1
|
Varidaki A, Hong Y, Coffey ET. Repositioning Microtubule Stabilizing Drugs for Brain Disorders. Front Cell Neurosci 2018; 12:226. [PMID: 30135644 PMCID: PMC6092511 DOI: 10.3389/fncel.2018.00226] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Microtubule stabilizing agents are among the most clinically useful chemotherapeutic drugs. Mostly, they act to stabilize microtubules and inhibit cell division. While not without side effects, new generations of these compounds display improved pharmacokinetic properties and brain penetrance. Neurological disorders are intrinsically associated with microtubule defects, and efforts to reposition microtubule-targeting chemotherapeutic agents for treatment of neurodegenerative and psychiatric illnesses are underway. Here we catalog microtubule regulators that are associated with Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, schizophrenia and mood disorders. We outline the classes of microtubule stabilizing agents used for cancer treatment, their brain penetrance properties and neuropathy side effects, and describe efforts to apply these agents for treatment of brain disorders. Finally, we summarize the current state of clinical trials for microtubule stabilizing agents under evaluation for central nervous system disorders.
Collapse
Affiliation(s)
- Artemis Varidaki
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Ye Hong
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| |
Collapse
|
2
|
Ojima I, Wang X, Jing Y, Wang C. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery. JOURNAL OF NATURAL PRODUCTS 2018; 81:703-721. [PMID: 29468872 PMCID: PMC5869464 DOI: 10.1021/acs.jnatprod.7b01012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 05/28/2023]
Abstract
Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3' positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Xin Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Yunrong Jing
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Changwei Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
3
|
Huang P, Almeciga-Pinto I, Jarpe M, van Duzer JH, Mazitschek R, Yang M, Jones SS, Quayle SN. Selective HDAC inhibition by ACY-241 enhances the activity of paclitaxel in solid tumor models. Oncotarget 2018; 8:2694-2707. [PMID: 27926524 PMCID: PMC5356834 DOI: 10.18632/oncotarget.13738] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/24/2016] [Indexed: 01/26/2023] Open
Abstract
ACY-241 is a novel, orally available and selective histone deacetylase (HDAC) 6 inhibitor in Phase 1b clinical development in multiple myeloma (NCT 02400242). Like the structurally related drug ACY-1215 (ricolinostat), ACY-241 has the potential for a substantially reduced side effect profile versus current nonselective HDAC inhibitor drug candidates due to reduced potency against Class I HDACs while retaining the potential for anticancer effectiveness. We now show that combination treatment of xenograft models with paclitaxel and either ricolinostat or ACY-241 significantly suppresses solid tumor growth. In cell lines from multiple solid tumor lineages, combination treatment with ACY-241 and paclitaxel enhanced inhibition of proliferation and increased cell death relative to either single agent alone. Combination treatment with ACY-241 and paclitaxel also resulted in more frequent occurrence of mitotic cells with abnormal multipolar spindles and aberrant mitoses, consistent with the observed increase of aneuploid cells. At the molecular level, multipolar mitotic spindle formation was observed to be NuMA-dependent and γ-tubulin independent, suggesting that treatment-induced multipolar spindle formation does not depend on centrosomal amplification. The significantly enhanced efficacy of ACY-241 plus paclitaxel observed here, in addition to the anticipated superior safety profile of a selective HDAC6 inhibitor versus pan-HDAC inhibitors, provides a strong rationale for clinical development of this combination in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Pengyu Huang
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | | | - Matthew Jarpe
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | | | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Min Yang
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | - Simon S Jones
- Acetylon Pharmaceuticals, Inc., Boston, MA 02210, USA
| | | |
Collapse
|
4
|
Abstract
Microtubule-stabilizing agents (MSAs) have been highly successful in the treatment of cancer in the past 20years. To date, three classes of MSAs have entered the clinical trial stage or have been approved for clinical anticancer chemotherapy, and more than 10 classes of novel structural MSAs have been derived from natural resources. The microtubule typically contains two MSA-binding sites: the taxoid site and the laulimalide/peloruside site. All defined MSAs are known to bind at either of these sites, with subtle but significant differences. MSAs with different binding sites may produce a synergistic effect. Although having been extensively applied in the clinical setting, paclitaxel and other approved MSAs still pose many challenges such as multidrug resistance, low bioavailability, poor solubility, high toxicity, and low passage through the blood-brain barrier. A variety of studies focus on the structure-activity relationship in order to improve the pharmaceutical properties of these agents. Here, the mechanisms of action, advancements in pharmacological research, and clinical developments of defined MSAs during the past decade are discussed. The latest discovered MSAs are also briefly introduced in this review. The increasing number of natural MSAs indicates the potential discovery of more novel, natural MSAs with different structural bases, which will further promote the development of anticancer chemotherapy.
