1
|
Todisco M, Ding D, Szostak JW. Transient states during the annealing of mismatched and bulged oligonucleotides. Nucleic Acids Res 2024; 52:2174-2187. [PMID: 38348869 PMCID: PMC10954449 DOI: 10.1093/nar/gkae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information.
Collapse
Affiliation(s)
- Marco Todisco
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Effect of single-residue bulges on RNA double-helical structures: crystallographic database analysis and molecular dynamics simulation studies. J Mol Model 2017; 23:311. [DOI: 10.1007/s00894-017-3480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
|
3
|
Murtola M, Ghidini A, Virta P, Strömberg R. Zinc Ion-Dependent Peptide Nucleic Acid-Based Artificial Enzyme that Cleaves RNA-Bulge Size and Sequence Dependence. Molecules 2017; 22:molecules22111856. [PMID: 29109368 PMCID: PMC6150328 DOI: 10.3390/molecules22111856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 11/17/2022] Open
Abstract
In this report, we investigate the efficiency and selectivity of a Zn2+-dependent peptide nucleic acid-based artificial ribonuclease (PNAzyme) that cleaves RNA target sequences. The target RNAs are varied to form different sizes (3 and 4 nucleotides, nt) and sequences in the bulge formed upon binding to the PNAzyme. PNAzyme-promoted cleavage of the target RNAs was observed and variation of the substrate showed a clear dependence on the sequence and size of the bulge. For targets that form 4-nt bulges, we identified systems with an improved efficacy (an estimated half-life of ca 7–8 h as compared to 11–12 h for sequences studied earlier) as well as systems with an improved site selectivity (up to over 70% cleavage at a single site as compared to 50–60% with previous targets sequences). For targets forming 3-nt bulges, the enhancement compared to previous systems was even more pronounced. Compared to a starting point of targets forming 3-nt AAA bulges (half-lives of ca 21–24 h), we could identify target sequences that were cleaved with half-lives three times lower (ca 7–8 h), i.e., at rates similar to those found for the fastest 4-nt bulge system. In addition, with the 3-nt bulge RNA target site selectivity was improved even further to reach well over 80% cleavage at a specific site.
Collapse
Affiliation(s)
- Merita Murtola
- Department of Chemistry, University of Turku, 20014 Turku, Finland.
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 83 Huddinge, Stockholm, Sweden.
| | - Alice Ghidini
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 83 Huddinge, Stockholm, Sweden.
| | - Pasi Virta
- Department of Chemistry, University of Turku, 20014 Turku, Finland.
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 83 Huddinge, Stockholm, Sweden.
| |
Collapse
|
4
|
Lee WC, Lu SH, Lu MH, Yang CJ, Wu SH, Chen HM. Asymmetric bulges and mismatches determine 20-nt microRNA formation in plants. RNA Biol 2016; 12:1054-66. [PMID: 26383777 PMCID: PMC4615586 DOI: 10.1080/15476286.2015.1079682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Plant microRNAs (miRNAs) are predominantly 21 nucleotides (nt) long but non-canonical lengths of 22 and 20 nt are commonly observed in diverse plant species. While miRNAs longer than 21 nt can be attributed to the neglect of unpaired bases within asymmetric bulges by the ruler function of DICER-LIKE 1 (DCL1), how 20-nt miRNA is generated remains obscure. Analysis of small RNA data revealed that 20-nt miRNA can be divided into 3 main groups featured by atypical 3′ overhangs or shorter duplex regions. Asymmetric bulges or mismatches at specific positions are commonly observed within each group and were shown to be crucial for 20-nt miRNA formation. Analysis of DCL1 cleavage sites on 20-nt miRNA precursors suggests that these determinants might alter precursor structure or trigger 3′-end decay of mature miRNA. The results herein advance our understanding of miRNA biogenesis and demonstrate that the effect of asymmetric bulges on miRNA length could be position-dependent.
Collapse
Affiliation(s)
- Wen-Chi Lee
- a Agricultural Biotechnology Research Center; Academia Sinica ; Taipei , Taiwan
| | - Shin-Hua Lu
- a Agricultural Biotechnology Research Center; Academia Sinica ; Taipei , Taiwan
| | - Ming-Hsuan Lu
- b Jianguo Municipal High School ; Taipei , Taiwan.,c Institute of Plant and Microbial Biology; Academia Sinica ; Taipei , Taiwan.,d Present affiliations:School of Medicine; National Taiwan University; Taipei, Taiwan
| | - Chen-Jui Yang
- a Agricultural Biotechnology Research Center; Academia Sinica ; Taipei , Taiwan.,e Institute of Ecology and Evolutionary Biology; National Taiwan University; Taipei, Taiwan
| | - Shu-Hsing Wu
- c Institute of Plant and Microbial Biology; Academia Sinica ; Taipei , Taiwan
| | - Ho-Ming Chen
- a Agricultural Biotechnology Research Center; Academia Sinica ; Taipei , Taiwan
| |
Collapse
|
5
|
Dogandzhiyski P, Ghidini A, Danneberg F, Strömberg R, Göbel MW. Studies on Tris(2-aminobenzimidazole)-PNA Based Artificial Nucleases: A Comparison of Two Analytical Techniques. Bioconjug Chem 2015; 26:2514-9. [PMID: 26544527 DOI: 10.1021/acs.bioconjchem.5b00534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new peptide nucleic acid (PNA) construct carrying a tris(2-aminobenzimidazole) phosphodiester cleaver is presented. This non-metal-based artificial nuclease hydrolyzes RNA substrates that form a bulge upon binding to the PNA. Reaction rates depend on the bulge sequence. For conjugates of tris(2-aminobenzimidazole), substrate turnover is shown for the first time. Two methods of analysis for the kinetics are compared: IE-HPLC separation of oligonucleotide fragments and analysis of Cy5-labeled oligonucleotide fragments by denaturating PAGE on a DNA sequencer, respectively. The different methods give rates that are in the same range where, in general, the substrates for the sequencer method give slightly lower rates.
Collapse
Affiliation(s)
- Plamena Dogandzhiyski
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt , Max-von-Laue-Str. 7, D-60439 Frankfurt am Main, Germany
| | - Alice Ghidini
- Department of Biosciences and Nutrition, Karolinska Institutet , Novum, S-14157, Huddinge, Sweden
| | - Friederike Danneberg
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt , Max-von-Laue-Str. 7, D-60439 Frankfurt am Main, Germany
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet , Novum, S-14157, Huddinge, Sweden
| | - Michael W Göbel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt , Max-von-Laue-Str. 7, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Analysis of stacking overlap in nucleic acid structures: algorithm and application. J Comput Aided Mol Des 2014; 28:851-67. [DOI: 10.1007/s10822-014-9767-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
7
|
Kent JL, McCann MD, Phillips D, Panaro BL, Lim GF, Serra MJ. Non-nearest-neighbor dependence of stability for group III RNA single nucleotide bulge loops. RNA (NEW YORK, N.Y.) 2014; 20:825-34. [PMID: 24742935 PMCID: PMC4024637 DOI: 10.1261/rna.043232.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/21/2014] [Indexed: 05/24/2023]
Abstract
Thirty-five RNA duplexes containing single nucleotide bulge loops were optically melted and the thermodynamic parameters for each duplex determined. The bulge loops were of the group III variety, where the bulged nucleotide is either a AG/U or CU/G, leading to ambiguity to the exact position and identity of the bulge. All possible group III bulge loops with Watson-Crick nearest-neighbors were examined. The data were used to develop a model to predict the free energy of an RNA duplex containing a group III single nucleotide bulge loop. The destabilization of the duplex by the group III bulge could be modeled so that the bulge nucleotide leads to the formation of the Watson-Crick base pair rather than the wobble base pair. The destabilization of an RNA duplex caused by the insertion of a group III bulge is primarily dependent upon non-nearest-neighbor interactions and was shown to be dependent upon the stability of second least stable stem of the duplex. In-line structure probing of group III bulge loops embedded in a hairpin indicated that the bulged nucleotide is the one positioned further from the hairpin loop irrespective of whether the resulting stem formed a Watson-Crick or wobble base pair. Fourteen RNA hairpins containing group III bulge loops, either 3' or 5' of the hairpin loop, were optically melted and the thermodynamic parameters determined. The model developed to predict the influence of group III bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability.
