1
|
Alferova VA, Baranova AA, Belozerova OA, Gulyak EL, Mikhaylov AA, Solovev YV, Zhitlov MY, Sinichich AA, Tyurin AP, Trusova EA, Beletsky AV, Mardanov AV, Ravin NV, Lapchinskaya OA, Korshun VA, Gabibov AG, Terekhov SS. Molecular Decoration and Unconventional Double Bond Migration in Irumamycin Biosynthesis. Antibiotics (Basel) 2024; 13:1167. [PMID: 39766557 PMCID: PMC11672594 DOI: 10.3390/antibiotics13121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Irumamycin (Iru) is a complex polyketide with pronounced antifungal activity produced by a type I polyketide (PKS) synthase. Iru features a unique hemiketal ring and an epoxide group, making its biosynthesis and the structural diversity of related compounds particularly intriguing. In this study, we performed a detailed analysis of the iru biosynthetic gene cluster (BGC) to uncover the mechanisms underlying Iru formation. We examined the iru PKS, including the domain architecture of individual modules and the overall spatial structure of the PKS, and uncovered discrepancies in substrate specificity and iterative chain elongation. Two potential pathways for the formation of the hemiketal ring, involving either an olefin shift or electrocyclization, were proposed and assessed using 18O-labeling experiments and reaction activation energy calculations. Based on our findings, the hemiketal ring is likely formed by PKS-assisted double bond migration and TE domain-mediated cyclization. Furthermore, putative tailoring enzymes mediating epoxide formation specific to Iru were identified. The revealed Iru biosynthetic machinery provides insight into the complex enzymatic processes involved in Iru production, including macrocycle sculpting and decoration. These mechanistic details open new avenues for a targeted architecture of novel macrolide analogs through synthetic biology and biosynthetic engineering.
Collapse
Affiliation(s)
- Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Andrey A. Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Yaroslav V. Solovev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Arseniy A. Sinichich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Ekaterina A. Trusova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, Moscow 119071, Russia; (A.V.B.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, Moscow 119071, Russia; (A.V.B.); (A.V.M.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, Moscow 119071, Russia; (A.V.B.); (A.V.M.)
| | | | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia; (A.A.B.); (O.A.B.); (A.A.M.); (Y.V.S.); (M.Y.Z.); (A.A.S.); (A.P.T.); (E.A.T.); (V.A.K.); (A.G.G.)
| |
Collapse
|
2
|
Alferova VA, Zotova PA, Baranova AA, Guglya EB, Belozerova OA, Pipiya SO, Kudzhaev AM, Logunov SE, Prokopenko YA, Marenkova EA, Marina VI, Novikova EA, Komarova ES, Starodumova IP, Bueva OV, Evtushenko LI, Ariskina EV, Kovalchuk SI, Mineev KS, Babenko VV, Sergiev PV, Lukianov DA, Terekhov SS. Mining Translation Inhibitors by a Unique Peptidyl-Aminonucleoside Synthetase Reveals Cystocin Biosynthesis and Self-Resistance. Int J Mol Sci 2024; 25:12901. [PMID: 39684615 DOI: 10.3390/ijms252312901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Puromycin (Puro) is a natural aminonucleoside antibiotic that inhibits protein synthesis by its incorporation into elongating peptide chains. The unique mechanism of Puro finds diverse applications in molecular biology, including the selection of genetically engineered cell lines, in situ protein synthesis monitoring, and studying ribosome functions. However, the key step of Puro biosynthesis remains enigmatic. In this work, pur6-guided genome mining is carried out to explore the natural diversity of Puro-like antibiotics. The diversity of biosynthetic gene cluster (BGC) architectures suggests the existence of distinct structural analogs of puromycin encoded by pur-like clusters. Moreover, the presence of tRNACys in some BGCs, i.e., cst-like clusters, leads us to the hypothesis that Pur6 utilizes aminoacylated tRNA as an activated peptidyl precursor, resulting in cysteine-based analogs. Detailed metabolomic analysis of Streptomyces sp. VKM Ac-502 containing cst-like BGC revealed the production of a cysteinyl-based analog of Puro-cystocin (Cst). Similar to puromycin, cystocin inhibits both prokaryotic and eukaryotic translation by the same mechanism. Aminonucleoside N-acetyltransferase CstC inactivated Cst, mediating antibiotic resistance in genetically modified bacteria and human cells. The substrate specificity of CstC originated from the steric hindrance of its active site. We believe that novel aminonucleosides and their inactivating enzymes can be developed through the directed evolution of the discovered biosynthetic machinery.
