1
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
2
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
3
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
4
|
Boyer CK, Blom SE, Machado AE, Rohli KE, Maxson ME, Stephens SB. Loss of the Golgi-localized v-ATPase subunit does not alter insulin granule formation or pancreatic islet β-cell function. Am J Physiol Endocrinol Metab 2024; 326:E245-E257. [PMID: 38265287 PMCID: PMC11193524 DOI: 10.1152/ajpendo.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Delayed Golgi export of proinsulin has recently been identified as an underlying mechanism leading to insulin granule loss and β-cell secretory defects in type 2 diabetes (T2D). Because acidification of the Golgi lumen is critical for proinsulin sorting and delivery into the budding secretory granule, we reasoned that dysregulation of Golgi pH may contribute to proinsulin trafficking defects. In this report, we examined pH regulation of the Golgi and identified a partial alkalinization of the Golgi lumen in a diabetes model. To further explore this, we generated a β-cell specific knockout (KO) of the v0a2 subunit of the v-ATPase pump, which anchors the v-ATPase to the Golgi membrane. Although loss of v0a2 partially neutralized Golgi pH and was accompanied by distension of the Golgi cisternae, proinsulin export from the Golgi and insulin granule formation were not affected. Furthermore, β-cell function was well preserved. β-cell v0a2 KO mice exhibited normal glucose tolerance in both sexes, no genotypic difference to diet-induced obesity, and normal insulin secretory responses. Collectively, our data demonstrate the v0a2 subunit contributes to β-cell Golgi pH regulation but suggest that additional disturbances to Golgi structure and function contribute to proinsulin trafficking defects in diabetes.NEW & NOTEWORTHY Delayed proinsulin export from the Golgi in diabetic β-cells contributes to decreased insulin granule formation, but the underlying mechanisms are not clear. Here, we explored if dysregulation of Golgi pH can alter Golgi function using β-cell specific knockout (KO) of the Golgi-localized subunit of the v-ATPase, v0a2. We show that partial alkalinization of the Golgi dilates the cisternae, but does not affect proinsulin export, insulin granule formation, insulin secretion, or glucose homeostasis.
Collapse
Affiliation(s)
- Cierra K Boyer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Ashleigh E Machado
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
5
|
Goshisht MK, Tripathi N, Patra GK, Chaskar M. Organelle-targeting ratiometric fluorescent probes: design principles, detection mechanisms, bio-applications, and challenges. Chem Sci 2023; 14:5842-5871. [PMID: 37293660 PMCID: PMC10246671 DOI: 10.1039/d3sc01036h] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Biological species, including reactive oxygen species (ROS), reactive sulfur species (RSS), reactive nitrogen species (RNS), F-, Pd2+, Cu2+, Hg2+, and others, are crucial for the healthy functioning of cells in living organisms. However, their aberrant concentration can result in various serious diseases. Therefore, it is essential to monitor biological species in cellular organelles such as the cell membrane, mitochondria, lysosome, endoplasmic reticulum, Golgi apparatus, and nucleus. Among various fluorescent probes for species detection within the organelles, ratiometric fluorescent probes have drawn special attention as a potential way to get beyond the drawbacks of intensity-based probes. This method depends on measuring the intensity change of two emission bands (caused by an analyte), which produces an efficient internal referencing that increases the detection's sensitivity. This review article discusses the literature publications (from 2015 to 2022) on organelle-targeting ratiometric fluorescent probes, the general strategies, the detecting mechanisms, the broad scope, and the challenges currently faced by fluorescent probes.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay 2420 Nicolet Drive Green Bay WI 54311-7001 USA
- Department of Chemistry, Government Naveen College Tokapal Bastar Chhattisgarh 494442 India
| | - Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Goutam Kumar Patra
- Department of Chemistry, Faculty of Physical Sciences Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh 495009 India
| | - Manohar Chaskar
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| |
Collapse
|
6
|
Yang R, Zhu T, Xu J, Zhao Y, Kuang Y, Sun M, Chen Y, He W, Wang Z, Jiang T, Zhang H, Wei M. Organic Fluorescent Probes for Monitoring Micro-Environments in Living Cells and Tissues. Molecules 2023; 28:molecules28083455. [PMID: 37110689 PMCID: PMC10147038 DOI: 10.3390/molecules28083455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
As a vital parameter in living cells and tissues, the micro-environment is crucial for the living organisms. Significantly, organelles require proper micro-environment to achieve normal physiological processes, and the micro-environment in organelles can reflect the state of organelles in living cells. Moreover, some abnormal micro-environments in organelles are closely related to organelle dysfunction and disease development. So, visualizing and monitoring the variation of micro-environments in organelles is helpful for physiologists and pathologists to study the mechanisms of the relative diseases. Recently, a large variety of fluorescent probes was developed to study the micro-environments in living cells and tissues. However, the systematic and comprehensive reviews on the organelle micro-environment in living cells and tissues have rarely been published, which may hinder the research progress in the field of organic fluorescent probes. In this review, we will summarize the organic fluorescent probes for monitoring the microenvironment, such as viscosity, pH values, polarity, and temperature. Further, diverse organelles (mitochondria, lysosome, endoplasmic reticulum, cell membrane) about microenvironments will be displayed. In this process, the fluorescent probes about the "off-on" and ratiometric category (the diverse fluorescence emission) will be discussed. Moreover, the molecular designing, chemical synthesis, fluorescent mechanism, and the bio-applications of these organic fluorescent probes in cells and tissues will also be discussed. Significantly, the merits and defects of current microenvironment-sensitive probes are outlined and discussed, and the development tendency and challenges for this kind of probe are presented. In brief, this review mainly summarizes some typical examples and highlights the progress of organic fluorescent probes for monitoring micro-environments in living cells and tissues in recent research. We anticipate that this review will deepen the understanding of microenvironment in cells and tissues and facilitate the studies and development of physiology and pathology.