Collapse
|
5
|
Mahale S, Bharate SB, Manda S, Joshi P, Bharate SS, Jenkins PR, Vishwakarma RA, Chaudhuri B. Biphenyl-4-carboxylic Acid [2-(1H-Indol-3-yl)-ethyl]-methylamide (CA224), a Nonplanar Analogue of Fascaplysin, Inhibits Cdk4 and Tubulin Polymerization: Evaluation of in Vitro and in Vivo Anticancer Activity. J Med Chem 2014; 57:9658-72. [DOI: 10.1021/jm5014743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sachin Mahale
- School
of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| | | | | | | | | | - Paul R. Jenkins
- Department
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Bhabatosh Chaudhuri
- School
of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| |
Collapse
|
6
|
Ojima I, Kumar K, Awasthi D, Vineberg JG. Drug discovery targeting cell division proteins, microtubules and FtsZ. Bioorg Med Chem 2014; 22:5060-77. [PMID: 24680057 PMCID: PMC4156572 DOI: 10.1016/j.bmc.2014.02.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/25/2014] [Accepted: 02/18/2014] [Indexed: 12/16/2022]
Abstract
Eukaryotic cell division or cytokinesis has been a major target for anticancer drug discovery. After the huge success of paclitaxel and docetaxel, microtubule-stabilizing agents (MSAs) appear to have gained a premier status in the discovery of next-generation anticancer agents. However, the drug resistance caused by MDR, point mutations, and overexpression of tubulin subtypes, etc., is a serious issue associated with these agents. Accordingly, the discovery and development of new-generation MSAs that can obviate various drug resistances has a significant meaning. In sharp contrast, prokaryotic cell division has been largely unexploited for the discovery and development of antibacterial drugs. However, recent studies on the mechanism of bacterial cytokinesis revealed that the most abundant and highly conserved cell division protein, FtsZ, would be an excellent new target for the drug discovery of next-generation antibacterial agents that can circumvent drug-resistances to the commonly used drugs for tuberculosis, MRSA and other infections. This review describes an account of our research on these two fronts in drug discovery, targeting eukaryotic as well as prokaryotic cell division.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| | - Kunal Kumar
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Divya Awasthi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Jacob G Vineberg
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
7
|
Jelínek M, Balušíková K, Kopperová D, Nĕmcová-Fürstová V, Šrámek J, Fidlerová J, Zanardi I, Ojima I, Kovář J. Caspase-2 is involved in cell death induction by taxanes in breast cancer cells. Cancer Cell Int 2013; 13:42. [PMID: 23672670 PMCID: PMC3685568 DOI: 10.1186/1475-2867-13-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied the role of caspase-2 in apoptosis induction by taxanes (paclitaxel, novel taxane SB-T-1216) in breast cancer cells using SK-BR-3 (nonfunctional p53, functional caspase-3) and MCF-7 (functional p53, nonfunctional caspase-3) cell lines. RESULTS Both taxanes induced apoptosis in SK-BR-3 as well as MCF-7 cells. Caspase-2 activity in SK-BR-3 cells increased approximately 15-fold within 48 h after the application of both taxanes at the death-inducing concentration (100 nM). In MCF-7 cells, caspase-2 activity increased approximately 11-fold within 60 h after the application of taxanes (300 nM). Caspase-2 