Collapse
Affiliation(s)
- Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Polina A Zotova
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna A Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena B Guglya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Olga A Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sofiya O Pipiya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Arsen M Kudzhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Stepan E Logunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Yuri A Prokopenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elisaveta A Marenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Valeriya I Marina
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Evgenia A Novikova
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ekaterina S Komarova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina P Starodumova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- All-Russian Collection of Microorganisms (VKM), Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga V Bueva
- All-Russian Collection of Microorganisms (VKM), Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila I Evtushenko
- All-Russian Collection of Microorganisms (VKM), Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Elena V Ariskina
- All-Russian Collection of Microorganisms (VKM), Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladislav V Babenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia
| | - Petr V Sergiev
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Molecular and Cellular Biology, 121205 Moscow, Russia
| | - Dmitrii A Lukianov
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- Center for Molecular and Cellular Biology, 121205 Moscow, Russia
| | - Stanislav S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
3
|
Seibel E, Um S, Bodawatta KH, Komor AJ, Decker T, Fricke J, Murphy R, Maiah G, Iova B, Maus H, Schirmeister T, Jønsson KA, Poulsen M, Beemelmanns C. Bacteria from the Amycolatopsis genus associated with a toxic bird secrete protective secondary metabolites. Nat Commun 2024; 15:8524. [PMID: 39358325 PMCID: PMC11446937 DOI: 10.1038/s41467-024-52316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Uropygial gland secretions of birds consist of host and bacteria derived compounds and play a major sanitary and feather-protective role. Here we report on our microbiome studies of the New Guinean toxic bird Pachycephala schlegelii and the isolation of a member of the Amycolatopsis genus from the uropygial gland secretions. Bioactivity studies in combination with co-cultures, MALDI imaging and HR-MS/MS-based network analyses unveil the basis of its activity against keratinolytic bacteria and fungal skin pathogens. We trace the protective antimicrobial activity of Amycolatopsis sp. PS_44_ISF1 to the production of rifamycin congeners, ciromicin A and of two yet unreported compound families. We perform NMR and HR-MS/MS studies to determine the relative structures of six members belonging to a yet unreported lipopeptide family of pachycephalamides and of one representative of the demiguisins, a new hexapeptide family. We then use a combination of phylogenomic, transcriptomic and knock-out studies to identify the underlying biosynthetic gene clusters responsible for the production of pachycephalamides and demiguisins. Our metabolomics data allow us to map molecular ion features of the identified metabolites in extracts of P. schlegelii feathers, verifying their presence in the ecological setting where they exert their presumed active role for hosts. Our study shows that members of the Actinomycetota may play a role in avian feather protection.
Collapse
Affiliation(s)
- Elena Seibel
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy Yonsei University, Songdogwahak-ro 85, Incheon, 21983, Republic of Korea
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Anna J Komor
- Department of Biomolecular Chemistry, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Tanya Decker
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Janis Fricke
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Gibson Maiah
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Bulisa Iova
- Papua New Guinea National Museum and Art Gallery, Port Moresby, Papua New Guinea
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences (IPBW), Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, Research and Collections University of Copenhagen, 2100, Copenhagen East, Denmark
- Swedish Museum of Natural History, Department of Bioinformatics and Genetics, P.O. Box 50007, SE-10405, Stockholm, Sweden
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen East, Denmark
| | - Christine Beemelmanns
- Anti-infectives from Microbiota, Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany.