Collapse
Affiliation(s)
- Rui Yang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Tao Zhu
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Jingyang Xu
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yuang Zhao
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yawei Kuang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Mengni Sun
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yuqi Chen
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Wei He
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Zixing Wang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Tingwang Jiang
- Department of Key Laboratory, The Second People's Hospital of Changshu, the Affiliated Changshu Hospital of Nantong University, Changshu 215500, China
| | - Huiguo Zhang
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Mengmeng Wei
- School of Electronics and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| |
Collapse
|
7
|
Begum RA, Messenger DJ, Fry SC. Making and breaking of boron bridges in the pectic domain rhamnogalacturonan-II at apoplastic pH in vivo and in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1310-1329. [PMID: 36658763 PMCID: PMC10952590 DOI: 10.1111/tpj.16112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Cross-linking of the cell-wall pectin domain rhamnogalacturonan-II (RG-II) via boron bridges between apiose residues is essential for normal plant growth and development, but little is known about its mechanism or reversibility. We characterized the making and breaking of boron bridges in vivo and in vitro at 'apoplastic' pH. RG-II (13-26 μm) was incubated in living Rosa cell cultures and cell-free media with and without 1.2 mm H3 BO3 and cationic chaperones (Ca2+ , Pb2+ , polyhistidine, or arabinogalactan-protein oligopeptides). The cross-linking status of RG-II was monitored electrophoretically. Dimeric RG-II was stable at pH 2.0-7.0 in vivo and in vitro. In-vitro dimerization required a 'catalytic' cation at all pHs tested (1.75-7.0); thus, merely neutralizing the negative charge of RG-II (at pH 1.75) does not enable boron bridging. Pb2+ (20-2500 μm) was highly effective at pH 1.75-4.0, but not 4.75-7.0. Cationic peptides were effective at approximately 1-30 μm; higher concentrations caused less dimerization, probably because two RG-IIs then rarely bonded to the same peptide molecule. Peptides were ineffective at pH 1.75, their pH optimum being 2.5-4.75. d-Apiose (>40 mm) blocked RG-II dimerization in vitro, but did not cleave existing boron bridges. Rosa cells did not take up d-[U-14 C]apiose; therefore, exogenous apiose would block only apoplastic RG-II dimerization in vivo. In conclusion, apoplastic pH neither broke boron bridges nor prevented their formation. Thus boron-starved cells cannot salvage boron from RG-II, and 'acid growth' is not achieved by pH-dependent monomerization of RG-II. Divalent metals and cationic peptides catalyse RG-II dimerization via co-ordinate and ionic bonding respectively (possible and impossible, respectively, at pH 1.75). Exogenous apiose may be useful to distinguish intra- and extra-protoplasmic dimerization.
Collapse
Affiliation(s)
- Rifat Ara Begum
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant Sciences, The University of EdinburghDaniel Rutherford Building, The King's Buildings, Max Born CrescentEdinburghEH9 3BFUK
- Present address:
Department of Biochemistry and Molecular Biology, Faculty of Biological SciencesUniversity of DhakaCurzon HallDhaka1000Bangladesh
| | - David J. Messenger
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant Sciences, The University of EdinburghDaniel Rutherford Building, The King's Buildings, Max Born CrescentEdinburghEH9 3BFUK
- Present address:
Unilever U.K. Central Resources LimitedColworth Science ParkSharnbrookMK44 1LQUK
| | - Stephen C. Fry
- The Edinburgh Cell Wall GroupInstitute of Molecular Plant Sciences, The University of EdinburghDaniel Rutherford Building, The King's Buildings, Max Born CrescentEdinburghEH9 3BFUK
| |
Collapse
|
8
|
Chang H, Bennett AM, Cameron WD, Floro E, Au A, McFaul CM, Yip CM, Rocheleau JV. Targeting Apollo-NADP + to Image NADPH Generation in Pancreatic Beta-Cell Organelles. ACS Sens 2022; 7:3308-3317. [PMID: 36269889 PMCID: PMC9706804 DOI: 10.1021/acssensors.2c01174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NADPH/NADP+ redox state supports numerous reactions related to cell growth and survival; yet the full impact is difficult to appreciate due to organelle compartmentalization of NADPH and NADP+. To study glucose-stimulated NADPH production in pancreatic beta-cell organelles, we targeted the Apollo-NADP+ sensor by first selecting the most pH-stable version of the single-color sensor. We subsequently targeted mTurquoise2-Apollo-NADP+ to various organelles and confirmed activity in the cytoplasm, mitochondrial matrix, nucleus, and peroxisome. Finally, we measured the glucose- and glutamine-stimulated NADPH responses by single- and dual-color imaging of the targeted sensors. Overall, we developed multiple organelle-targeted Apollo-NADP+ sensors to reveal the prominent role of beta-cell mitochondria in determining NADPH production in the cytoplasm, nucleus, and peroxisome.
Collapse
Affiliation(s)
- Huntley
H. Chang
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Alex M. Bennett
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - William D. Cameron
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Eric Floro
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Aaron Au
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Christopher M. McFaul
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Christopher M. Yip
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Jonathan V. Rocheleau
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada,Department
of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada,Banting
and Best Diabetes Centre, University of
Toronto, Toronto, Ontario M5G 2C4, Canada,
| |
Collapse
|
9
|
Kombe Kombe AJ, Biteghe FAN, Ndoutoume ZN, Jin T. CD8 + T-cell immune escape by SARS-CoV-2 variants of concern. Front Immunol 2022; 13:962079. [PMID: 36389664 PMCID: PMC9647062 DOI: 10.3389/fimmu.2022.962079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/03/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the efficacy of antiviral drug repositioning, convalescent plasma (CP), and the currently available vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the worldwide coronavirus disease 2019 (COVID-19) pandemic is still challenging because of the ongoing emergence of certain new SARS-CoV-2 strains known as variants of concern (VOCs). Mutations occurring within the viral genome, characterized by these new emerging VOCs, confer on them the ability to efficiently resist and escape natural and vaccine-induced humoral and cellular immune responses. Consequently, these VOCs have enhanced infectivity, increasing their stable spread in a given population with an important fatality rate. While the humoral immune escape process is well documented, the evasion mechanisms of VOCs from cellular immunity are not well elaborated. In this review, we discussed how SARS-CoV-2 VOCs adapt inside host cells and escape anti-COVID-19 cellular immunity, focusing on the effect of specific SARS-CoV-2 mutations in hampering the activation of CD8+ T-cell immunity.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Zélia Nelly Ndoutoume
- The Second Clinical School, Medical Imaging, Chongqing Medical University, Chongqing, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Structural Immunology, Chinese Academic of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academic of Sciences (CAS) Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
10
|
Tran Q, Osabe K, Entani T, Wazawa T, Hattori M, Nagai T. Application of Green-enhanced Nano-lantern as a bioluminescent ratiometric indicator for measurement of Arabidopsis thaliana root apoplastic fluid pH. PLANT, CELL & ENVIRONMENT 2022; 45:3157-3170. [PMID: 35864560 PMCID: PMC9542637 DOI: 10.1111/pce.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant root absorbs water and nutrients from the soil, and the root apoplastic fluid (AF) is an important intermediate between cells and the surrounding environment. The acid growth theory suggests that an acidic AF is needed for cell wall expansion during root growth. However, technical limitations have precluded the quantification of root apoplastic fluid pH (AF-pH). Here, we used Green-enhanced Nano-lantern (GeNL), a chimeric protein of the luciferase NanoLuc (Nluc) and the green fluorescent protein mNeonGreen (mNG), as a ratiometric pH indicator based on the pH dependency of bioluminescence resonance energy transfer efficiency from Nluc to mNG. Luminescence spectrum of GeNL changed reciprocally from pH 4.5 to 7.5, with a pKa of 5.5. By fusing GeNL to a novel signal peptide from Arabidopsis thaliana Cellulase 1, we localised GeNL in A. thaliana AF. We visualised AF dynamics at subcellular resolution over 30 min and determined flow velocity in the maturation zone to be 0.97± 0.06 μm/s. We confirmed that the developing root AF is acidic in the pH range of 5.1-5.7, suggesting that the AF-pH is tightly regulated during root elongation. These results support the acid growth theory and provide evidence for AF-pH maintenance despite changes in ambient pH.