activation was confirmed by decreasing levels of procaspase-2, increasing levels of cleaved caspase-2 and the cleavage of caspase-2 substrate golgin-160. The inhibition of caspase-2 expression using siRNA increased the number of surviving cells more than 2-fold in MCF-7 cells, and at least 4-fold in SK-BR-3 cells, 96 h after the application of death-inducing concentration of taxanes. The inhibition of caspase-2 expression also resulted in decreased cleavage of initiator caspases (caspase-8, caspase-9) as well as executioner caspases (caspase-3, caspase-7) in both cell lines after the application of taxanes. In control cells, caspase-2 seemed to be mainly localized in the nucleus. After the application of taxanes, it was released from the nucleus to the cytosol, due to the long-term disintegration of the nuclear envelope, in both cell lines. Taxane application led to some formation of PIDDosome complex in both cell lines within 24 h after the application. After taxane application, p21WAF1/CIP1 expression was only induced in MCF-7 cells with functional p53. However, taxane application did not result in a significant increase of PIDD expression in either SK-BR-3 or MCF-7 cells. The inhibition of RAIDD expression using siRNA did not affect the number of surviving SK-BR-3 and MCF-7 cells after taxane application at all. CONCLUSION Caspase-2 is required, at least partially, for apoptosis induction by taxanes in tested breast cancer cells. We suggest that caspase-2 plays the role of an apical caspase in these cells. Caspase-2 seems to be activated via other mechanism than PIDDosome formation. It follows the release of caspase-2 from the nucleus to the cytosol.
Collapse
|
8
|
Li Y, Yang Y, An F, Liu Z, Zhang X, Zhang X. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform. NANOTECHNOLOGY 2013; 24:015103. [PMID: 23221098 DOI: 10.1088/0957-4484/24/1/015103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines.
Collapse
Affiliation(s)
- Yanan Li
- Nano-organic Photoelectronic Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Vella-Zarb L, Baisch U, Dinnebier RE. Small molecule, big difference: the role of water in the crystallization of paclitaxel. J Pharm Sci 2012. [PMID: 23203212 DOI: 10.1002/jps.23404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paclitaxel is an important antineoplastic drug, which is used widely in the treatment of many forms of cancer. The crystal structures of the anhydrous form and the hemihydrate were determined from laboratory X-ray powder diffraction data, whereas the dihydrate was solved from single-crystal synchrotron diffraction data. Intermolecular spaces allow for the inclusion of loosely bound water molecules, which are then lost easily upon heating. All three forms were found to crystallize in the orthorhombic spacegroup P2(1)2(1)2(1), with Z' = 2. The unit cell parameters were found to be a = 9.6530(3) Å, b = 28.1196(8) Å, c = 33.5378(14) Å, and V = 9103.5(5) Å for the anhydrous form (363 K); a = 9.6890(2) Å, b = 28.0760(4) Å, c = 33.6166(8) Å, and V = 9144.7(3) Å(3) for the hemihydrate (333 K); and a = 9.512(6) Å, b = 28.064(16) Å, c = 33.08(2) Å, and V = 8829.0(9) Å(3) for the dihydrate (120 K). Water loss occurs in two steps between 120 K ≤ t ≤ 363 K. The thermal stability of the hydrates and accompanying unit cell changes were observed in situ via temperature-resolved X-ray powder diffraction and thermogravimetric analysis.