- Chemical Biology of Microbe-Host Interactions, Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Saarland University, Campus, 66123, Saarbrücken, Germany.
| |
Collapse
|
4
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
5
|
Yan D, Zhou M, Adduri A, Zhuang Y, Guler M, Liu S, Shin H, Kovach T, Oh G, Liu X, Deng Y, Wang X, Cao L, Sherman DH, Schultz PJ, Kersten RD, Clement JA, Tripathi A, Behsaz B, Mohimani H. Discovering type I cis-AT polyketides through computational mass spectrometry and genome mining with Seq2PKS. Nat Commun 2024; 15:5356. [PMID: 38918378 PMCID: PMC11199612 DOI: 10.1038/s41467-024-49587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Type 1 polyketides are a major class of natural products used as antiviral, antibiotic, antifungal, antiparasitic, immunosuppressive, and antitumor drugs. Analysis of public microbial genomes leads to the discovery of over sixty thousand type 1 polyketide gene clusters. However, the molecular products of only about a hundred of these clusters are characterized, leaving most metabolites unknown. Characterizing polyketides relies on bioactivity-guided purification, which is expensive and time-consuming. To address this, we present Seq2PKS, a machine learning algorithm that predicts chemical structures derived from Type 1 polyketide synthases. Seq2PKS predicts numerous putative structures for each gene cluster to enhance accuracy. The correct structure is identified using a variable mass spectral database search. Benchmarks show that Seq2PKS outperforms existing methods. Applying Seq2PKS to Actinobacteria datasets, we discover biosynthetic gene clusters for monazomycin, oasomycin A, and 2-aminobenzamide-actiphenol.
Collapse
Affiliation(s)
- Donghui Yan
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Muqing Zhou
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abhinav Adduri
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yihao Zhuang
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
| | - Mustafa Guler
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sitong Liu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hyonyoung Shin
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Torin Kovach
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gloria Oh
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiao Liu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yuting Deng
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaofeng Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Liu Cao
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - David H Sherman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Pamela J Schultz
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Ashootosh Tripathi
- Natural Products Discovery Core, University of Michigan, Ann Arbor, MI, USA.
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Bahar Behsaz
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Chemia Biosciences Inc, Pittsburgh, PA, USA.
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Ma X, Ye F, Zhang X, Li Z, Ding Y, Lu C, Shen Y. Proansamycin B derivatives from the post-PKS modification gene deletion mutant of Amycolatopsis mediterranei S699. J Antibiot (Tokyo) 2024; 77:278-287. [PMID: 38409261 DOI: 10.1038/s41429-024-00708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Ten new proansamycin B congeners (1-10) together with one known (11) were isolated and characterized on the basis of 1D and 2D NMR spectroscopic and HRESIMS data from the Amycolatopsis mediterranei S699 ΔPM::rifR+rif-orf19 mutant. Compounds 8 and 9 featured with six-membered ring and five-membered ring hemiketal, respectively. Compounds 1, 2, and 9 displayed antibacterial activity against MRSA (methicillin-resistant Staphylococcus aureus), with the MIC (minimal inhibitory concentration) values of 64, 8, and 128 µg/mL, respectively. Compound 1 showed significant cytotoxicity against MDA-MB-231, HepG2 and Panc-1 cell lines with IC50 (half maximal inhibitory concentration) values of 2.3 ± 0.2, 2.5 ± 0.3 and 3.8 ± 0.5 μM, respectively.