Collapse
Affiliation(s)
- Quang Tran
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Kenji Osabe
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Tetsuyuki Entani
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Mitsuru Hattori
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
| |
Collapse
|
11
|
In vitro mannosidase activity of EDEM3 against asparagine-linked oligomannose-type glycans. Biochem Biophys Res Commun 2022; 612:44-49. [DOI: 10.1016/j.bbrc.2022.04.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
|
12
|
Anselmo S, Sancataldo G, Foderà V, Vetri V. α-casein micelles-membranes interaction: Flower-like lipid protein coaggregates formation. Biochim Biophys Acta Gen Subj 2022; 1866:130196. [PMID: 35724888 DOI: 10.1016/j.bbagen.2022.130196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Environmental conditions regulate the association/aggregation states of proteins and their action in cellular compartments. Analysing protein behaviour in presence of lipid membranes is fundamental for the comprehension of many functional and dysfunctional processes. Here, we present an experimental study on the interaction between model membranes and α-casein. α-casein is the major component of milk proteins and it is recognised to play a key role in performing biological functions. The conformational properties of this protein and its capability to form supramolecular structures, like micelles or irreversible aggregates, are key effectors in functional and pathological effects. METHODS By means of quantitative fluorescence imaging and complementary spectroscopic methods, we were able to characterise α-casein association state and the course of events induced by pH changes, which regulate the interaction of this molecule with membranes. RESULTS The study of these complex dynamic events revealed that the initial conformation of the protein critically regulates the fate of α-casein, size and structure of the newly formed aggregates and their effect on membrane structures. Disassembly of micelles due to modification in electrostatic interactions results in increased membrane structure rigidity which accompanies the formation of protein lipid flower-like co-aggregates with protein molecules localised in the external part. GENERAL SIGNIFICANCE These results may contribute to the comprehension of how the initial state of a protein establishes the course of events that occur upon changes in the molecular environment. These events which may occur in cells may be essential to functional, pathological or therapeutical properties specifically associated to casein proteins.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy.
| |
Collapse
|
13
|
Chakraborty S, Chaudhuri D, Chaudhuri D, Singh V, Banerjee S, Chowdhury D, Haldar S. Connecting conformational stiffness of the protein with energy landscape by a single experiment. NANOSCALE 2022; 14:7659-7673. [PMID: 35546109 DOI: 10.1039/d1nr07582a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The structure-function dynamics of a protein as a flexible polymer is essential to describe its biological functions. Here, using single-molecule magnetic tweezers, we have studied the effect of ionic strength on the folding mechanics of protein L, and probed its folding-associated physical properties by re-measuring the same protein in a range of ammonium sulfate concentrations from 150 mM to 650 mM. We observed an electrolyte-dependent conformational dynamics and folding landscape of the protein in a single experiment. Salt increases the refolding kinetics, while decreasing the unfolding kinetics under force, which in turn modifies the barrier heights towards the folded state. Additionally, salt enhances the molecular compaction by decreasing the Kuhn length of the protein polymer from 1.18 nm to 0.58 nm, which we have explained by modifying the freely jointed chain model. Finally, we correlated polymer chain physics to the folding dynamics, and thus provided an analytical framework for understanding compaction-induced folding mechanics across a range of ionic strengths from a single experiment.
Collapse
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Dyuti Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Vihan Singh
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
14
|
Santa Chalarca CF, Dalal RJ, Chapa A, Hanson MG, Reineke TM. Cation Bulk and p Ka Modulate Diblock Polymer Micelle Binding to pDNA. ACS Macro Lett 2022; 11:588-594. [PMID: 35575319 DOI: 10.1021/acsmacrolett.2c00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer-based gene delivery relies on the binding, protection, and final release of nucleic acid cargo using polycations. Engineering polymeric vectors, by exploring novel topologies and cationic moieties, is a promising avenue to improve their performance, which hinges on the development of simple synthetic methods that allow facile preparation. In this work, we focus on cationic micelles formed from block polymers, which are examined as promising gene compaction agents and carriers. In this study, we report the synthesis and assembly of six amphiphilic poly(n-butyl acrylate)-b-poly(cationic acrylamide) diblock polymers with different types of cationic groups ((dialkyl)amine, morpholine, or imidazole) in their hydrophilic corona. The polycations were obtained through the parallel postpolymerization modification of a poly(n-butyl acrylate)-b-poly(pentafluorophenyl acrylate) reactive scaffold, which granted diblock polymers with equivalent degrees of polymerization and subsequent quantitative functionalization with cations of different pKa. Ultrasound-assisted direct dissolution of the polycations in different aqueous buffers (pH = 1-7) afforded micellar structures with low size dispersities and hydrodynamic radii below 100 nm. The formation and properties of micelle-DNA complexes ("micelleplexes") were explored via DLS, zeta potential, and dye-exclusion assays revealing that binding is influenced by the cation type present in the micelle corona where bulkiness and pKa are the drivers of micelleplex formation. Combining parallel synthesis strategies with simple direct dissolution formulation opens opportunities to optimize and expand the range of micelle delivery vehicles available by facile tuning of the composition of the cationic micelle corona.