Collapse
Affiliation(s)
- Liana Vella-Zarb
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany
| | | | | |
Collapse
|
10
|
Lopus M, Oroudjev E, Wilson L, Wilhelm S, Widdison W, Chari R, Jordan MA. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther 2011; 9:2689-99. [PMID: 20937594 DOI: 10.1158/1535-7163.mct-10-0644] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maytansine is a potent microtubule-targeted compound that induces mitotic arrest and kills tumor cells at subnanomolar concentrations. However, its side effects and lack of tumor specificity have prevented successful clinical use. Recently, antibody-conjugated maytansine derivatives have been developed to overcome these drawbacks. Several conjugates show promising early clinical results. We evaluated the effects on microtubule polymerization and dynamic instability of maytansine and two cellular metabolites (S-methyl-DM1 and S-methyl-DM4) of antibody-maytansinoid conjugates that are potent in cells at picomolar levels and that are active in tumor-bearing mice. Although S-methyl-DM1 and S-methyl-DM4 inhibited polymerization more weakly than maytansine, at 100 nmol/L they suppressed dynamic instability more strongly than maytansine (by 84% and 73%, respectively, compared with 45% for maytansine). However, unlike maytansine, S-methyl-DM1 and S-methyl-DM4 induced tubulin aggregates detectable by electron microscopy at concentrations ≥2 μmol/L, with S-methyl-DM4 showing more extensive aggregate formation than S-methyl-DM1. Both maytansine and S-methyl-DM1 bound to tubulin with similar K(D) values (0.86 ± 0.2 and 0.93 ± 0.2 μmol/L, respectively). Tritiated S-methyl-DM1 bound to 37 high-affinity sites per microtubule (K(D), 0.1 ± 0.05 μmol/L). Thus, S-methyl-DM1 binds to high-affinity sites on microtubules 20-fold more strongly than vinblastine. The high-affinity binding is likely at microtubule ends and is responsible for suppression of microtubule dynamic instability. Also, at higher concentrations, S-methyl-DM1 showed low-affinity binding either to a larger number of sites on microtubules or to sedimentable tubulin aggregates. Overall, the maytansine derivatives that result from cellular metabolism of the antibody conjugates are themselves potent microtubule poisons, interacting with microtubules as effectively as or more effectively than the parent molecule.
Collapse
Affiliation(s)
- Manu Lopus
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9610, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Cell death induced by novel fluorinated taxanes in drug-sensitive and drug-resistant cancer cells. Invest New Drugs 2009; 29:411-23. [PMID: 20013348 DOI: 10.1007/s10637-009-9368-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study is to compare the effects of new fluorinated taxanes SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 with those of the classical taxane paclitaxel and novel non-fluorinated taxane SB-T-1216 on cancer cells. Paclitaxel-sensitive MDA-MB-435 and paclitaxel-resistant NCI/ADR-RES human cancer cell lines were used. Cell growth and survival evaluation, colorimetric assessment of caspases activities, flow cytometric analyses of the cell cycle and the assessment of mitochondrial membrane potential, reactive oxygen species (ROS) and the release of cytochrome c from mitochondria were employed. Fluorinated taxanes have similar effects on cell growth and survival. For MDA-MB-435 cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853 and SB-T-12854 was 3 nM, 4 nM, 3 nM and 5 nM, respectively. For NCI/ADR-RES cells, the C(50) of SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 was 20 nM, 20 nM, 10 nM and 10 nM, respectively. Selected fluorinated taxanes, SB-T-12853 and SB-T-12854, at the death-inducing concentrations (30 nM for MDA-MB-435 and 300 nM for NCI/ADR-RES) were shown to activate significantly caspase-3, caspase-9, caspase-2 and also slightly caspase-8. Cell death was associated with significant accumulation of cells in the G(2)/M phase. Cytochrome c was not released from mitochondria and other mitochondrial functions were not significantly impaired. The new fluorinated taxanes appear to use the same or similar mechanisms of cell death induction as compared with SB-T-1216 and paclitaxel. New fluorinated and non-fluorinated taxanes are more effective against drug-resistant cancer cells than paclitaxel. Therefore, new generation of taxanes, either non-fluorinated or fluorinated, are excellent candidates for further and detailed studies.