Collapse
|
8
|
Schellenberg MJ, Dul EL, MacMillan AM. Structural model of the p14/SF3b155 · branch duplex complex. RNA (NEW YORK, N.Y.) 2011; 17:155-65. [PMID: 21062891 PMCID: PMC3004057 DOI: 10.1261/rna.2224411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 10/01/2010] [Indexed: 05/30/2023]
Abstract
Human p14 (SF3b14), a component of the spliceosomal U2 snRNP, interacts directly with the pre-mRNA branch adenosine within the context of the bulged duplex formed between the pre-mRNA branch region and U2 snRNA. This association occurs early in spliceosome assembly and persists within the fully assembled spliceosome. Analysis of the crystal structure of a complex containing p14 and a peptide derived from p14-associated SF3b155 combined with the results of cross-linking studies has suggested that the branch nucleotide interacts with a pocket on a non-canonical RNA binding surface formed by the complex. Here we report a structural model of the p14 · bulged duplex interaction based on a combination of X-ray crystallography of an adenine p14/SF3b155 peptide complex, biochemical comparison of a panel of disulfide cross-linked protein-RNA complexes, and small-angle X-ray scattering (SAXS). These studies reveal specific recognition of the branch adenosine within the p14 pocket and establish the orientation of the bulged duplex RNA bound on the protein surface. The intimate association of one surface of the bulged duplex with the p14/SF3b155 peptide complex described by this model buries the branch nucleotide at the interface and suggests that p14 · duplex interaction must be disrupted before the first step of splicing.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
9
|
Minetti CASA, Remeta DP, Dickstein R, Breslauer KJ. Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res 2010; 38:97-116. [PMID: 19946018 PMCID: PMC2800203 DOI: 10.1093/nar/gkp1036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 12/24/2022] Open
Abstract
DNA bulges are biologically consequential defects that can arise from template-primer misalignments during replication and pose challenges to the cellular DNA repair machinery. Calorimetric and spectroscopic characterizations of defect-containing duplexes reveal systematic patterns of sequence-context dependent bulge-induced destabilizations. These distinguishing energetic signatures are manifest in three coupled characteristics, namely: the magnitude of the bulge-induced duplex destabilization (DeltaDeltaG(Bulge)); the thermodynamic origins of DeltaDeltaG(Bulge) (i.e. enthalpic versus entropic); and, the cooperativity of the duplex melting transition (i.e. two-state versus non-two state). We find moderately destabilized duplexes undergo two-state dissociation and exhibit DeltaDeltaG(Bulge) values consistent with localized, nearest neighbor perturbations arising from unfavorable entropic contributions. Conversely, strongly destabilized duplexes melt in a non-two-state manner and exhibit DeltaDeltaG(Bulge) values consistent with perturbations exceeding nearest-neighbor expectations that are enthalpic in origin. Significantly, our data reveal an intriguing correlation in which the energetic impact of a single bulge base centered in one strand portends the impact of the corresponding complementary bulge base embedded in the opposite strand. We discuss potential correlations between these bulge-specific differential energetic profiles and their overall biological implications in terms of DNA recognition, repair and replication.
Collapse
Affiliation(s)
| | | | | | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers – The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Jeong HS, Kang S, Lee JY, Kim BH. Probing specific RNA bulge conformations by modified fluorescent nucleosides. Org Biomol Chem 2009; 7:921-5. [DOI: 10.1039/b816768k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Murtola M, Strömberg R. PNA based artificial nucleases displaying catalysis with turnover in the cleavage of a leukemia related RNA model. Org Biomol Chem 2008; 6:3837-42. [PMID: 18843415 DOI: 10.1039/b810106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several peptide nucleic acid based artificial nucleases (PNAzymes) are designed to create a bulge in the target RNA, which is a short model of the leukemia related bcr/abl mRNA. The target RNA is cleaved by the PNAzymes with a half-life of down to 11 h (using a 1 : 1 ratio of PNA-conjugate to target) and only upon base-pairing with the substrate. The PNA based systems are also shown to act in a catalytic fashion with turnover of substrate and are thus the first reported peptide nucleic acid based artificial RNA-cleaving enzymes.
Collapse
Affiliation(s)
- Merita Murtola
- Department of Biosciences and Nutrition, Karolinska Institutet Novum, 14157 Huddinge, Sweden
| | | |
Collapse
|
12
|
Popenda L, Adamiak RW, Gdaniec Z. Bulged Adenosine Influence on the RNA Duplex Conformation in Solution. Biochemistry 2008; 47:5059-67. [DOI: 10.1021/bi7024904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lukasz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Ryszard W. Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
13
|
Rodríguez-Casado A, Bartolomé J, Carreño V, Molina M, Carmona P. Structural characterization of the 5' untranslated RNA of hepatitis C virus by vibrational spectroscopy. Biophys Chem 2006; 124:73-9. [PMID: 16824669 DOI: 10.1016/j.bpc.2006.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 01/04/2023]
Abstract
Raman and FTIR spectroscopy have been used to characterize the structure of 5'untranslated region (5'UTR, 342-mer RNA) of the HCV genome. The study of the 750-850 cm(-1) Raman spectral domain of the ribose-phosphate backbone reveals that the percentage of nucleobases involved in double helix-loop junctions is 19+/-1%, which is very close to that of a theoretical secondary structure model (18.7%) proposed on the basis of comparative sequence analysis and thermodynamic modelling. In addition, about 68+/-2% of the bases are helically ordered having C(3')-endo ribofuranose pucker. FTIR-monitored H/D exchange provides the following results: (a) base-paired guanine and cytosine nucleobases show the lowest rate of isotopic exchange, and some synchronous intensity changes of marker bands of A.U pair and single stranded adenine are consistent with the presence of A(*)A.U triplets; (b) the vibrational coupling between the ribose ether C-O stretching and 2'OH bending motions reveals that helical regions of 5'UTR RNA are characterized by hydrogen bonding between the 2'OH ribose groups and the ether oxygen atoms of neighbouring ribose residues.