Collapse
Affiliation(s)
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alejandra Chapa
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Mckenna G. Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Sharma VK, Stark M, Fridman N, Assaraf YG, Gross Z. Doubly Stimulated Corrole for Organelle-Selective Antitumor Cytotoxicity. J Med Chem 2022; 65:6100-6115. [PMID: 35434997 DOI: 10.1021/acs.jmedchem.1c02085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Balancing between safety and efficacy of cancer chemotherapeutics is achievable by relying on internal and/or external stimuli for selective and on-demand antitumor cytotoxicity. We now introduce the difluorophosphorus(V) corrole PC-Im, a theranostic agent with a pH-sensitive N-methylimidazole moiety. Structure/activity relationships, via comparison with the permanently charged PC-ImM+ and the lipophilic PC, uncovered the exceptional features of PC-Im: nanoparticular and monomeric at neutral and low pH, respectively, 10-fold increased light-induced singlet oxygen production at acidic pH, internalization into malignant cells within minutes, and selective accumulation within lysosomes. Submillimolar PC-Im concentrations are tolerable in the dark, while illumination induces nanomolar cytotoxic effects due to a multiplicity of cellular deleterious events: endoplasmic reticulum fragmentation, lysosome fusion and exocytosis, calcium leakage, mitochondrial fission, and swelling. PC-Im emerges as an antitumor agent, whose potency is triggered by endogenous and exogenous stimuli, assuring its cytotoxicity will occur selectively upon lysosomal accumulation and solely upon light activation.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
16
|
Amor M, Faivre D, Corvisier J, Tharaud M, Busigny V, Komeili A, Guyot F. Defining Local Chemical Conditions in Magnetosomes of Magnetotactic Bacteria. J Phys Chem B 2022; 126:2677-2687. [PMID: 35362974 PMCID: PMC9098202 DOI: 10.1021/acs.jpcb.2c00752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defining chemical properties of intracellular organelles is necessary to determine their function(s) as well as understand and mimic the reactions they host. However, the small size of bacterial and archaeal microorganisms often prevents defining local intracellular chemical conditions in a similar way to what has been established for eukaryotic organelles. This work proposes to use magnetite (Fe3O4) nanocrystals contained in magnetosome organelles of magnetotactic bacteria as reporters of elemental composition, pH, and redox potential of a hypothetical environment at the site of formation of intracellular magnetite. This methodology requires combining recent single-cell mass spectrometry measurements together with elemental composition of magnetite in trace and minor elements. It enables a quantitative characterization of chemical disequilibria of 30 chemical elements between the intracellular and external media of magnetotactic bacteria, revealing strong transfers of elements with active influx or efflux processes that translate into elemental accumulation (Mo, Se, and Sn) or depletion (Sr and Bi) in the bacterial internal medium of up to seven orders of magnitude relative to the extracellular medium. Using this concept, we show that chemical conditions in magnetosomes are compatible with a pH of 7.5-9.5 and a redox potential of -0.25 to -0.6 V.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint-Paul-lez-Durance, France.,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States
| | - Damien Faivre
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108 Saint-Paul-lez-Durance, France
| | - Jérôme Corvisier
- Mines ParisTech, PSL Research University, Centre de Géosciences, 35 rue Saint Honoré, Fontainebleau Cedex 77305, France
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France
| | - Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France.,Institut Universitaire de France, Paris 75005, France
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, United States
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Sorbonne Université, UMR 7590 CNRS, 61 rue Buffon, 75005 Paris, France
| |
Collapse
|
17
|
Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nat Commun 2022; 13:1323. [PMID: 35260576 PMCID: PMC8904541 DOI: 10.1038/s41467-022-28971-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Response of protein secretion based on transcriptional control is rather slow, as it requires transcription, translation and transport from the endoplasmic reticulum (ER) to the plasma membrane via the conventional protein secretion (CPS) pathway. An alternative regulation to provide faster response would be valuable. Here we present two genetically encoded orthogonal regulatory secretion systems, which rely on the retention of pre-synthesized proteins on the ER membrane (membER, released by a cytosolic protease) or inside the ER lumen (lumER, released by an ER-luminal protease), respectively, and their release by the chemical signal-regulated proteolytic removal of an ER-retention signal, without triggering ER stress due to protein aggregates. Design of orthogonal chemically-regulated split proteases enables the combination of signals into logic functions. Its application was demonstrated on a chemically regulated therapeutic protein secretion and regulated membrane translocation of a chimeric antigen receptor (CAR) targeting cancer antigen. Regulation of the ER escape represents a platform for the design of fast-responsive and tightly-controlled modular and scalable protein secretion system for mammalian cells. Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Here the authors present two genetically encoded orthogonal regulatory secretion systems that enables inducible protein release and construction of logic gates.
Collapse
|
18
|
Luo Z, Zhou Y, Yang T, Gao Y, Kumar P, Chandrawati R. Ceria Nanoparticles as an Unexpected Catalyst to Generate Nitric Oxide from S-Nitrosoglutathione. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105762. [PMID: 35060323 DOI: 10.1002/smll.202105762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Ceria nanoparticles (NPs) are widely reported to scavenge nitric oxide (NO) radicals. This study reveals evidence that an opposite effect of ceria NPs exists, that is, to induce NO generation. Herein, S-nitrosoglutathione (GSNO), one of the most biologically abundant NO donors, is catalytically decomposed by ceria NPs to produce NO. Ceria NPs maintain a high NO release recovery rate and retain their crystalline structure for at least 4 weeks. Importantly, the mechanism of this newly discovered NO generation capability of ceria NPs from GSNO is deciphered to be attributed to the oxidation of Ce3+ to Ce4+ on their surface, which is supported by X-ray photoelectron spectroscopy and density functional theory analysis. The prospective therapeutic effect of NO-generating ceria NPs is evaluated by the suppression of cancer cells, displaying a significant reduction of 93% in cell viability. Overall, this report is, to the authors' knowledge, the first study to identify the capability of ceria NPs to induce NO generation from GSNO, which overturns the conventional concept of them acting solely as a NO-scavenging agent. This study will deepen our knowledge about the therapeutic effects of ceria NPs and open a new route toward the NO-generating systems for biomedical applications.
Collapse
Affiliation(s)
- Zijie Luo
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Priyank Kumar
- School of Chemical Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
19
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
20
|
Linders PTA, Ioannidis M, ter Beest M, van den Bogaart G. Fluorescence Lifetime Imaging of pH along the Secretory Pathway. ACS Chem Biol 2022; 17:240-251. [PMID: 35000377 PMCID: PMC8787756 DOI: 10.1021/acschembio.1c00907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many cellular processes
are dependent on correct pH levels, and
this is especially important for the secretory pathway. Defects in
pH homeostasis in distinct organelles cause a wide range of diseases,
including disorders of glycosylation and lysosomal storage diseases.