Collapse
|
12
|
Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 2009; 130:16778-85. [PMID: 19554734 DOI: 10.1021/ja805570f] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel single-walled carbon nanotube (SWNT)-based tumor-targeted drug delivery system (DDS) has been developed, which consists of a functionalized SWNT linked to tumor-targeting modules as well as prodrug modules. There are three key features of this nanoscale DDS: (a) use of functionalized SWNTs as a biocompatible platform for the delivery of therapeutic drugs or diagnostics, (b) conjugation of prodrug modules of an anticancer agent (taxoid with a cleavable linker) that is activated to its cytotoxic form inside the tumor cells upon internalization and in situ drug release, and (c) attachment of tumor-recognition modules (biotin and a spacer) to the nanotube surface. To prove the efficacy of this DDS, three fluorescent and fluorogenic molecular probes were designed, synthesized, characterized, and subjected to the analysis of the receptor-mediated endocytosis and drug release inside the cancer cells (L1210FR leukemia cell line) by means of confocal fluorescence microscopy. The specificity and cytotoxicity of the conjugate have also been assessed and compared with L1210 and human noncancerous cell lines. Then, it has unambiguously been proven that this tumor-targeting DDS works exactly as designed and shows high potency toward specific cancer cell lines, thereby forming a solid foundation for further development.
Collapse
Affiliation(s)
- Jingyi Chen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Potterat O, Hamburger M. Drug discovery and development with plant-derived compounds. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 65:45, 47-118. [PMID: 18084913 DOI: 10.1007/978-3-7643-8117-2_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview is given on current efforts in drug development based on plant-derived natural products. Emphasis is on projects which have advanced to clinical development. Therapeutic areas covered include cancer, viral infections including HIV, malaria, inflammatory diseases, nociception and vaccine adjuvants, metabolic disorders, and neurodegenerative diseases. Aspects which are specific to plant-based drug discovery and development are also addressed, such as supply issues in the commercial development, and the Convention on Biological Diversity.
Collapse
Affiliation(s)
- Olivier Potterat
- University of Basel, Institute of Pharmaceutical Biology, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | |
Collapse
|
15
|
Park H, Aiyar SE, Fan P, Wang J, Yue W, Okouneva T, Cox C, Jordan MA, Demers L, Cho H, Kim S, Song RXD, Santen RJ. Effects of tetramethoxystilbene on hormone-resistant breast cancer cells: biological and biochemical mechanisms of action. Cancer Res 2007; 67:5717-26. [PMID: 17575138 DOI: 10.1158/0008-5472.can-07-0056] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Secondary resistance to hormonal therapy for breast cancer commonly develops after an initial response to tamoxifen or aromatase inhibitors. Agents to abrogate these adaptive changes would substantially enhance the long-term benefits of hormonal therapy. Our studies with a stilbene derivative called TMS (2,3',4,5'-tetramethoxystilbene) identified unexpected effects with potential utility for treatment of breast tumors secondarily resistant to hormonal therapy. TMS was originally developed as an inhibitor of cytochrome P450 1B1 to block the conversion of estradiol to 4-OH-estradiol. While studying this agent in three models of hormone resistance, we detected direct antitumor effects not related to its role as an inhibitor of catecholestrogens. During examination of the mechanisms involved, we showed that treatment with 3 micromol/L TMS for 24 h inhibited tubulin polymerization and microtubule formation, caused a cell cycle block at the G2-M phase, and induced apoptosis. TMS also inhibited activated focal adhesion kinase (FAK), Akt, and mammalian target of rapamycin (mTOR) and stimulated c-jun-NH2-kinase and p38 mitogen-activated protein kinase activity. With respect to antitumor effects, TMS at a concentrations of 0.2 to 0.3 micromol/L inhibited the growth of long-term tamoxifen-treated MCF-7 cells by 80% and fulvestrant-treated MCF-7 cells by 70%. In vivo studies, involving 8 weeks of treatment with TMS via a 30-mg s.c. implant, reduced tumor volume of tamoxifen-resistant MCF-7 breast cancer xenografts by 53%. Our data suggest that TMS is a promising therapeutic agent because of its unique ability to block several pathways involved in the development of hormone resistance.
