1
|
Frassanito L, Sbaraglia F, Piersanti A, Vassalli F, Lucente M, Filetici N, Zanfini BA, Catarci S, Draisci G. Real Evidence and Misconceptions about Malignant Hyperthermia in Children: A Narrative Review. J Clin Med 2023; 12:3869. [PMID: 37373564 PMCID: PMC10299046 DOI: 10.3390/jcm12123869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Malignant hyperthermia is a rare but life-threatening pharmacogenetic disorder triggered by exposure to specific anesthetic agents. Although this occurrence could affect virtually any patient during the perioperative time, the pediatric population is particularly vulnerable, and it has a five-fold higher incidence in children compared to adults. In the last few decades, synergistic efforts among leading anesthesiology, pediatrics, and neurology associations have produced new evidence concerning the diagnostic pathway, avoiding unnecessary testing and limiting false diagnoses. However, a personalized approach and an effective prevention policy focused on clearly recognizing the high-risk population, defining perioperative trigger-free hospitalization, and rapid activation of supportive therapy should be improved. Based on epidemiological data, many national scientific societies have produced consistent guidelines, but many misconceptions are common among physicians and healthcare workers. This review shall consider all these aspects and summarize the most recent updates.
Collapse
Affiliation(s)
- Luciano Frassanito
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Fabio Sbaraglia
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Alessandra Piersanti
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Francesco Vassalli
- Department of Critical Care and Perinatal Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Monica Lucente
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Nicoletta Filetici
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Bruno Antonio Zanfini
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Stefano Catarci
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| | - Gaetano Draisci
- Department of Scienze dell’Emergenza, Anestesiologiche e della Rianimazione—IRCCS Fondazione Policlinico A. Gemelli, 00168 Rome, Italy; (F.S.); (A.P.); (M.L.); (N.F.); (B.A.Z.); (S.C.); (G.D.)
| |
Collapse
|
2
|
Chagovetz AA, Klatt Shaw D, Ritchie E, Hoshijima K, Grunwald DJ. Interactions among ryanodine receptor isotypes contribute to muscle fiber type development and function. Dis Model Mech 2019; 13:dmm.038844. [PMID: 31383689 PMCID: PMC6906632 DOI: 10.1242/dmm.038844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations affecting ryanodine receptor (RyR) calcium release channels commonly underlie congenital myopathies. Although these channels are known principally for their essential roles in muscle contractility, mutations in the human RYR1 gene result in a broad spectrum of phenotypes, including muscle weakness, altered proportions of fiber types, anomalous muscle fibers with cores or centrally placed nuclei, and dysmorphic craniofacial features. Currently, it is unknown which phenotypes directly reflect requirements for RyRs and which result secondarily to aberrant muscle function. To identify biological processes requiring RyR function, skeletal muscle development was analyzed in zebrafish embryos harboring protein-null mutations. RyR channels contribute to both muscle fiber development and function. Loss of some RyRs had modest effects, altering muscle fiber-type specification in the embryo without compromising viability. In addition, each RyR-encoding gene contributed to normal swimming behavior and muscle function. The RyR channels do not function in a simple additive manner. For example, although isoform RyR1a is sufficient for muscle contraction in the absence of RyR1b, RyR1a normally attenuates the activity of the co-expressed RyR1b channel in slow muscle. RyR3 also acts to modify the functions of other RyR channels. Furthermore, diminished RyR-dependent contractility affects both muscle fiber maturation and craniofacial development. These findings help to explain some of the heterogeneity of phenotypes that accompany RyR1 mutations in humans.
Collapse
Affiliation(s)
- Alexis A Chagovetz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin Ritchie
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Agrawal A, Suryakumar G, Rathor R. Role of defective Ca 2+ signaling in skeletal muscle weakness: Pharmacological implications. J Cell Commun Signal 2018; 12:645-659. [PMID: 29982883 DOI: 10.1007/s12079-018-0477-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023] Open
Abstract
The misbehaving attitude of Ca2+ signaling pathways could be the probable reason in many muscular disorders such as myopathies, systemic disorders like hypoxia, sepsis, cachexia, sarcopenia, heart failure, and dystrophy. The present review throws light upon the calcium flux regulating signaling channels like ryanodine receptor complex (RyR1), SERCA (Sarco-endoplasmic Reticulum Calcium ATPase), DHPR (Dihydropyridine Receptor) or Cav1.1 and Na+/Ca2+ exchange pump in detail and how remodelling of these channels contribute towards disturbed calcium homeostasis. Understanding these pathways will further provide an insight for establishing new therapeutic approaches for the prevention and treatment of muscle atrophy under stress conditions, targeting calcium ion channels and associated regulatory proteins.