Ratiometric imaging of the pH-sensitive mutant of green fluorescent
protein, pHLuorin, has allowed for targeted pH measurements in various
organelles, but the required sequential image acquisition is intrinsically
slow and therefore the temporal resolution is unsuitable to follow
the rapid transit of cargo between organelles. Therefore, we applied
fluorescence lifetime imaging microscopy (FLIM) to measure intraorganellar
pH with just a single excitation wavelength. We first validated this
method by confirming the pH in multiple compartments along the secretory
pathway and compared the pH values obtained by the FLIM-based measurements
with those obtained by conventional ratiometric imaging. Then, we
analyzed the dynamic pH changes within cells treated with Bafilomycin
A1, to block the vesicular ATPase, and Brefeldin A, to block endoplasmic
reticulum (ER)–Golgi trafficking. Finally, we followed the
pH changes of newly synthesized molecules of the inflammatory cytokine
tumor necrosis factor-α while they were in transit from the
ER via the Golgi to the plasma membrane. The toolbox we present here
can be applied to measure intracellular pH with high spatial and temporal
resolution and can be used to assess organellar pH in disease models.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | - Martin ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| |
Collapse
|
21
|
Wen Y, Jing N, Huo F, Yin C. Recent progress of organic small molecule-based fluorescent probes for intracellular pH sensing. Analyst 2021; 146:7450-7463. [PMID: 34788777 DOI: 10.1039/d1an01621k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorescent probes along with fluorescence microscopy are essential tools for biomedical research. Various cellular ubiquitous chemical factors such as pH, H2O2, and Ca2+ are labeled and traced using specific fluorescent probes, therefore helping us to explore their physiological function and pathological change. Among them, intracellular pH value is an important factor that governs biological processes, generally ∼7.2. Furthermore, specific organelles within cells possess unique acid-base homeostasis, involving the acidic lysosomes, alkalescent mitochondria, and neutral endoplasmic reticulum and Golgi apparatus, which undergo various physiological processes such as intracellular digestion, ATP production, and protein folding and processing. In this review, recently reported fluorescent probes targeted toward the lysosomes, mitochondria, endoplasmic reticulum, Golgi apparatus, and cytoplasm for sensing pH change are discussed, which involves molecular structures, fluorescence behavior, and biological applications.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Ning Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
22
|
McDonald AG, Tipton KF. Enzyme Nomenclature and Classification: the State of the Art. FEBS J 2021; 290:2214-2231. [PMID: 34773359 DOI: 10.1111/febs.16274] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
The IUBMB Enzyme classification system, available at the IUBMB ExplorEnz website, uses a four component number (the EC number) that identifies an enzyme in terms of reaction catalysed. There were originally six recognised groups of enzymes: Oxidoreductases (EC 1), Transferases (EC 2), Hydrolases, Lyases (EC 4), Isomerases (EC 5) and Ligases (EC 6). Of these the lyases, which are defined as "enzymes that cleave C-C, C-O, C-N and other bonds by means other than by hydrolysis or oxidation" present particular recognition and classification problems. Recently a new class, the Translocases (EC 7) has been added, which incorporates enzymes that catalyse the movement of ions or molecules across membranes or their separation within membranes. A new subclass of the isomerases has also been included for those enzymes that alter the conformations of proteins and nucleic acids. Newly reported enzymes are being regularly added to the list after validation and where new information affects the classification of an existing entry, a new EC number is created, but the old one is not re-used.
Collapse
Affiliation(s)
- Andrew G McDonald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
23
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
24
|
Savizi ISP, Motamedian E, E Lewis N, Jimenez Del Val I, Shojaosadati SA. An integrated modular framework for modeling the effect of ammonium on the sialylation process of monoclonal antibodies produced by CHO cells. Biotechnol J 2021; 16:e2100019. [PMID: 34021707 DOI: 10.1002/biot.202100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Monoclonal antibodies (mABs) have emerged as one of the most important therapeutic recombinant proteins in the pharmaceutical industry. Their immunogenicity and therapeutic efficacy are influenced by post-translational modifications, specifically the glycosylation process. Bioprocess conditions can influence the intracellular process of glycosylation. Among all the process conditions that have been recognized to affect the mAB glycoforms, the detailed mechanism underlying how ammonium could perturb glycosylation remains to be fully understood. It was shown that ammonium induces heterogeneity in protein glycosylation by altering the sialic acid content of glycoproteins. Hence, understanding this mechanism would aid pharmaceutical manufacturers to ensure consistent protein glycosylation. METHODS Three different mechanisms have been proposed to explain how ammonium influences the sialylation process. In the first, the inhibition of CMP-sialic acid transporter, which transports CMP-sialic acid (sialylation substrate) into the Golgi, by an increase in UDP-GlcNAc content that is brought about by the augmented incorporation of ammonium into glucosamine formation. In the second, ammonia diffuses into the Golgi and raises its pH, thereby decreasing the sialyltransferase enzyme activity. In the third, the reduction of sialyltransferase enzyme expression level in the presence of ammonium. We employed these mechanisms in a novel integrated modular platform to link dynamic alteration in mAB sialylation process with extracellular ammonium concentration to elucidate how ammonium alters the sialic acid content of glycoproteins. RESULTS Our results show that the sialylation reaction rate is insensitive to the first mechanism. At low ammonium concentration, the second mechanism is the controlling mechanism in mAB sialylation and by increasing the ammonium level (< 8 mM) the third mechanism becomes the controlling mechanism. At higher ammonium concentrations (> 8 mM) the second mechanism becomes predominant again. CONCLUSION The presented model in this study provides a connection between extracellular ammonium and the monoclonal antibody sialylation process. This computational tool could help scientists to develop and formulate cell culture media. The model illustrated here can assist the researchers to select culture media that ensure consistent mAB sialylation.
Collapse
Affiliation(s)
- Iman Shahidi Pour Savizi
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA.,School of Medicine, Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, California, USA.,Department of Pediatrics, School of Medicine, University of California, La Jolla, California, USA
| | | | - Seyed Abbas Shojaosadati
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
|
26
|
Abstract
The measurement of ion concentrations and fluxes inside living cells is key to understanding cellular physiology. Fluorescent indicators that can infiltrate and provide intel on the cellular environment are critical tools for biological research. Developing these molecular informants began with the seminal work of Racker and colleagues ( Biochemistry (1979) 18, 2210), who demonstrated the passive loading of fluorescein in living cells to measure changes in intracellular pH. This work continues, employing a mix of old and new tradecraft to create innovative agents for monitoring ions inside living systems.