Collapse
Affiliation(s)
- Xinyu Ma
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhan Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yanjiao Ding
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
Pérez-Valero Á, Serna-Diestro J, Villar CJ, Lombó F. Use of 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate Synthase (DAHP Synthase) to Enhance the Heterologous Biosynthesis of Diosmetin and Chrysoeriol in an Engineered Strain of Streptomyces albidoflavus. Int J Mol Sci 2024; 25:2776. [PMID: 38474023 DOI: 10.3390/ijms25052776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Flavonoids are a large family of polyphenolic compounds with important agro-industrial, nutraceutical, and pharmaceutical applications. Among the structural diversity found in the flavonoid family, methylated flavonoids show interesting characteristics such as greater stability and improved oral bioavailability. This work is focused on the reconstruction of the entire biosynthetic pathway of the methylated flavones diosmetin and chrysoeriol in Streptomyces albidoflavus. A total of eight different genes (TAL, 4CL, CHS, CHI, FNS1, F3'H/CPR, 3'-OMT, 4'-OMT) are necessary for the heterologous biosynthesis of these two flavonoids, and all of them have been integrated along the chromosome of the bacterial host. The biosynthesis of diosmetin and chrysoeriol has been achieved, reaching titers of 2.44 mg/L and 2.34 mg/L, respectively. Furthermore, an additional compound, putatively identified as luteolin 3',4'-dimethyl ether, was produced in both diosmetin and chrysoeriol-producing strains. With the purpose of increasing flavonoid titers, a 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate synthase (DAHP synthase) from an antibiotic biosynthetic gene cluster (BGC) from Amycolatopsis balhimycina was heterologously expressed in S. albidoflavus, enhancing diosmetin and chrysoeriol production titers of 4.03 mg/L and 3.13 mg/L, which is an increase of 65% and 34%, respectively. To the best of our knowledge, this is the first report on the de novo biosynthesis of diosmetin and chrysoeriol in a heterologous host.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Juan Serna-Diestro
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| |
Collapse
|
8
|
Sood U, Müller M, Lan T, Garg G, Singhvi N, Hira P, Singh P, Nigam A, Verma M, Lata P, Kaur H, Kumar A, Rawat CD, Lal S, Aldrich C, Bechthold A, Lal R. Amycolatopsis mediterranei: A Sixty-Year Journey from Strain Isolation to Unlocking Its Potential of Rifamycin Analogue Production by Combinatorial Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:424-438. [PMID: 38289177 DOI: 10.1021/acs.jnatprod.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Moritz Müller
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gauri Garg
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Priya Singh
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Aeshna Nigam
- Department of Zoology, Shivaji College, University of Delhi, Delhi-110027, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Abhilash Kumar
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sukanya Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
| | - Courtney Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andreas Bechthold
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
- Acharya Narendra Dev College, University of Delhi, Delhi-110019, India
| |
Collapse
|
9
|
Shen Y, Liu N, Wang Z. Recent advances in the culture-independent discovery of natural products using metagenomic approaches. Chin J Nat Med 2024; 22:100-111. [PMID: 38342563 DOI: 10.1016/s1875-5364(24)60585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 02/13/2024]
Abstract
Natural products derived from bacterial sources have long been pivotal in the discovery of drug leads. However, the cultivation of only about 1% of bacteria in laboratory settings has left a significant portion of biosynthetic diversity hidden within the genomes of uncultured bacteria. Advances in sequencing technologies now enable the exploration of genetic material from these metagenomes through culture-independent methods. This approach involves extracting genetic sequences from environmental DNA and applying a hybrid methodology that combines functional screening, sequence tag-based homology screening, and bioinformatic-assisted chemical synthesis. Through this process, numerous valuable natural products have been identified and synthesized from previously uncharted metagenomic territories. This paper provides an overview of the recent advancements in the utilization of culture-independent techniques for the discovery of novel biosynthetic gene clusters and bioactive small molecules within metagenomic libraries.