Collapse
|
14
|
|
15
|
Pan B, Shi K, Sundaralingam M. Base-tetrad swapping results in dimerization of RNA quadruplexes: implications for formation of the i-motif RNA octaplex. Proc Natl Acad Sci U S A 2006; 103:3130-4. [PMID: 16492787 PMCID: PMC1413875 DOI: 10.1073/pnas.0507730103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Indexed: 11/18/2022] Open
Abstract
Nucleic acids adopt different multistranded helical architectures to perform various biological functions. Here, we report a crystal structure of an RNA quadruplex containing "base-tetrad swapping" and bulged nucleotide at 2.1-Angstroms resolution. The base-tetrad swapping results in a dimer of quadruplexes with an intercalated octaplex fragment at the 5' end junction. The intercalated base tetrads provide the basic repeat unit for constructing a model of intercalated RNA octaplex. The model we obtained shows fundamentally different characteristics from duplex, triplex, and quadruplex. We also observed two different orientations of bulged uridine residues that are related to the interaction with surroundings. This structural evidence reflects the conformational flexibility of bulged nucleotides in RNA quadruplexes and implies the potential roles of bulged nucleotides as recognition and interaction sites in RNA-protein and RNA-RNA interactions.
Collapse
Affiliation(s)
- Baocheng Pan
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street Southeast, Minneapolis, MN 55455
| | - Muttaiya Sundaralingam
- Departments of Chemistry and Biochemistry, Ohio State University, 200 Johnston Laboratory, 176 West 19th Avenue, Columbus, OH 43210-1002; and
| |
Collapse
|
16
|
Barthel A, Zacharias M. Conformational transitions in RNA single uridine and adenosine bulge structures: a molecular dynamics free energy simulation study. Biophys J 2006; 90:2450-62. [PMID: 16399833 PMCID: PMC1403169 DOI: 10.1529/biophysj.105.076158] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extra unmatched nucleotides (single base bulges) are common structural motifs in folded RNA molecules and can participate in RNA-ligand binding and RNA tertiary structure formation. Often these processes are associated with conformational transitions in the bulge region such as flipping out of the bulge base from an intrahelical stacked toward a looped out state. Knowledge of the flexibility of bulge structures and energetics of conformational transitions is an important prerequisite to better understand the function of this RNA motif. Molecular dynamics simulations were performed on single uridine and adenosine bulge nucleotides at the center of eight basepair RNA molecules and indicated larger flexibility of the bulge bases compared to basepaired regions. The umbrella sampling method was applied to study the bulge base looping out process and accompanying conformational and free energy changes. Looping out toward the major groove resulted in partial disruption of adjacent basepairs and was found to be less favorable compared to looping out toward the minor groove. For both uridine and adenosine bulges, a positive free energy change for full looping out was obtained which was approximately 1.5 kcal mol-1 higher in the case of the adenosine compared to the uridine bulge system. The simulations also indicated stable partially looped out states with the bulge bases located in the RNA minor groove and forming base triples with 5'-neighboring basepairs. In the case of the uridine bulge this state was more stable than the intrahelical stacked bulge structure. Induced looping out toward the minor groove involved crossing of an energy barrier of approximately 3.5 kcal mol-1 before reaching the base triple state. A continuum solvent analysis of intermediate bulge states indicated that electrostatic interactions stabilize looped out and base triple states, whereas van der Waals interactions and nonpolar contributions favor the stacked bulge conformation.
Collapse
Affiliation(s)
- André Barthel
- School of Engineering and Science, International University Bremen, D-28759 Bremen, Germany
| | | |
Collapse
|
17
|
Sandbrink J, Ossipov D, Aström H, Strömberg R. Investigation of potential RNA bulge stabilizing elements. J Mol Recognit 2005; 18:318-26. [PMID: 15756640 DOI: 10.1002/jmr.736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a part of our interest in recognition and cleavage of RNA we carried out thermal melting studies with the aim of screening a number of simple oligonucleotide modifications for their potential as modifying elements for RNA bulge stabilizing oligonucleotides. A specific model system from our studies on oligonucleotide-based artificial nuclease (OBAN) systems was chosen and the bulge size was varied from one to five nucleotides. Introduction of single 2'-modified nucleoside moieties (2'-O-methyl, 2'-deoxy and 2'-deoxy-2'-amino) with different conformational preferences adjacent to the bulge revealed that a higher preference for the north conformers gave more stable bulges across the whole range of bulge sizes. Changing a bulge closing a G-U wobble base pair to a G-C pair resulted in the interesting observation that, although the fully complementary complex and small bulges were highly stabilized, there was little difference in the stability of the larger bulges. The wobble base pair even gave a slight stabilization of the 5 nt bulge system. Introduction of a uridine C-5 linker with a single ammonium group was clearly bulge stabilizing (DeltaT(m) + 4.6 to + 5.4 degrees C for the three most stabilized bulges), although with limited selectivity for different bulge sizes since the fully complementary duplex was also stabilized. Introduction of a naphthoyl group on a 2'-aminolinker mostly gave a destabilizing effect, while introduction of a 5-aminoneocuproine moiety on the same linker resulted in stabilization of all bulges, in particular those with two or four unpaired nucleotides (DeltaT(m) + 3.6 and + 2.9 degrees C respectively). The aromatic groups destabilize the fully complementary duplex, resulting in higher selectivity towards stabilization of bulges. A combination of the studied partial element should be suitable for future designs of modified oligonucleotides that, apart from standard base pairing, can also provide additional non-Watson-Crick recognition of RNA.
Collapse
Affiliation(s)
- Jessica Sandbrink
- Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Kuznetsova IL, Zenkova MA, Gross HJ, Vlassov VV. Enhanced RNA cleavage within bulge-loops by an artificial ribonuclease. Nucleic Acids Res 2005; 33:1201-12. [PMID: 15731340 PMCID: PMC549568 DOI: 10.1093/nar/gki264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cleavage of phosphodiester bonds by small ribonuclease mimics within different bulge-loops of RNA was investigated. Bulge-loops of different size (1–7 nt) and sequence composition were formed in a 3′ terminal fragment of influenza virus M2 RNA (96 nt) by hybridization of complementary oligodeoxynucleotides. Small bulges (up to 4 nt) were readily formed upon oligonucleotide hybridization, whereas hybridization of the RNA to the oligonucleotides designed to produce larger bulges resulted in formation of several alternative structures. A synthetic ribonuclease mimic displaying Pyr–Pu cleavage specificity cleaved CpA motifs located within bulges faster than similar motifs within the rest of the RNA. In the presence of 10 mM MgCl2, 75% of the cleavage products resulted from the attack of this motif. Thus, selective RNA cleavage at a single target phosphodiester bond was achieved by using bulge forming oligonucleotides and a small ribonuclease A mimic.