Collapse
Affiliation(s)
- Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
27
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Guria S, Ghosh A, Mishra T, Das MK, Adhikary A, Adhikari S. X-ray structurally characterized quinoline based fluorescent probes for pH sensing: Application in intracellular pH imaging; DFT calculations and fluorescent labelling. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Newstead S, Barr F. Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins - SWEET talking the COPs. J Cell Sci 2020; 133:133/19/jcs250100. [PMID: 33037041 PMCID: PMC7561476 DOI: 10.1242/jcs.250100] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localisation in the cell is controlled through the function of trafficking receptors, which recognise specific signal sequences and direct cargo proteins to different locations. The KDEL receptor (KDELR) was one of the first intracellular trafficking receptors identified and plays an essential role in maintaining the integrity of the early secretory pathway. The receptor recognises variants of a canonical C-terminal Lys-Asp-Glu-Leu (KDEL) signal sequence on ER-resident proteins when these escape to the Golgi, and targets these proteins to COPI- coated vesicles for retrograde transport back to the ER. The empty receptor is then recycled from the ER back to the Golgi by COPII-coated vesicles. Crystal structures of the KDELR show that it is structurally related to the PQ-loop family of transporters that are found in both pro- and eukaryotes, and shuttle sugars, amino acids and vitamins across cellular membranes. Furthermore, analogous to PQ-loop transporters, the KDELR undergoes a pH-dependent and ligand-regulated conformational cycle. Here, we propose that the striking structural similarity between the KDELR and PQ-loop transporters reveals a connection between transport and trafficking in the cell, with important implications for understanding trafficking receptor evolution and function. Summary: The structure of the KDEL receptor gives new insights into the close connection between trafficking and transport in the cell.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Francis Barr
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
30
|
Shu W, Zang S, Wang C, Gao M, Jing J, Zhang X. An Endoplasmic Reticulum-Targeted Ratiometric Fluorescent Probe for the Sensing of Hydrogen Sulfide in Living Cells and Zebrafish. Anal Chem 2020; 92:9982-9988. [DOI: 10.1021/acs.analchem.0c01623] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Shu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shunping Zang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chong Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mengxu Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
31
|
Ilie A, Boucher A, Park J, Berghuis AM, McKinney RA, Orlowski J. Assorted dysfunctions of endosomal alkali cation/proton exchanger SLC9A6 variants linked to Christianson syndrome. J Biol Chem 2020; 295:7075-7095. [PMID: 32277048 PMCID: PMC7242699 DOI: 10.1074/jbc.ra120.012614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic screening has identified numerous variants of the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+,K+)/H+ exchanger 6 (NHE6) gene that cause Christianson syndrome, a debilitating X-linked developmental disorder associated with a range of neurological, somatic, and behavioral symptoms. Many of these variants cause complete loss of NHE6 expression, but how subtler missense substitutions or nonsense mutations that partially truncate its C-terminal cytoplasmic regulatory domain impair NHE6 activity and endosomal function are poorly understood. Here, we describe the molecular and cellular consequences of six unique mutations located in the N-terminal cytoplasmic segment (A9S), the membrane ion translocation domain (L188P and G383D), and the C-terminal regulatory domain (E547*, R568Q, and W570*) of human NHE6 that purportedly cause disease. Using a heterologous NHE6-deficient cell expression system, we show that the biochemical, catalytic, and cellular properties of the A9S and R568Q variants were largely indistinguishable from those of the WT transporter, which obscured their disease significance. By contrast, the L188P, G383D, E547*, and W570* mutants exhibited variable deficiencies in biosynthetic post-translational maturation, membrane sorting, pH homeostasis in recycling endosomes, and cargo trafficking, and they also triggered apoptosis. These findings broaden our understanding of the molecular dysfunctions of distinct NHE6 variants associated with Christianson syndrome.
Collapse
Affiliation(s)
- Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Annie Boucher
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Jaeok Park
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
32
|
Robinson DG, Aniento F. A Model for ERD2 Function in Higher Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:343. [PMID: 32269585 PMCID: PMC7109254 DOI: 10.3389/fpls.2020.00343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
ER lumenal proteins have a K(H)DEL motif at their C-terminus. This is recognized by the ERD2 receptor (KDEL receptor in animals), which localizes to the Golgi apparatus and serves to capture escaped ER lumenal proteins. ERD2-ligand complexes are then transported back to the ER via COPI coated vesicles. The neutral pH of the ER causes the ligands to dissociate with the receptor being returned to the Golgi. According to this generally accepted scenario, ERD2 cycles between the ER and the Golgi, although it has been found to have a predominant Golgi localization. In this short article, we present a model for the functioning of ERD2 receptors in higher plants that explains why it is difficult to detect fluorescently tagged ERD2 proteins in the ER. The model assumes that the residence time for ERD2 in the ER is very brief and restricted to a specific domain of the ER. This is the small disc of ER immediately subjacent to the first cis-cisterna of the Golgi stack, representing specialized ER export and import sites and therefore constituting part of what is known as the "secretory unit", a mobile aggregate of ER domain plus Golgi stack. ERD2 molecules in the ER domain of the secretory unit may be small in number, transient and optically difficult to differentiate from the larger population of ERD2 molecules in the overlying Golgi stack in the confocal microscope.
Collapse
Affiliation(s)
- David G. Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Fernando Aniento
- Departamento de Bioquimica y Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Valencia, Spain
| |
Collapse
|
33
|
A new pH sensor localized in the Golgi apparatus of Saccharomyces cerevisiae reveals unexpected roles of Vph1p and Stv1p isoforms. Sci Rep 2020; 10:1881. [PMID: 32024908 PMCID: PMC7002768 DOI: 10.1038/s41598-020-58795-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The gradual acidification of the secretory pathway is conserved and extremely important for eukaryotic cells, but until now there was no pH sensor available to monitor the pH of the early Golgi apparatus in Saccharomyces cerevisiae. Therefore, we developed a pHluorin-based sensor for in vivo measurements in the lumen of the Golgi. By using this new tool we show that the cis- and medial-Golgi pH is equal to 6.6–6.7 in wild type cells during exponential phase. As expected, V-ATPase inactivation results in a near neutral Golgi pH. We also uncover that surprisingly Vph1p isoform of the V-ATPase is prevalent to Stv1p for Golgi acidification. Additionally, we observe that during changes of the cytosolic pH, the Golgi pH is kept relatively stable, mainly thanks to the V-ATPase. Eventually, this new probe will allow to better understand the mechanisms involved in the acidification and the pH control within the secretory pathway.
Collapse
|
34
|
Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. Biochim Biophys Acta Gen Subj 2020; 1864:129313. [DOI: 10.1016/j.bbagen.2019.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
|
35
|
Choi JW, Choi SH, Hong ST, Kim MS, Ryu SS, Yoon YU, Paik KC, Han MS, Sim T, Cho BR. Two-photon probes for the endoplasmic reticulum: its detection in a live tissue by two-photon microscopy. Chem Commun (Camb) 2020; 56:3657-3660. [DOI: 10.1039/d0cc00236d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BER-blue and FER-green can detect the endoplasmic reticulum in a live tissue by two-photon microscopy.
Collapse
|
36
|
Fang L, Trigiante G, Crespo-Otero R, Hawes CS, Philpott MP, Jones CR, Watkinson M. Endoplasmic reticulum targeting fluorescent probes to image mobile Zn 2. Chem Sci 2019; 10:10881-10887. [PMID: 32190243 PMCID: PMC7066664 DOI: 10.1039/c9sc04300d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Zn2+ plays an important role in the normal function of the endoplasmic reticulum (ER) and its deficiency can cause ER stress, which is related to a wide range of diseases. In order to provide tools to better understand the role of mobile Zn2+ in ER processes, the first custom designed ER-localised fluorescent Zn2+ probes have been developed through the introduction of a cyclohexyl sulfonylurea as an ER-targeting unit with different Zn2+ receptors. Experiments in vitro and in cellulo show that both probes have a good fluorescence switch on response to Zn2+, high selectivity over other cations, low toxicity, ER-specific targeting ability and are efficacious imaging agents for mobile Zn2+ in four different cell lines. Probe 9 has been used to detect mobile Zn2+ changes under ER stress induced by both tunicamycin or thapsigargin, which indicates that the new probes should allow a better understanding of the mechanisms cells use to respond to dysfunction of zinc homeostasis in the ER and its role in the initiation and progression of diseases to be developed.