Collapse
Affiliation(s)
- Yiping Shen
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | - Nan Liu
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | - Zongqiang Wang
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
10
|
Ye F, Zhao X, Shi Y, Hu Y, Ding Y, Lu C, Li Y, Wang H, Lu G, Shen Y. Deciphering the Timing of Naphthalenic Ring Formation in the Biosynthesis of 8-Deoxyrifamycins. Org Lett 2023; 25:6474-6478. [PMID: 37634191 DOI: 10.1021/acs.orglett.3c02039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Although the biosynthesis of rifamycin has been studied for three decades, the biosynthetic formation of the naphthalenic ring remains unclear. In this study, by deletion of all post-PKS modification genes, we identified macrolactam precursors released from rif PKS. Isolated prorifamycins (M3 and M4) have a benzenic chromophore and exist in two sets of macrocyclic atropisomers. The transformation from prorifamycins to benzenoid (5) and naphthalenoid (6) was suggested to be a non-enzymatic process, which is an off-PKS assembly.
Collapse
Affiliation(s)
- Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
11
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
12
|
Li S, Chi LP, Li Z, Liu M, Liu R, Sang M, Zheng X, Du L, Zhang W, Li S. Discovery of venediols by activation of a silent type I polyketide biosynthetic gene cluster in Streptomyces venezuelae ATCC 15439. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Surette MD, Waglechner N, Koteva K, Wright GD. HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol Cell 2022; 82:3151-3165.e9. [PMID: 35907401 DOI: 10.1016/j.molcel.2022.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/15/2022] [Accepted: 06/12/2022] [Indexed: 10/16/2022]
Abstract
Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.
Collapse
Affiliation(s)
- Matthew D Surette
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicholas Waglechner
- Toronto Invasive Bacterial Diseases Network, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Kalinka Koteva
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gerard D Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
14
|
Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments. Molecules 2022; 27:molecules27113569. [PMID: 35684507 PMCID: PMC9181873 DOI: 10.3390/molecules27113569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Laboratory cultures of two ‘biosynthetically talented’ bacterial strains harvested from tropical and temperate Pacific Ocean sediment habitats were examined for the production of new natural products. Cultures of the tropical Salinispora arenicola strain RJA3005, harvested from a PNG marine sediment, produced salinorcinol (3) and salinacetamide (4), which had previously been reported as products of engineered and mutated strains of Amycolatopsis mediterranei, but had not been found before as natural products. An S. arenicola strain RJA4486, harvested from marine sediment collected in the temperate ocean waters off British Columbia, produced the new aminoquinone polyketide salinisporamine (5). Natural products 3, 4, and 5 are putative shunt products of the widely distributed rifamycin biosynthetic pathway.
Collapse
|
15
|
Marker-Free Genome Engineering in Amycolatopsis Using the pSAM2 Site-Specific Recombination System. Microorganisms 2022; 10:microorganisms10040828. [PMID: 35456877 PMCID: PMC9033027 DOI: 10.3390/microorganisms10040828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Actinobacteria of the genus Amycolatopsis are important for antibiotic production and other valuable biotechnological applications such as bioconversion or bioremediation. Despite their importance, tools and methods for their genetic manipulation are less developed than in other actinobacteria such as Streptomyces. We report here the use of the pSAM2 site-specific recombination system to delete antibiotic resistance cassettes used in gene replacement experiments or to create large genomic deletions. For this purpose, we constructed a shuttle vector, replicating in Escherichia coli and Amycolatopsis, expressing the integrase and the excisionase from the Streptomyces integrative and conjugative element pSAM2. These proteins are sufficient for site-specific recombination between the attachment sites attL and attR. We also constructed two plasmids, replicative in E. coli but not in Amycolatopsis, for the integration of the attL and attR sites on each side of a large region targeted for deletion. We exemplified the use of these tools in Amycolatopsis mediterranei by obtaining with high efficiency a marker-free deletion of one single gene in the rifamycin biosynthetic gene cluster or of the entire 90-kb cluster. These robust and simple tools enrich the toolbox for genome engineering in Amycolatopsis.