Collapse
Affiliation(s)
| | - Marina A. Zenkova
- To whom correspondence should be addressed. Tel: +7 3832 333761; Fax: +7 3832 333761;
| | - Hans J. Gross
- Institute of Biochemistry, BiocenterAm Hubland, D-97074 Würzburg, Germany
| | | |
Collapse
|
19
|
Nakano SI, Uotani Y, Uenishi K, Fujii M, Sugimoto N. Site-Selective RNA Cleavage by DNA Bearing a Base Pair-Mimic Nucleoside. J Am Chem Soc 2004; 127:518-9. [PMID: 15643864 DOI: 10.1021/ja045445s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have synthesized the deoxyadenosine derivative tethering a phenyl group (X), which mimics the Watson-Crick A/T base pair. The RNA/DNA hybrid duplexes containing X in the middle of the DNA sequence showed a similar thermal stability regardless of the ribonucleotide species (A, G, C, or U) opposite to X, probably because of the phenyl group stacking inside of the duplex accompanied by the opposite ribonucleotide base flipped in an extrahelical position. The RNA strand hybridized with the DNA strand bearing X was cleaved on the 3'-side of the ribonucleotide opposite to X in the presence of MgCl2, and the RNA sequence to be cleaved was not restricted. The site-specific RNA hydrolysis suggests that the DNA strand bearing X has the advantage of the site-selective base flipping in the target sequence and the development of a "universal deoxyribozyme" to exclusively cleave a target RNA sequence.
Collapse
Affiliation(s)
- Shu-ichi Nakano
- Frontier Institute for Biomolecular Engineering Research and Department of Chemistry, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | | | | | |
Collapse
|
20
|
Banyay M, Sandbrink J, Strömberg R, Gräslund A. Characterization of an RNA bulge structure by Fourier transform infrared spectroscopy. Biochem Biophys Res Commun 2004; 324:634-9. [PMID: 15474474 DOI: 10.1016/j.bbrc.2004.09.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 11/28/2022]
Abstract
There may be several advantages associated with an antisense oligonucleotide that induces a bulged structure into its RNA target molecule. Many structures of RNA bulges are elucidated from single-stranded RNA models. However, a two-component system is the minimum requirement for a realistic antisense model. We have used Fourier transform infrared spectroscopy to investigate a single-stranded RNA oligonucleotide with known NMR solution structure, constructed to model a five nucleotide bulge, and its two-component oligonucleotide counterpart. The infrared spectra show A-helical base-paired stems and non-base-paired loops in both systems. The nucleosides are mainly in an anti-conformation. Both N-type and S-type of sugar puckers can be inferred from the infrared region sensitive to sugar conformations. The S-type of sugar pucker is likely to be associated with the nucleotides in the bulge. The FTIR results display an overall structural similarity between the two model systems.
Collapse
Affiliation(s)
- Martina Banyay
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Stockholm SE-106 91, Sweden
| | | | | | | |
Collapse
|
21
|
Kurz K, Göbel MW. Hydrolytical Cleavage of TAR-RNA, thetrans-Activation Responsive Region of HIV-1, by a Bis(guanidinium) Catalyst Attached to Arginine. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19960790719] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Kurz K. Hydrolytische Spaltung von Nucleinsäuren-vom Enzymmechanismus zum Enzymmodell. CHEM UNSERER ZEIT 2004. [DOI: 10.1002/ciuz.19980320206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Aström H, Strömberg R. Synthesis of new OBAN's and further studies on positioning of the catalytic group. Org Biomol Chem 2004; 2:1901-7. [PMID: 15227543 DOI: 10.1039/b403652b] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two new zinc ion dependent oligonucleotide based artificial nucleases (OBAN's) have been synthesized. These consist of 2'-O-methyl modified RNA oligomers conjugated to 5-amino-2,9-dimethylphenanthroline (neocuproine)via a urea linker. OBAN 4 carries the catalytic group on a linker extending from the C-4 of an internal cytosine moiety. OBAN 5 has two neocuproine units attached, each to linkers extending from the C-5 position of uridine moieties, one placed internally and the other at the at the 5'-end of the oligonucleotide. The key step in the synthesis of the OBAN systems is conjugation of the catalytic group to the respective amino linkers of the modified oligonucleotides. This is achieved by first converting the 5-amino-2,9-dimethylphenanthroline to the phenylcarbamate. The reaction of this neocuproine phenylcarbamate with the oligonucleotide carrying one or two primary aliphatic amines in aqueous buffer (at pH 8.5) leads to nearly quantitative formation of the urea-linked conjugates. Both OBAN systems were found to cleave RNA in the bulged out regions formed from the non-complementary part of the target sequences, in the presence of Zn(II) ions. Differences in efficiency between these and previously reported systems are discussed.
Collapse
Affiliation(s)
- Hans Aström
- Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, S-17177, Stockholm, Sweden
| | | |
Collapse
|
24
|
Madder A, Ehrl R, Strömberg R. Stabilisation of RNA bulges by oligonucleotide complements containing an adenosine analogue. Chembiochem 2004; 4:1194-200. [PMID: 14613111 DOI: 10.1002/cbic.200300531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Incorporation of 2'-deoxy-2'-beta-(1-naphthylmethyl)tubercidin into an oligodeoxyribonucleotide mostly has little or a slightly negative effect on the T(m) values of complexes with DNA complements. With the same naphthylmethyl-substituted nucleoside at the 3'-end of a 2'-O-methyloligoribonucleotide, however, a stabilisation of 1-2 degrees C in the corresponding complexes with both DNA and RNA is observed. When the target sequence is an RNA fragment forming a two- or three-nucleotide bulge, complexes with (naphthylmethyl)tubercidin-modified oligodeoxyribonucleotides, as well as with the corresponding 2'-O-methyloligoribonucleotides, give stabilisations of 1-2 degrees C for the three-nucleotide bulge and of almost 4 degrees C for the two-nucleotide bulge. This stabilisation is specific to RNA, since the corresponding complexes with the DNA fragments do not display this effect. Thus, the (naphthylmethyl)tubercidin-containing oligonucleotides are the first reported oligonucleotide modifications that specifically stabilise bulged RNA.