Collapse
Affiliation(s)
- Hoyong Park
- Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Balcer-Kubiczek EK, Attarpour M, Jiang J, Kennedy AS, Suntharalingam M. Cytotoxicity of Docetaxel (Taxotere ®) Used as a Single Agent and in Combination with Radiation in Human Gastric, Cervical and Pancreatic Cancer Cells. Chemotherapy 2006; 52:231-40. [PMID: 16899972 DOI: 10.1159/000094869] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 09/06/2005] [Indexed: 01/05/2023]
Abstract
BACKGROUND Docetaxel (Taxotere) has gained increasing attention in clinical applications. We investigated the cytotoxic and radiosensitizing potential of docetaxel at nanomolar concentrations in six cell lines derived from tumors that rarely respond to radiation or chemotherapy, with special consideration of mechanisms of resistance, including the p53 mutational status. METHODS Cells derived from carcinomas of the human stomach (p53 mutant Hs746T, p53 wild type AGS), cervix (p53 wild type CaSki, p53 mutant HeLa) or pancreas (p53 mutant BxPC3 and Capan-1) were treated for 24 h with docetaxel at various concentrations (0.1-5 nM) to obtain drug doses for inhibiting clonogenicity by approximately 50% (IC(50)). Cells were X-irradiated without docetaxel or after 24 h of docetaxel treatment at IC(50). Radiation doses ranged from 0 up to 10 Gy. Mitotic index, multinucleation, apoptosis and necrosis after 24 h of drug exposure at 1 nM were quantified in representative gastric and cervical cell lines by fluorescence microscopy. RESULTS Docetaxel treatment for 24 h resulted in a dose-dependent loss of clonogenicity, with 1.0 or 0.3 nM producing approximately 50% survival of gastric or cervix and pancreatic cells, respectively. After correction for the drug toxicity, the combination of isoeffective concentrations of docetaxel with graded X-ray doses resulted either in a moderate synergy or additivity. The dose reduction factors at the 50 and 20% survival levels were statistically greater than those for Hs746T or AGS cells. For CaSki, HeLa, BxPC3 or Capan-1 cells, the dose reduction factors were statistically not different from unity. CONCLUSION Docetaxel was active against tumor cells of different origins. Combined effects of docetaxel and radiation were at least additive and depended on the intrinsic sensitivity to drug alone. There was no significant evidence of drug-induced mitotic arrest. Compared to drug-resistant gastric cells, exposure to the drug alone of drug-sensitive cervical cells resulted in more severe multinucleation. The p53 status did not contribute directly to the effect of drug alone or in combination with radiation.
Collapse
Affiliation(s)
- Elizabeth K Balcer-Kubiczek
- Department of Radiation Oncology, University of Maryland School of Medicine and Greenebaum Cancer Center, Baltimore, 21201, USA.
| | | | | | | | | |
Collapse
|
17
|
Górka M, Daniewski WM, Gajkowska B, Lusakowska E, Godlewski MM, Motyl T. Autophagy is the dominant type of programmed cell death in breast cancer MCF-7 cells exposed to AGS 115 and EFDAC, new sesquiterpene analogs of paclitaxel. Anticancer Drugs 2005; 16:777-88. [PMID: 16027528 DOI: 10.1097/01.cad.0000171514.50310.85] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The molecular mechanism of cell death induced by AGS 115 and EFDAC, sesquiterpene analogs of paclitaxel, was investigated in human breast cancer MCF-7 cells. The study was carried out using laser scanning cytometry, homeostatic confocal microscopy, atomic force microscopy and electron microscopy. AGS 115 and EFDAC exhibited a microtubule-stabilizing effect as confirmed by a significant increase in alpha-tubulin aggregation. Both paclitaxel analogs also induced death in MCF-7 cells. Evaluation of biochemical and morphological features suggested that the major form of programmed cell death induced by AGS 115 and EFDAC was autophagy. This was confirmed by MAP I LC3 expression and the ultrastructural pattern revealed by electron microscopy. Surface images of cells undergoing autophagy showed that, unlike during apoptosis, the dimensions remained unchanged, but the surface of the cell was deformed. The occurrence of apoptosis was confirmed by the efflux of Smac/DIABLO from mitochondria, caspase-7 activation and DNA loss, and did not exceed 9.7%. Therefore, AGS 115 and EFDAC appear to be promising candidates for further investigation in anti-cancer therapy.