Collapse
|
16
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
17
|
Rifamycin antibiotics and the mechanisms of their failure. J Antibiot (Tokyo) 2021; 74:786-798. [PMID: 34400805 DOI: 10.1038/s41429-021-00462-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Rifamycins are a class of antibiotics that were first discovered in 1957 and are known for their use in treating tuberculosis (TB). Rifamycins exhibit bactericidal activity against many Gram-positive and Gram-negative bacteria by inhibiting RNA polymerase (RNAP); however, resistance is prevalent and the mechanisms range from primary target modification and antibiotic inactivation to cytoplasmic exclusion. Further, phenotypic resistance, in which only a subpopulation of bacteria grow in concentrations exceeding their minimum inhibitory concentration, and tolerance, which is characterized by reduced rates of bacterial cell death, have been identified as additional causes of rifamycin failure. Here we summarize current understanding and recent developments regarding this critical antibiotic class.
Collapse
|
18
|
Shi Y, Ye F, Song Y, Zhang X, Lu C, Shen Y. Rifamycin W Analogues from Amycolatopsis mediterranei S699 Δ rif- orf5 Strain. Biomolecules 2021; 11:920. [PMID: 34206314 PMCID: PMC8301457 DOI: 10.3390/biom11070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Rifamycin W, the most predominant intermediate in the biosynthesis of rifamycin, needs to undergo polyketide backbone rearrangement to produce rifamycin B via an oxidative cleavage of the C-12/C-29 double bond. However, the mechanism of this putative oxidative cleavage has not been characterized yet. Rif-Orf5 (a putative cytochrome P450 monooxygenase) was proposed to be involved in the cleavage of this olefinic moiety of rifamycin W. In this study, the mutant strain Amycolatopsis mediterranei S699 Δrif-orf5 was constructed by in-frame deleting the rif-orf5 gene to afford thirteen rifamycin W congeners (1-13) including seven new ones (1-7). Their structures were elucidated by extensive analysis of 1D and 2D NMR spectroscopic data and high-resolution ESI mass spectra. Presumably, compounds 1-4 were derivatized from rifamycin W via C-5/C-11 retro-Claisen cleavage, and compounds 1-3, 9 and 10 featured a hemiacetal. Compounds 5-7 and 11 showed oxygenations at various sites of the ansa chain. In addition, compounds 1-3 exhibited antibacterial activity against Staphylococcus aureus with minimal inhibitory concentration (MIC) values of 5, 40 and 0.5 µg/mL, respectively. Compounds 1 and 3 showed modest antiproliferative activity against HeLa and Caco-2 cells with half maximal inhibitory concentration (IC50) values of about 50 µM.
Collapse
Affiliation(s)
- Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.S.); (F.Y.); (Y.S.); (X.Z.); (C.L.)
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.S.); (F.Y.); (Y.S.); (X.Z.); (C.L.)
| | - Yuliang Song
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.S.); (F.Y.); (Y.S.); (X.Z.); (C.L.)
| | - Xiaochun Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.S.); (F.Y.); (Y.S.); (X.Z.); (C.L.)
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.S.); (F.Y.); (Y.S.); (X.Z.); (C.L.)
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.S.); (F.Y.); (Y.S.); (X.Z.); (C.L.)
| |
Collapse
|
19
|
Liu SH, Wei YY, Xing YN, Chen Y, Wang W, Wang KB, Liang Y, Jiao RH, Zhang B, Ge HM. A BBE-like Oxidase, AsmF, Dictates the Formation of Naphthalenic Hydroxyl Groups in Ansaseomycin Biosynthesis. Org Lett 2021; 23:3724-3728. [PMID: 33877854 DOI: 10.1021/acs.orglett.1c01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ansaseomycins are ansamycin-type natural products produced through expression of the asm gene cluster in a heterologous host. A rare berberine bridge enzyme (BBE) like oxidase, AsmF, is encoded in the asm gene cluster. Deletion of asmF led to the accumulation of a series of structurally diverse compounds, all of which lacked the 23-hydroxyl group in naphthalenic motif. Our work demonstrated that AsmF dictated the formation of the naphthalenic hydroxyl group in ansaseomycin biosynthesis.