Collapse
Affiliation(s)
- Annemieke Madder
- Division of Organic and Bioorganic Chemistry, MBB, Scheele Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Gerdeman MS, Henkin TM, Hines JV. Solution structure of the Bacillus subtilis T-box antiterminator RNA: seven nucleotide bulge characterized by stacking and flexibility. J Mol Biol 2003; 326:189-201. [PMID: 12547201 DOI: 10.1016/s0022-2836(02)01339-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The T-box transcription antitermination regulatory system is an important mechanism for regulation of expression of aminoacyl-tRNA synthetase, amino acid biosynthesis and transporter gene expression in Gram-positive bacteria. Antitermination is dependent on a complex set of interactions between uncharged tRNA and the leader region of the mRNA of the regulated gene. Here, we report the solution structure of a model RNA, based on the Bacillus subtilis tyrS antiterminator, determined to an rmsd of 3.47A for all nine converged structures and 2.66A for the seven structures representing the consensus family. The antiterminator is comprised of two short helices with an intervening 7nt bulge. The bulge region of the antiterminator, which ultimately interacts with the acceptor end of tRNA, exhibits extensive stacking at the 3' end (encompassing the highly conserved ACC residues) and is the site of a pronounced kink between the two flanking helices. The 5' end of the bulge exhibits evidence of conformational flexibility. On the basis of the structural studies, there is no indication that the bases at the 5' end of the bulge that ultimately base-pair with tRNA are pre-organized for binding. Instead, the data are consistent with a model in which the stacking-induced structure at the 3' end of the bulge may facilitate the pre-selection of a set of conformations for the tRNA to sample during binding.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Base Pairing
- Base Sequence
- Conserved Sequence
- Gene Expression Regulation, Bacterial
- Models, Molecular
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Nucleotides/chemistry
- Nucleotides/genetics
- Pliability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Solutions
- Terminator Regions, Genetic/genetics
Collapse
Affiliation(s)
- Melinda S Gerdeman
- Division of Medicinal Chemistry, College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
26
|
Xiong Y, Deng J, Sudarsanakumar C, Sundaralingam M. Crystal structure of an RNA duplex r(gugucgcac)(2) with uridine bulges. J Mol Biol 2001; 313:573-82. [PMID: 11676540 DOI: 10.1006/jmbi.2001.5045] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a nonamer RNA duplex with a uridine bulge in each strand, r(gugucgcac)(2), was determined at 1.4 A resolution. The structure was solved by multiple anomalous diffraction phasing method using a three-wavelength data set collected at the Advanced Protein Source and refined to a final R(work)/R(free) of 21.2 %/23.4 % with 33,271 independent reflections (Friedel pairs unmerged). The RNA duplex crystallized in the tetragonal space group P4(1)22 with two independent molecules in the asymmetric unit. The unit cell dimensions are a=b=47.18 A and c=80.04 A. The helical region of the nonamer adopts the A-form conformation. The uridine bulges assume similar conformations, with uracils flipping out and protruding into the minor groove. The presence of the bulge induces very large twist angles (approximately +50 degrees) between the base-pairs flanking the bulges while causing profound kinks in the helix axis at the bulges. This severe twist and the large kink in turn produces a very narrow major groove at the middle of the molecule. The ribose sugars of the guanosines before the bulges adopt the C2'-endo conformation while the rest, including the bulges, are in the C3'-endo conformation. The intrastrand phosphate-phosphate (P-P) distance of the phosphate groups flanking the bulges (approximately 4.4 A) are significantly shorter than the average P-P distance in the duplex (6.0 A). This short distance between the two phosphate groups brings the non-bridging oxygen atoms close to each other where a calcium ion is bound to each strand. The calcium ions in molecule 1 are well defined while the calcium ions in molecule 2 are disordered.
Collapse
Affiliation(s)
- Y Xiong
- Department of Chemistry, The Ohio State University Biological Macromolecular Structure Center, 012 Rightmire Hall, 1060 Carmack Rd., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
27
|
Feig M, Zacharias M, Pettitt BM. Conformations of an adenine bulge in a DNA octamer and its influence on DNA structure from molecular dynamics simulations. Biophys J 2001; 81:352-70. [PMID: 11423420 PMCID: PMC1301517 DOI: 10.1016/s0006-3495(01)75705-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Molecular dynamics simulations have been applied to the DNA octamer d(GCGCA-GAAC). d(GTTCGCGC), which has an adenine bulge at the center to determine the pathway for interconversion between the stacked and extended forms. These forms are known to be important in the molecular recognition of bulges. From a total of ~35 ns of simulation time with the most recent CHARMM27 force field a variety of distinct conformations and subconformations are found. Stacked and fully looped-out forms are in excellent agreement with experimental data from NMR and x-ray crystallography. Furthermore, in a number of conformations the bulge base associates with the minor groove to varying degrees. Transitions between many of the conformations are observed in the simulations and used to propose a complete transition pathway between the stacked and fully extended conformations. The effect on the surrounding DNA sequence is investigated and biological implications of the accessible conformational space and the suggested transition pathway are discussed, in particular for the interaction of the MS2 replicase operator RNA with its coat protein.
Collapse
Affiliation(s)
- M Feig
- Department of Chemistry and Institute for Molecular Design, University of Houston, Houston, Texas 77204-5641, USA
| | | | | |
Collapse
|
28
|
Affiliation(s)
- K Michaelis
- Institut für Organische Chemie der Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | |
Collapse
|
29
|
Sarzynska J, Kulinski T, Nilsson L. Conformational dynamics of a 5S rRNA hairpin domain containing loop D and a single nucleotide bulge. Biophys J 2000; 79:1213-27. [PMID: 10968986 PMCID: PMC1301018 DOI: 10.1016/s0006-3495(00)76376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Molecular modeling and molecular dynamics have been employed to study the conformation and flexibility of a 15-nucleotide fragment of the plant 5S rRNA containing loop D and a single uridine bulge. Two different model built initial structures were used: one with the bulge localized inside the helical stem and another with the bulge pointing out from the helix. Several independent 700-ps-long trajectories in aqueous solution with Na(+) conterions were produced for each starting structure. The bulge nucleotide inside the helix stayed in two main conformations, both of which affected the geometry of the stem part opposite the bulge. When the bulge nucleotide was located outside the helix, we found high base mobility and local backbone flexibility. The dynamics of the hydrogen bond network and conformational changes from a direct to a water mediated hydrogen bond in the sheared G-A basepair in the tetraloop was described. Our results correlate with lead ion induced cleavage patterns in 5S rRNA. Sites resistant to nonspecific lead cleavage appeared in all our simulations as the most rigid fragments independent of the localization of the bulge nucleotide.
Collapse
Affiliation(s)
- J Sarzynska
- Center for Structural Biochemistry, Department of Bioscience at NOVUM, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
30
|
Thiviyanathan V, Guliaev AB, Leontis NB, Gorenstein DG. Solution conformation of a bulged adenosine base in an RNA duplex by relaxation matrix refinement. J Mol Biol 2000; 300:1143-54. [PMID: 10903860 DOI: 10.1006/jmbi.2000.3931] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bulges are common structural motifs in RNA secondary structure and are thought to play important roles in RNA-protein and RNA-drug interactions. Adenosine bases are the most commonly occurring unpaired base in double helical RNA secondary structures. The solution conformation and dynamics of a 25-nucleotide RNA duplex containing an unpaired adenosine, r(GGCAGAGUGCCGC): r(GCGGCACCUGCC) have been studied by NMR spectroscopy and MORASS iterative relaxation matrix structural refinement. The results show that the bulged adenosine residue stacks into the RNA duplex with little perturbation around the bulged region. Most of the bases in the RNA duplex adopt C(3)'-endo conformation, exhibiting the N-type sugar pucker as found in the A form helices. The sugars of the bulged residue and the 5' flanking residue to it are found to exhibit C(2)'-endo conformation. None of the residues are in syn conformation.