Collapse
Affiliation(s)
- Akanksha Agrawal
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
4
|
Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis 2015; 10:93. [PMID: 26238698 PMCID: PMC4524368 DOI: 10.1186/s13023-015-0310-1] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that presents as a hypermetabolic response to potent volatile anesthetic gases such as halothane, sevoflurane, desflurane, isoflurane and the depolarizing muscle relaxant succinylcholine, and rarely, in humans, to stressors such as vigorous exercise and heat. The incidence of MH reactions ranges from 1:10,000 to 1: 250,000 anesthetics. However, the prevalence of the genetic abnormalities may be as great as one in 400 individuals. MH affects humans, certain pig breeds, dogs and horses. The classic signs of MH include hyperthermia, tachycardia, tachypnea, increased carbon dioxide production, increased oxygen consumption, acidosis, hyperkalaemia, muscle rigidity, and rhabdomyolysis, all related to a hypermetabolic response. The syndrome is likely to be fatal if untreated. An increase in end-tidal carbon dioxide despite increased minute ventilation provides an early diagnostic clue. In humans the syndrome is inherited in an autosomal dominant pattern, while in pigs it is autosomal recessive. Uncontrolled rise of myoplasmic calcium, which activates biochemical processes related to muscle activation leads to the pathophysiologic changes. In most cases, the syndrome is caused by a defect in the ryanodine receptor. Over 400 variants have been identified in the RYR1 gene located on chromosome 19q13.1, and at least 34 are causal for MH. Less than 1 % of variants have been found in CACNA1S but not all of these are causal. Diagnostic testing involves the in vitro contracture response of biopsied muscle to halothane, caffeine, and in some centres ryanodine and 4-chloro-m-cresol. Elucidation of the genetic changes has led to the introduction of DNA testing for susceptibility to MH. Dantrolene sodium is a specific antagonist and should be available wherever general anesthesia is administered. Increased understanding of the clinical manifestation and pathophysiology of the syndrome, has lead to the mortality decreasing from 80 % thirty years ago to <5 % in 2006.
Collapse
Affiliation(s)
- Henry Rosenberg
- Department of Medical Education and Clinical Research, Saint Barnabas Medical Center, Livingston, NJ, 07039, USA.
| | - Neil Pollock
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Anja Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | - Terasa Bulger
- Department of Anesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand.
| | - Kathryn Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
5
|
Wagner LE, Groom LA, Dirksen RT, Yule DI. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp. Cell Calcium 2014; 56:96-107. [PMID: 24972488 DOI: 10.1016/j.ceca.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.
Collapse
Affiliation(s)
- Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Linda A Groom
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States.
| |
Collapse
|
6
|
Diaz-Sylvester PL, Porta M, Juettner VV, Lv Y, Fleischer S, Copello JA. Eudistomin D and penaresin derivatives as modulators of ryanodine receptor channels and sarcoplasmic reticulum Ca2+ ATPase in striated muscle. Mol Pharmacol 2014; 85:564-75. [PMID: 24423447 PMCID: PMC3965891 DOI: 10.1124/mol.113.089342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
Eudistomin D (EuD) and penaresin (Pen) derivatives are bioactive alkaloids from marine sponges found to induce Ca(2+) release from striated muscle sarcoplasmic reticulum (SR). Although these alkaloids are believed to affect ryanodine receptor (RyR) gating in a "caffeine-like" manner, no single-channel study confirmed this assumption. Here, EuD and MBED (9-methyl-7-bromoeudistomin D) were contrasted against caffeine on their ability to modulate the SR Ca(2+) loading/leak from cardiac and skeletal muscle SR microsomes as well as the function of RyRs in planar bilayers. The effects of these alkaloids on [(3)H]ryanodine binding and SR Ca(2+) ATPase (SERCA) activity were also tested. MBED (1-5 μM) fully mimicked maximal activating effects of caffeine (20 mM) on SR Ca(2+) leak. At the single-channel level, MBED mimicked the agonistic action of caffeine on cardiac RyR gating (i.e., stabilized long openings characteristic of "high-open-probability" mode). EuD was a partial agonist at the maximal doses tested. The tested Pen derivatives displayed mild to no agonism on RyRs, SR Ca(2+) leak, or [(3)H]ryanodine binding studies. Unlike caffeine, EuD and some Pen derivatives significantly inhibited SERCA at concentrations required to modulate RyRs. Instead, MBED's affinity for RyRs (EC50 ∼ 0.5 μM) was much larger than for SERCA (IC50 > 285 μM). In conclusion, MBED is a potent RyR agonist and, potentially, a better choice than caffeine for microsomal and cell studies due to its reported lack of effects on adenosine receptors and phosphodiesterases. As a high-affinity caffeine-like probe, MBED could also help identify the caffeine-binding site in RyRs.
Collapse
Affiliation(s)
- Paula L Diaz-Sylvester
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois (P.L.D.-S., V.V.J., Y.L., J.A.C.); Department of Physiology, Midwestern University, Chicago School of Osteopathic Medicine, Downers Grove, Illinois (M.P.); and Departments of Biological Sciences and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (S.F.)
| | | | | | | | | | | |
Collapse
|