Collapse
Affiliation(s)
- Magdalena Górka
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw Agricultural University, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Ferlini C, Raspaglio G, Mozzetti S, Cicchillitti L, Filippetti F, Gallo D, Fattorusso C, Campiani G, Scambia G. The Seco-Taxane IDN5390 Is Able to Target Class III β-Tubulin and to Overcome Paclitaxel Resistance. Cancer Res 2005; 65:2397-405. [PMID: 15781655 DOI: 10.1158/0008-5472.can-04-3065] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A prominent mechanism of drug resistance to taxanes is the overexpression of class III beta-tubulin. The seco-taxane IDN5390 was chosen for its selective activity in paclitaxel-resistant cells with an overexpression of class III beta-tubulin. Moreover, the combined treatment paclitaxel/IDN5390 yielded a strong synergism, which was also evident in cell-free tubulin polymerization assays. In the presence of an anti-class III beta-tubulin as a blocking antibody, tubulin polymerization induced by paclitaxel and IDN5390 was enhanced and not affected, respectively, whereas synergism was abolished, thereby indicating that IDN5390 activity is not modulated by class III beta-tubulin levels. Such properties can be explained by taking into consideration the composition of class III beta-tubulin paclitaxel binding site; in fact, Ser277 interacting with paclitaxel C group in class I is replaced by an Arginine in class III. IDN5390 that has an open and flexible C ring and an acidic alpha-unsaturated enol-keton moiety better fits with class III beta-tubulin than paclitaxel at the binding site. Taking altogether, these findings indicate that the concomitant treatment IDN5390/paclitaxel is able to successfully target class I and III beta-tubulin and the combined use of two taxanes with diverse spectrum activity against tubulin isotypes could represent a novel approach to overcome paclitaxel resistance.
Collapse
Affiliation(s)
- Cristiano Ferlini
- Laboratory of Antineoplastic Pharmacology, Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 2005; 22:162-95. [PMID: 15806196 DOI: 10.1039/b402985m] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or in registration (current 31 December 2004) have been reviewed. Natural product derived drugs launched in the United States of America, Europe and Japan since 1998 and new natural product templates discovered since 1990 are discussed.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn #05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|
20
|
Beuria TK, Krishnakumar SS, Sahar S, Singh N, Gupta K, Meshram M, Panda D. Glutamate-induced assembly of bacterial cell division protein FtsZ. J Biol Chem 2003; 278:3735-41. [PMID: 12446699 DOI: 10.1074/jbc.m205760200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polymerization of FtsZ is a finely regulated process that plays an essential role in the bacterial cell division process. However, only a few modulators of FtsZ polymerization are known. We identified monosodium glutamate as a potent inducer of FtsZ polymerization. In the presence of GTP, glutamate enhanced the rate and extent of polymerization of FtsZ in a concentration-dependent manner; approximately 90% of the protein was sedimented as polymer in the presence of 1 m glutamate. Electron micrographs of glutamate-induced polymers showed large filamentous structures with extensive bundling. Furthermore, glutamate strongly stabilized the polymers against dilution-induced disassembly, and it decreased the GTPase activity of FtsZ. Calcium induced FtsZ polymerization and bundling of FtsZ polymers; interestingly, although 1 m glutamate produced a larger light-scattering signal than produced by 10 mm calcium, the amount of polymer sedimented in the presence of 1 m glutamate and 10 mm calcium was similar. Thus, the increased light scattering in the presence of glutamate must be due to its ability to induce more extensive bundling of FtsZ polymers than calcium. The data suggest that calcium and glutamate might induce FtsZ polymerization by different mechanisms.
Collapse
Affiliation(s)
- Tushar K Beuria
- School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | | | | | | | | | | | |
Collapse
|