Collapse
Affiliation(s)
- V Thiviyanathan
- Sealy Center for Structural Biology and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-1157, USA
| | | | | | | |
Collapse
|
31
|
Sudarsanakumar C, Xiong Y, Sundaralingam M. Crystal structure of an adenine bulge in the RNA chain of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag). J Mol Biol 2000; 299:103-12. [PMID: 10860725 DOI: 10.1006/jmbi.2000.3730] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystal structure of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag), with an adenine bulge in the polypurine RNA strand was determined at 2.3 A resolution. The structure was solved by the molecular replacement method and refined to a final R-factor of 19.9% (Rfree 22.2%). The hybrid duplex crystallized in the space group I222 with unit cell dimensions, a = 46.66 A, b = 47.61 A and c = 54.05 A, and adopts the A-form conformation. All RNA and DNA sugars are in the C3'-endo conformation, the glycosyl angles in anti conformation and the majority of the C4'-C5' torsion angles in g+ except two trans angles, in conformity with the C3'-endo rigid nucleotide hypothesis. The adenine bulge is looped out and it is also in the anti C3'-endo conformation. The bulge is involved in a base-triple (C.g)*a interaction with the end base-pair (C9.g10) in the minor groove of a symmetry-related molecule. The 2' hydroxyl group of g15 is hydrogen bonded to O2P and O5' of g17, skipping the bulged adenine a16 and stabilizing the sugar-phosphate backbone of the hybrid. The hydrogen bonding and the backbone conformation at the bulged adenine site is very similar to that found in the crystal structure of a protein-RNA complex.
Collapse
Affiliation(s)
- C Sudarsanakumar
- Department of Chemistry, Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
32
|
Abstract
The harmonic mode analysis method was used to characterize the conformational deformability of regular Watson-Crick paired, mismatch- and bulge-containing RNA. Good agreement between atomic Debye-Waller factors derived from x-ray crystallography of a regular RNA oligonucleotide and calculated atomic fluctuations was obtained. Calculated helical coordinate fluctuations showed a small sequence dependence of up to approximately 30-50%. A negative correlation between motions at a given base pair step and neighboring steps was found for most helical coordinates. Only very few calculated modes contribute significantly to global motions such as bending, twisting, and stretching of the RNA molecules. With respect to a local helical description of the RNA helix our calculations suggest that RNA bending is mostly due to a periodic change in the base pair step descriptors slide and roll. The presence of single guanine:uridine or guanine:adenine mismatches had little influence on the calculated RNA flexibility. In contrast, for tandem guanine:adenine base pairs the harmonic mode approach predicts a significantly reduced conformational flexibility in the case of a sheared arrangement and slightly enhanced flexibility for a face-to-face (imino proton) pairing relative to regular RNA. The presence of a single extra adenine bulge nucleotide stacked between flanking sequences resulted in an increased local atomic mobility around the bulge site (approximately 40%) and a slightly enhanced global bending flexibility. For an adenine bulge nucleotide in a looped-out conformation a strongly enhanced bulge nucleotide mobility but no increased bending flexibility compared to regular RNA was found.
Collapse
Affiliation(s)
- M Zacharias
- Institute for Molecular Biotechnology, 07745 Jena, Germany.
| | | |
Collapse
|
33
|
Abstract
RNA bulges constitute versatile structural motifs in the assembly of RNA architectures. Three-dimensional structures of RNA molecules and their complexes reveal the role of bulges in RNA architectures and illustrate the molecular mechanisms by which they confer intramolecular interactions and intermolecular recognition.
Collapse
Affiliation(s)
- T Hermann
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
34
|
Nakatani K, Sando S, Saito I. Recognition of a Single Guanine Bulge by 2-Acylamino-1,8-naphthyridine. J Am Chem Soc 2000. [DOI: 10.1021/ja992956j] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kazuhiko Nakatani
- Contribution from the Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, CREST, Japan Science and Technology Corporation, Kyoto 606-8501, Japan
| | - Shinsuke Sando
- Contribution from the Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, CREST, Japan Science and Technology Corporation, Kyoto 606-8501, Japan
| | - Isao Saito
- Contribution from the Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, CREST, Japan Science and Technology Corporation, Kyoto 606-8501, Japan
| |
Collapse
|
35
|
Ippolito JA, Steitz TA. The structure of the HIV-1 RRE high affinity rev binding site at 1.6 A resolution. J Mol Biol 2000; 295:711-7. [PMID: 10656783 DOI: 10.1006/jmbi.1999.3405] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a 28 nt RNA fragment containing the human immunodeficiency virus type 1 (HIV-1) Rev response element high affinity binding site for Rev protein has been solved at 1.6 A resolution. The overall structure of the RRE helix is greatly distorted from A-form geometry by the presence of two purine-purine base-pairs and two single nucleotide bulges. G48 and G71 form a Hoogsteen-type asymmetric base-pair with G71 adopting a syn conformation. The non-canonical regions in the unliganded Rev response element molecule narrow the major groove width with respect to standard A-RNA. The Rev response element structure observed here represents a closed form of the Rev binding site and differs from conformations of the RNA observed previously by solution NMR studies.
Collapse
Affiliation(s)
- J A Ippolito
- Department of Molecular Biophysics, Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
36
|
Abstract
The powerful explanatory paradigm of molecular biology requiring form to co-evolve with function has again been proven successful when, over the recent two decades, a wealth of biological functions have been uncovered for RNA. Previously considered as a mere mediator of the genetic code, RNA is now acknowledged as a key player in a wide variety of cellular processes. Along with the discovery of novel biological functions of RNA molecules, a number of RNA three-dimensional structures have been solved which beautifully demonstrate the molecular adaptability which allows RNA to participate as a key player in these functions. A distinct repertoire of molecular motifs provides a basis for the assembly of complex RNA tertiary architectures.
Collapse
Affiliation(s)
- T Hermann
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
37
|
Ennifar E, Yusupov M, Walter P, Marquet R, Ehresmann B, Ehresmann C, Dumas P. The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure 1999; 7:1439-49. [PMID: 10574792 DOI: 10.1016/s0969-2126(00)80033-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND An important step in retroviral replication is dimerization of the genomic RNA prior to encapsidation. Dimerization is initiated by the formation of a transient 'kissing-loop complex' that is thought to be subsequently matured into an extended duplex by the nucleocapsid protein (NCp). Although chemical probing and nuclear magnetic resonance spectroscopy have provided insight into the structure of the kissing-loop structure, no structural information concerning the extended-duplex state is available so far. RESULTS The structure of a minimal HIV-1 RNA dimerization initiation site has been solved at 2.3 A resolution in two different space groups. It reveals a 22 base pair extended duplex with two noncanonical Watson-Crick-like G-A mismatches, each adjacent to a bulged-out adenine. The structure shows significant asymmetry in deep groove width and G-A base-pair conformations. A network of eight magnesium cations was clearly identified, one being unusually chelated by the 3' phosphate of each bulge across an extremely narrowed deep major groove. CONCLUSIONS These crystal structures represent the putative matured form of the initial kissing-loop complex. They show the ability of this self-complementary RNA hairpin loop to acquire a more stable extended duplex structure. Both bulged adenines form a striking 'base grip' that could be a recognition signal, either in cis for another viral RNA sequence, or in trans for a protein, possibly the NCp. Magnesium binding might be important to promote and stabilize the observed extrahelical conformation of these bulges.