Collapse
Affiliation(s)
- Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuan Yuan Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yin Nan Xing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yu Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kai Biao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Zhu HJ, Zhang B, Wang L, Wang W, Liu SH, Igarashi Y, Bashiri G, Tan RX, Ge HM. Redox Modifications in the Biosynthesis of Alchivemycin A Enable the Formation of Its Key Pharmacophore. J Am Chem Soc 2021; 143:4751-4757. [PMID: 33736434 DOI: 10.1021/jacs.1c00516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Redox enzymes play a critical role in transforming nascent scaffolds into structurally complex and biologically active natural products. Alchivemycin A (AVM, 1) is a highly oxidized polycyclic compound with potent antimicrobial activity and features a rare 2H-tetrahydro-4,6-dioxo-1,2-oxazine (TDO) ring system. The scaffold of AVM has previously been shown to be biosynthesized by a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) pathway. In this study, we present a postassembly secondary metabolic network involving six redox enzymes that leads to AVM formation. We characterize this complex redox network using in vivo gene deletions, in vitro biochemical assays, and one-pot enzymatic total synthesis. Importantly, we show that an FAD-dependent monooxygenase catalyzes oxygen insertion into an amide bond to form the key TDO ring in AVM, an unprecedented function of flavoenzymes. We also show that the TDO ring is essential to the antimicrobial activity of AVM, likely through targeting the β-subunit of RNA polymerase. As further evidence, we show that AvmK, a β-subunit of RNA synthase, can confer self-resistance to AVM via target modification. Our findings expand the repertoire of functions of flavoenzymes and provide insight into antimicrobial and biocatalyst development based on AVM.
Collapse
Affiliation(s)
- Hong Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Lan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Ghader Bashiri
- Laboratory of Molecular and Microbial Biochemistry, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Functional Analysis of an Acyltransferase-Like Domain from Polyunsaturated Fatty Acid Synthase in Thraustochytrium. Microorganisms 2021; 9:microorganisms9030626. [PMID: 33803061 PMCID: PMC8003026 DOI: 10.3390/microorganisms9030626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Biosynthesis of very long chain polyunsaturated fatty acids (VLCPUFA) such as docosahexaenoic acid (DHA, 22:6-4,7,10,13,16,19) and docosapentaenoic acid (DPA, 22:5-4,7,10,13,16) in protist Thraustochytrium is catalyzed by a polyunsaturated fatty acids (PUFA) synthase comprising three large subunits, each with multiple catalytic domains. This study used complementation test, in vitro assays, and functional expression to characterize an acyltransferase (AT)-like domain in Subunit-B of a PUFA synthase from Thraustochytrium. Complementation test in Escherichia coli showed that the AT-like domain could not restore the growth phenotype of a temperature-sensitive mutant (∆fabDts) defective in malonyl-CoA:ACP transacylase activity. In vitro assays showed that the AT-like domain possessed thioesterase activity towards a few acyl-CoAs tested where docosahexaenoyl-CoA (DHA-CoA) was the preferred substrate. Expression of this domain in an E. coli mutant (∆fadD) defective in acyl-CoA synthetase activity resulted in the increased accumulation of free fatty acids. Site-directed mutagenesis showed that the substitution of two putative active site residues, serine at 96 (S96) and histidine at 220 (H220), in the AT-like domain significantly reduced its activity towards DHA-CoA and accumulation of free fatty acids in the ∆fadD mutant. These results indicate that the AT-like domain of the PUFA synthase does not function as a malonyl-CoA:ACP transacylase, rather it functions as a thioesterase. It might catalyze the last step of the VLCPUFA biosynthesis by releasing freshly synthesized VLCPUFAs attached to ACP domains of the PUFA synthase in Thraustochytrium.