Collapse
Affiliation(s)
- Le Fang
- School of Biological and Chemical Science , Queen Mary University of London , The Joseph Priestley Building, Mile End Road , London , E1 4NS , UK
| | - Giuseppe Trigiante
- Centre for Cutaneous Research , Institute of Cell and Molecular Science , Barts and The London School of Medicine and Dentistry , Queen Mary University of London , London E1 2AT , UK
| | - Rachel Crespo-Otero
- School of Biological and Chemical Science , Queen Mary University of London , The Joseph Priestley Building, Mile End Road , London , E1 4NS , UK
| | - Chris S Hawes
- The Lennard-Jones Laboratories , School of Chemical and Physical Science , Keele University , ST5 5BG , UK .
| | - Michael P Philpott
- Centre for Cutaneous Research , Institute of Cell and Molecular Science , Barts and The London School of Medicine and Dentistry , Queen Mary University of London , London E1 2AT , UK
| | - Christopher R Jones
- School of Biological and Chemical Science , Queen Mary University of London , The Joseph Priestley Building, Mile End Road , London , E1 4NS , UK
| | - Michael Watkinson
- The Lennard-Jones Laboratories , School of Chemical and Physical Science , Keele University , ST5 5BG , UK .
| |
Collapse
|
37
|
Bräuer P, Parker JL, Gerondopoulos A, Zimmermann I, Seeger MA, Barr FA, Newstead S. Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 2019; 363:1103-1107. [PMID: 30846601 DOI: 10.1126/science.aaw2859] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/13/2019] [Indexed: 11/02/2022]
Abstract
Selective export and retrieval of proteins between the endoplasmic reticulum (ER) and Golgi apparatus is indispensable for eukaryotic cell function. An essential step in the retrieval of ER luminal proteins from the Golgi is the pH-dependent recognition of a carboxyl-terminal Lys-Asp-Glu-Leu (KDEL) signal by the KDEL receptor. Here, we present crystal structures of the chicken KDEL receptor in the apo ER state, KDEL-bound Golgi state, and in complex with an antagonistic synthetic nanobody (sybody). These structures show a transporter-like architecture that undergoes conformational changes upon KDEL binding and reveal a pH-dependent interaction network crucial for recognition of the carboxyl terminus of the KDEL signal. Complementary in vitro binding and in vivo cell localization data explain how these features create a pH-dependent retrieval system in the secretory pathway.
Collapse
Affiliation(s)
- Philipp Bräuer
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andreas Gerondopoulos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Iwan Zimmermann
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
38
|
Fan L, Wang X, Ge J, Li F, Zhang C, Lin B, Shuang S, Dong C. A Golgi-targeted off-on fluorescent probe for real-time monitoring of pH changes in vivo. Chem Commun (Camb) 2019; 55:6685-6688. [PMID: 31106798 DOI: 10.1039/c9cc02511a] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the first Golgi-targeted small-molecular pH-sensitive fluorescent probe RSG, which allows an off-on fluorescence response to Golgi acidification with high sensitivity and specificity. RSG has been successfully used for real-time monitoring of Golgi pH changes induced by drug treatment at the cellular level, as well as by the LPS-mediated inflammation in vivo.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Khayat W, Hackett A, Shaw M, Ilie A, Dudding-Byth T, Kalscheuer VM, Christie L, Corbett MA, Juusola J, Friend KL, Kirmse BM, Gecz J, Field M, Orlowski J. A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Hum Mol Genet 2019; 28:598-614. [PMID: 30335141 DOI: 10.1093/hmg/ddy371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Louise Christie
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Brian M Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
41
|
Dolinska MB, Wingfield PT, Young KL, Sergeev YV. The TYRP1-mediated protection of human tyrosinase activity does not involve stable interactions of tyrosinase domains. Pigment Cell Melanoma Res 2019; 32:753-765. [PMID: 31077632 DOI: 10.1111/pcmr.12791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
Tyrosinases are melanocyte-specific enzymes involved in melanin biosynthesis. Mutations in their genes cause oculocutaneous albinism associated with reduced or altered pigmentation of skin, hair, and eyes. Here, the recombinant human intra-melanosomal domains of tyrosinase, TYRtr (19-469), and tyrosinase-related protein 1, TYRP1tr (25-472), were studied in vitro to define their functional relationship. Proteins were expressed or coexpressed in whole Trichoplusia ni larvae and purified. Their associations were studied using gel filtration and sedimentation equilibrium methods. Protection of TYRtr was studied by measuring the kinetics of tyrosinase diphenol oxidase activity in the presence (1:1 and 1:20 molar ratios) or the absence of TYRP1tr for 10 hr under conditions mimicking melanosomal and ER pH values. Our data indicate that TYRtr incubation with excess TYRP1tr protects TYR, increasing its stability over time. However, this mechanism does not appear to involve the formation of stable hetero-oligomeric complexes to maintain the protective function.
Collapse
Affiliation(s)
- Monika B Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth L Young
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuri V Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Korchowiec B, Gorczyca M, Korchowiec J, Rubio-Magnieto J, Lotfallah AH, Luis SV, Rogalska E. The effect of protonation in a family of peptide based gemini amphiphiles on the interaction in Langmuir films. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Dong B, Song W, Lu Y, Kong X, Mehmood AH, Lin W. An ultrasensitive ratiometric fluorescent probe based on the ICT-PET-FRET mechanism for the quantitative measurement of pH values in the endoplasmic reticulum (ER). Chem Commun (Camb) 2019; 55:10776-10779. [DOI: 10.1039/c9cc03114f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual-site ratiometric probe based on the ICT-PET-FRET mechanism for quantitatively measuring the pH values of the ER was developed.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Wenhui Song
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Yaru Lu
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Abdul Hadi Mehmood
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging
- School of Chemistry and Chemical Engineering
- School of Materials Science and Engineering
- University of Jinan
- Jinan
| |
Collapse
|
44
|
Golda-VanEeckhoutte RL, Roof LT, Needoba JA, Peterson TD. Determination of intracellular pH in phytoplankton using the fluorescent probe, SNARF, with detection by fluorescence spectroscopy. J Microbiol Methods 2018; 152:109-118. [DOI: 10.1016/j.mimet.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/04/2023]
|
45
|
Reifenrath M, Boles E. A superfolder variant of pH-sensitive pHluorin for in vivo pH measurements in the endoplasmic reticulum. Sci Rep 2018; 8:11985. [PMID: 30097598 PMCID: PMC6086885 DOI: 10.1038/s41598-018-30367-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022] Open
Abstract
Many cellular processes are regulated via pH, and maintaining the pH of different organelles is crucial for cell survival. A pH-sensitive GFP variant, the so-called pHluorin, has proven to be a valuable tool to study the pH of the cytosol, mitochondria and other organelles in vivo. We found that the fluorescence intensity of Endoplasmic Reticulum (ER)-targeted pHluorin in the yeast Saccharomyces cerevisiae was very low and barely showed pH sensitivity, probably due to misfolding in the oxidative environment of the ER. We therefore developed a superfolder variant of pHluorin which enabled us to monitor pH changes in the ER and the cytosol of S. cerevisiae in vivo. The superfolder pHluorin variant is likely to be functional in cells of different organisms as well as in additional compartments that originate from the secretory pathway like the Golgi apparatus and pre-vacuolar compartments, and therefore has a broad range of possible future applications.