Collapse
Affiliation(s)
- E Ennifar
- UPR9002 - Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg cedex, F-67084, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Zacharias M, Sklenar H. Conformational analysis of single-base bulges in A-form DNA and RNA using a hierarchical approach and energetic evaluation with a continuum solvent model. J Mol Biol 1999; 289:261-75. [PMID: 10366504 DOI: 10.1006/jmbi.1999.2760] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The analysis and prediction of non-canonical structural motifs in RNA is of great importance for an understanding of the function and design of RNA structures. A hierarchical method has been employed to generate a large variety of sterically possible conformations for a single-base adenine bulge structure in A -form DNA and RNA. A systematic conformational search was performed on the isolated bulge motif and neighboring nucleotides under the constraint to fit into a continuous helical structure. These substructures were recombined with double-stranded DNA or RNA. Energy minimization resulted in more than 300 distinct bulge conformations. Energetic evaluation using a solvation model based on the finite-difference Poisson-Boltzmann method identified three basic classes of low-energy structures. The three classes correspond to conformations with the bulge base stacked between flanking nucleotides (I), location of the bulge base in the minor groove (II) and conformations with a continuous stacking of the flanking helices and a looped out bulge base (III). For the looped out class, two subtypes (IIIa and IIIb) with different backbone geometries at the bulge site could be distinguished. The conformation of lowest calculated energy was a class I structure with backbone torsion angles close to those in standard A -form RNA. Conformations very close to the extra-helical looped out bulge structure determined by X-ray crystallography were also among the low-energy structures. In addition, topologies observed in other experimentally determined bulge structures have been found among low-energy conformers. The implicit solvent model was further tested by comparing an uridine and adenine bulge flanked by guanine:cytosine base-pairs, respectively. In agreement with the experimental observation, a looped out form was found as the energetically most favorable form for the uridine bulge and a stacked conformation in case of the adenine bulge. The inclusion of solvation effects especially electrostatic reaction field contributions turned out to be critically important in order to select realistic low-energy bulge structures from a large number of sterically possible conformations. The results indicate that the approach might be useful to model the three-dimensional structure of non-canonical motifs embedded in double-stranded RNA, in particular, to restrict the number of possible conformations to a manageable number of conformers with energies below a certain threshold.
Collapse
Affiliation(s)
- M Zacharias
- Theoretical Biophysics Group, Max Delbrück Center for Molecular Medicine, Robert Rössle Str. 10, Berlin, D-13122, Germany.
| | | |
Collapse
|
39
|
Su L, Chen L, Egli M, Berger JM, Rich A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. NATURE STRUCTURAL BIOLOGY 1999; 6:285-92. [PMID: 10074948 PMCID: PMC7097825 DOI: 10.1038/6722] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.
Collapse
Affiliation(s)
- L Su
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
40
|
Zagórowska I, Kuusela S, Lönnberg H. Metal ion-dependent hydrolysis of RNA phosphodiester bonds within hairpin loops. A comparative kinetic study on chimeric ribo/2'-O-methylribo oligonucleotides. Nucleic Acids Res 1998; 26:3392-6. [PMID: 9649624 PMCID: PMC147710 DOI: 10.1093/nar/26.14.3392] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several chimeric ribo/2'- O -methylribo oligonucleotides were synthesized and their hydrolytic cleavage studied in the presence of Mg2+, Zn2+, Pb2+and the 1,4,9-triaza-cyclododecane chelate of Zn2+(Zn2+[12]aneN3) to evaluate the importance of RNA secondary structure as a factor determining the reactivity of phosphodiester bonds. In all the cases studied, a phosphodiester bond within a 4-7 nt loop was hydrolytically more stable than a similar bond within a linear single strand, but markedly less stable than that in a double helix. With Zn2+and Zn2+[12]aneN3, the hydrolytic stability of a phosphodiester bond within a hairpin loop gradually decreased on increasing the distance from the stem. A similar but less systematic trend was observed with Pb2+. Zn2+- and Pb2+-promoted cleavage was observed to be considerably more sensitive to the secondary structure of the chain than that induced by Zn2+[12]aneN3. This difference in behaviour may be attributed to bidentate binding of uncomplexed aquo ions to two different phosphodiester bonds. Mg2+was observed to be catalytically virtually inactive compared with the other cleaving agents studied.
Collapse
Affiliation(s)
- I Zagórowska
- University of Turku, Department of Chemistry, FIN-20500 Turku, Finland
| | | | | |
Collapse
|
41
|
Abstract
Crystallization of RNA molecules other than simple oligonucleotide duplexes remains a challenging step in structure determination by X-ray crystallography. Subjecting biochemically, covalently and conformationally homogeneous target molecules to an exhaustive array of crystallization conditions is often insufficient to yield crystals large enough for X-ray data collection. Even when large RNA crystals are obtained, they often do not diffract X-rays to resolutions that would lead to biochemically informative structures. We reasoned that a well-folded RNA molecule would typically present a largely undifferentiated molecular surface dominated by the phosphate backbone. During crystal nucleation and growth, this might result in neighboring molecules packing subtly out of register, leading to premature crystal growth cessation and disorder. To overcome this problem, we have developed a crystallization module consisting of a normally intramolecular RNA-RNA interaction that is recruited to make an intermolecular crystal contact. The target RNA molecule is engineered to contain this module at sites that do not affect biochemical activity. The presence of the crystallization module appears to drive crystal growth, in the course of which other, non-designed contacts are made. We have employed the GAAA tetraloop/tetraloop receptor interaction successfully to crystallize numerous group II intron domain 5-domain 6, and hepatitis delta virus (HDV) ribozyme RNA constructs. The use of the module allows facile growth of large crystals, making it practical to screen a large number of crystal forms for favorable diffraction properties. The method has led to group II intron domain crystals that diffract X-radiation to 3.5 A resolution.
Collapse
Affiliation(s)
- A R Ferré-D'Amaré
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8814, USA
| | | | | |
Collapse
|
42
|
Wallis MG, Schroeder R. The binding of antibiotics to RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 67:141-54. [PMID: 9446933 DOI: 10.1016/s0079-6107(97)00011-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M G Wallis
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | |
Collapse
|
43
|
Affiliation(s)
- S Neidle
- CRC Biomolecular Structure Unit, Institute of Cancer Research, Sutton, Surrey, UK
| | | |
Collapse
|
44
|
Zacharias M, Sklenar H. Analysis of the stability of looped-out and stacked-in conformations of an adenine bulge in DNA using a continuum model for solvent and ions. Biophys J 1997; 73:2990-3003. [PMID: 9414214 PMCID: PMC1181205 DOI: 10.1016/s0006-3495(97)78328-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A combination of conformational search, energy minimization, and energetic evaluation using a continuum solvent treatment has been employed to study the stability of various conformations of the DNA fragment d(CGCAGAA)/d(TTCGCG) containing a single adenine bulge. The extra-helical (looped-out) bulge conformation derived from a published x-ray structure and intra-helical (stacked bulge base) model structures partially based on nuclear magnetic resonance (NMR) data were used as start structures for the conformational search. Solvent-dependent contributions to the stability of the conformations were calculated from the solvent exposed molecular surface area and by using the finite difference Poisson-Boltzmann approach. Three classes (I-III) of bulge conformations with calculated low energies can be distinguished. The lowest-energy conformations were found in class I, corresponding to structures with the bulge base stacked between flanking helices, and class II, composed of structures forming a triplet of the bulge base and a flanking base pair. All extra-helical bulge structures, forming class III, were found to be less stable compared with the lowest energy structures of class I and II. The results are consistent with NMR data on an adenine bulge in the same sequence context indicating an intra-helical or triplet bulge conformation in solution. Although the total energies and total electrostatic energies of the low-energy conformations show only relatively modest variations, the energetic contributions to the stability were found to vary significantly among the classes of bulge structures. All intra-helical bulge structures are stabilized by a more favorable Coulomb charge-charge interaction but destabilized by a larger electrostatic reaction field contribution compared with all extra-helical and most triplet bulge structures. Van der Waals packing interactions and nonpolar surface-area-dependent contributions appear to favor triplet class II structures and to a lesser degree also the intra-helical stacked bulge conformations. The large conformational variation found for class III conformers might add a favorable entropic contribution to the stability of the extra-helical bulge form.
