments demonstrate that myelin lacking claudin-11 is more permeable to water and small osmolytes. Thus, our data indicate that the radial component serves primarily as a diffusion barrier and elucidate the mechanism by which TJs govern myelin function.
Collapse
Affiliation(s)
| | - Andrew Breglio
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Kathleen J Maheras
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | - Bruno Demé
- Institut Laue-Langevin, Grenoble, France
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan; Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan
| | | |
Collapse
|