Collapse
Affiliation(s)
- Mara Reifenrath
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Young TR, Pukala TL, Cappai R, Wedd AG, Xiao Z. The Human Amyloid Precursor Protein Binds Copper Ions Dominated by a Picomolar-Affinity Site in the Helix-Rich E2 Domain. Biochemistry 2018; 57:4165-4176. [DOI: 10.1021/acs.biochem.8b00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tessa R. Young
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tara L. Pukala
- Discipline of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony G. Wedd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
47
|
Hanczyc P, Mikhailovsky A, Boyer DR, Sawaya MR, Heeger A, Eisenberg D. Ultrafast Time-Resolved Studies on Fluorescein for Recognition Strands Architecture in Amyloid Fibrils. J Phys Chem B 2018; 122:8-18. [PMID: 29237120 PMCID: PMC11721640 DOI: 10.1021/acs.jpcb.7b07923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein aggregation is associated with numerous devastating diseases such as Alzheimer's, Parkinson's, and prion diseases. Development of therapeutics would benefit from knowledge of the structural organization of protein molecules in these amyloid aggregates, particularly in their aqueous biological milieu. However, detailed structural studies to date have been mainly on the solid state and have required large quantities of purified aggregate. Moreover, these conventional methods require the aggregated assembly to remain structurally stable over days or weeks required to perform the experiment, whereas the pathologically relevant species of in vivo aggregates may be shorter lived. Here, we show the organization of protein chains in dissolved amyloid aggregates can be readily determined spectroscopically using minute quantities of fluorescein-labeled protein segments in a matter of minutes. Specifically, we investigated the possibility of using the ultrafast dynamics of fluorescein to distinguish among three categories of β-sheet geometry: (1) antiparallel in-register, (2) parallel in-register, or (3) antiparallel out-of-register. Fluorescein, the most commonly used staining dye in biology and medicine, was covalently attached to the N-termini of peptide sequences selected from a library of known amyloid crystal structures. We investigated the aggregates in solution using steady-state and time-resolved absorption and fluorescence spectroscopy. We found that the dynamics of fluorescein relaxation from the excited state revealed amyloid structure-specific information. Particularly, the nonfluorescent cation form of fluorescein showed remarkable sensitivity to local environments created during aggregation. We demonstrate that time-resolved absorption is capable of differentiating strand organization in β-sheet aggregates when strong intermolecular coupling between chromophores occurs. This approach can be useful in optical recognition of specific fibril architectures of amyloid aggregates.
Collapse
Affiliation(s)
- Piotr Hanczyc
- Center for Polymers & Organic Solids, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alexander Mikhailovsky
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - David R. Boyer
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| | - Michael R. Sawaya
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| | - Alan Heeger
- Center for Polymers & Organic Solids, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - David Eisenberg
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| |
Collapse
|
48
|
Hummer BH, de Leeuw NF, Burns C, Chen L, Joens MS, Hosford B, Fitzpatrick JAJ, Asensio CS. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification. Mol Biol Cell 2017; 28:3870-3880. [PMID: 29074564 PMCID: PMC5739301 DOI: 10.1091/mbc.e17-08-0491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The peripheral membrane protein HID-1 localizes to the trans-Golgi network, where it contributes to the formation of large dense core vesicles of neuroendocrine cells by influencing cargo sorting and trans-Golgi network acidification. Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.
Collapse
Affiliation(s)
- Blake H Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Noah F de Leeuw
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Lan Chen
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Matthew S Joens
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Bethany Hosford
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| |
Collapse
|
49
|
Thompson AD, Bewersdorf J, Toomre D, Schepartz A. HIDE Probes: A New Toolkit for Visualizing Organelle Dynamics, Longer and at Super-Resolution. Biochemistry 2017; 56:5194-5201. [PMID: 28792749 PMCID: PMC5854879 DOI: 10.1021/acs.biochem.7b00545] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living cells are complex and dynamic assemblies that carefully sequester and orchestrate multiple diverse processes that enable growth, division, regulation, movement, and communication. Membrane-bound organelles such as the endoplasmic reticulum, mitochondria, plasma membrane, and others are integral to these processes, and their functions demand dynamic reorganization in both space and time. Visualizing these dynamics in live cells over long time periods demands probes that label discrete organelles specifically, at high density, and withstand long-term irradiation. Here we describe the evolution of our work on the development of a set of high-density environmentally sensitive (HIDE) membrane probes that enable long-term, live-cell nanoscopy of the dynamics of multiple organelles in live cells using single-molecule switching and stimulated emission depletion imaging modalities.
Collapse
Affiliation(s)
- Alexander D Thompson
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Joerg Bewersdorf
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Derek Toomre
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
50
|
Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat Biotechnol 2017; 35:773-780. [PMID: 28671662 PMCID: PMC5609855 DOI: 10.1038/nbt.3876] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/13/2017] [Indexed: 01/14/2023]
Abstract
Imaging cellular structures and organelles in living cells by long time-lapse super-resolution microscopy is challenging, as it requires dense labeling, bright and highly photostable dyes, and non-toxic conditions. We introduce a set of high-density, environment-sensitive (HIDE) membrane probes, based on the membrane-permeable silicon-rhodamine dye HMSiR, that assemble in situ and enable long time-lapse, live-cell nanoscopy of discrete cellular structures and organelles with high spatiotemporal resolution. HIDE-enabled nanoscopy movies span tens of minutes, whereas movies obtained with labeled proteins span tens of seconds. Our data reveal 2D dynamics of the mitochondria, plasma membrane and filopodia, and the 2D and 3D dynamics of the endoplasmic reticulum, in living cells. HIDE probes also facilitate acquisition of live-cell, two-color, super-resolution images, expanding the utility of nanoscopy to visualize dynamic processes and structures in living cells.
Collapse
|