Collapse
Affiliation(s)
- M Zacharias
- Max Delbrück Center for Molecular Medicine, Humboldt Universität Berlin, Institut für Biologie, Germany.
| | | |
Collapse
|
45
|
Faulhammer D, Famulok M. Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J Mol Biol 1997; 269:188-202. [PMID: 9191064 DOI: 10.1006/jmbi.1997.1036] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By in vitro selection, a variety of catalytic DNA oligonucleotides were obtained which cleave chimeric oligonucleotides at a single ribonucleotide position embedded within a deoxyribonucleotide context in the presence or absence of divalent metal ions. After several cycles of selection/amplification in the absence and in the presence of low amounts of Mg2+ two different types of catalysts emerged: one type depended strongly on Mg2+ or other divalent metal ions, the other type performed cleavage reactions independently of Mg2+ in the presence of spermine. Experimental analysis of the secondary structure of some of the selected deoxyribozymes was carried out by chemical probing. The ribonucleotide in the selected catalysts is unpaired and presents the cleavage site to the attacking nucleophile. Our results suggest that the main selection criterion under metal-free conditions was a favourable arrangement of the attacking nucleophile and the phosphate leaving group. The cleavage rates of the selected divalent metal independent catalysts are within the same order of magnitude as the rate of metal independent substrate hydrolysis in the hammerhead ribozyme. One of the metal dependent catalysts showed an unexpected preference for Ca2+ instead of Mg2+. In this deoxyribozyme binding of Ca2+ occurred co-operatively whereas binding of Mg2+ did not. Comparison of the secondary structure and reactivity of this catalyst with Mg2+ and Ca2+ suggests that here a special binding pocket for Ca2+ was selected. This deoxyribozyme achieved a rate acceleration of substrate cleavage in the order of at least 10(4) compared to the uncatalysed reaction performing a cleavage mechanism similar to that of the hammerhead or hairpin ribozyme.
Collapse
Affiliation(s)
- D Faulhammer
- Institut für Biochemie-Genzentrum, München, Germany
| | | |
Collapse
|
46
|
Abstract
Structured RNAs play an essential role in chromosome maintenance, RNA processing, protein biosynthesis, and protein transport. To understand RNA function in these diverse biological systems, the rules for RNA folding and recognition must be learned. Recent crystal structures of hammerhead ribozymes, a group I intron domain, and RNA duplexes provide new insights into the principles of RNA folding and function.
Collapse
Affiliation(s)
- J A Doudna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
47
|
Abstract
The number of RNA molecules that have novel catalytic activities has dramatically increased during the past two years. This ribozymic boom is not due to the discovery of additional examples of natural ribozymes but rather to the development of artificial ribozymes isolated by in vitro selection and evolution techniques. The structural and functional complexities of these artificial ribozymes, however, do not match those of the larger natural ribozymes. The understanding of both RNA structure and catalysis performed by natural and artificial ribozymes paves the way for the creation of RNA molecules that are able to efficiently catalyze more complex reactions.
Collapse
Affiliation(s)
- L Jaeger
- UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France.
| |
Collapse
|
48
|
Query CC, McCaw PS, Sharp PA. A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract. Mol Cell Biol 1997; 17:2944-53. [PMID: 9111366 PMCID: PMC232146 DOI: 10.1128/mcb.17.5.2944] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The association of U2 snRNP with the pre-mRNA branch region is a critical step in the assembly of spliceosomal complexes. We describe an assembly process that reveals both minimal requirements for formation of a U2 snRNP-substrate RNA complex, here designated the Amin complex, and specific interactions with the branch site adenosine. The substrate is a minimal RNA oligonucleotide, containing only a branch sequence and polypyrimidine tract. Interactions at the branch site adenosine and requirements for polypyrimidine tract-binding proteins for the Amin complex are the same as those of authentic prespliceosome complex A. Surprisingly, Amin complex formation does not require U1 snRNP or ATP, suggesting that these factors are not necessary for stable binding of U2 snRNP per se, but rather are necessary for accessibility of components on longer RNA substrates. Furthermore, there is an ATP-dependent activity that releases or destabilizes U2 snRNP from branch sequences. The simplicity of the Amin complex will facilitate a detailed understanding of the assembly of prespliceosomes.
Collapse
Affiliation(s)
- C C Query
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | |
Collapse
|
49
|
Liu Q, Green JB, Khodadadi A, Haeberli P, Beigelman L, Pyle AM. Branch-site selection in a group II intron mediated by active recognition of the adenine amino group and steric exclusion of non-adenine functionalities. J Mol Biol 1997; 267:163-71. [PMID: 9096215 DOI: 10.1006/jmbi.1996.0845] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 2'-hydroxyl on a specific bulged adenosine is the nucleophile during the first step of splicing by group II introns. To understand the means by which the ribozyme core recognizes this adenosine, it was mutagenized and effects on catalytic activity were quantified. The results indicate that a low level of mutational variability is tolerated at the branch-site of group II introns, with no apparent loss of fidelity. Analyses of mutant and modified nucleotides at the branch-site reveal that adenine is recognized primarily through the N6 amino group and by steric exclusion of functionalities found on other bases. The mutational and single atom effects reported here contrast with those observed during spliceosomal processing, suggesting that there are important differences in adenosine recognition by the two systems.
Collapse
Affiliation(s)
- Q Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
50
|
O'Connell MA, Gerber A, Keller W. Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. J Biol Chem 1997; 272:473-8. [PMID: 8995285 DOI: 10.1074/jbc.272.1.473] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RNAs encoding subunits of glutamate-gated ion channel receptors are posttranscriptionally modified by RNA editing and alternative splicing. The change in amino acid sequence caused by RNA editing can affect both the kinetics and the permeability of the ion channel receptors to cations. Here, we report the purification of a 90-kDa double-stranded RNA-specific adenosine deaminase from HeLa cell nuclear extract that specifically edits the glutamine codon at position 586 in the pre-mRNA of the glutamate receptor B subunit. Site-specific deamination of an adenosine to an inosine converts the glutamine codon to that of arginine. Recently, a gene encoding a double-stranded-specific editase (RED1) was cloned from a rat brain cDNA library. Antibodies generated against the deaminase domain of its human homolog specifically recognized and inhibited the activity of the 90-kDa enzyme, indicating that we have purified hRED1 the human homolog of rat RED1. This enzyme is distinct from double-stranded RNA-specific adenosine deaminase which we and others have previously purified and cloned.
Collapse
Affiliation(s)
- M A O'Connell
- Department of Cell Biology, Biozentrum of the University of Basel, Switzerland
| | | | | |
Collapse
|