Collapse
|
22
|
Singhvi N, Singh P, Prakash O, Gupta V, Lal S, Bechthold A, Singh Y, Singh RK, Lal R. Differential mass spectrometry-based proteome analyses unveil major regulatory hubs in rifamycin B production in Amycolatopsis mediterranei. J Proteomics 2021; 239:104168. [PMID: 33662614 DOI: 10.1016/j.jprot.2021.104168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/18/2023]
Abstract
Rifamycin B is produced by Amycolatopsis mediterranei S699 as a secondary metabolite. Its semi-synthetic derivatives have been used for curing tuberculosis caused by Mycobacterium tuberculosis. But the emergence of rifampicin-resistant strains required analogs of rifamycin B to be developed by rifamycin biosynthetic gene cluster manipulation. In 2014 genetic engineering of the rifamycin polyketide synthase gene cluster in S699 led to a mutant, A. mediterranei DCO#34, that produced 24-desmethylrifamycin B. Unfortunately, the productivity was strongly reduced to 20 mgL-1 as compared to 50 mgL-1 of rifamycin B. To understand the mechanisms leading to reduced productivity and rifamycin biosynthesis by A. mediterranei S699 during the early and late growth phase we performed a proteome study for wild type strain S699, mutant DCO#34, and the non-producer strain SCO2-2. Proteins identification and relative label-free quantification were performed by nLC-MS/MS. Data are available via ProteomeXchange with identifier PXD016416. Also, in-silico protein-protein interaction approach was used to determine the relationship between different structural and regulatory proteins involved in rifamycin biosynthesis. Our studies revealed RifA, RifK, RifL, Rif-Orf19 as the major regulatory hubs. Relative abundance expression values revealed that genes encoding RifC-RifI and the transporter RifP, down-regulated in DCO#34 and genes encoding RifR, RifZ, other regulatory proteins up-regulated. SIGNIFICANCE: The study is designed mainly to understand the underlying mechanisms of rifamycin biosynthesis in Amycolatopsis mediterranei. This resulted in the identification of regulatory hubs which play a crucial role in regulating secondary metabolism. It elucidates the complex mechanism of secondary metabolite biosynthesis and their conversion and extracellular transportation in temporal correlation with the different growth phases. The study also elucidated the mechanisms leading to reduced production of analog, 24-desmethylrifamycin B by the genetically modified strain DCO#34, derivatives of which have been found effective against rifampicin-resistant strains of Mycobacterium tuberculosis. These results can be useful while carrying out genetic manipulations to improve the strains of Amycolatopsis to produce better analogs/drugs and promote the eradication of TB. Thus, this study is contributing significantly to the growing knowledge in the field of the crucial drug, rifamycin B biosynthesis by an economically important bacterium Amycolatopsis mediterranei.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Priya Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Om Prakash
- National Centre for Microbial Resource-National Centre for Cell Sciences, Pune, Maharashtra 411007, India
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Sukanya Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rakesh Kumar Singh
- Translational Science Laboratory, Florida State University, FL 32306, USA
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
23
|
Waglechner N, Culp EJ, Wright GD. Ancient Antibiotics, Ancient Resistance. EcoSal Plus 2021; 9:eESP-0027-2020. [PMID: 33734062 PMCID: PMC11163840 DOI: 10.1128/ecosalplus.esp-0027-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
As the spread of antibiotic resistance threatens our ability to treat infections, avoiding the return of a preantibiotic era requires the discovery of new drugs. While therapeutic use of antibiotics followed by the inevitable selection of resistance is a modern phenomenon, these molecules and the genetic determinants of resistance were in use by environmental microbes long before humans discovered them. In this review, we discuss evidence that antibiotics and resistance were present in the environment before anthropogenic use, describing techniques including direct sampling of ancient DNA and phylogenetic analyses that are used to reconstruct the past. We also pay special attention to the ecological and evolutionary forces that have shaped the natural history of antibiotic biosynthesis, including a discussion of competitive versus signaling roles for antibiotics, proto-resistance, and substrate promiscuity of biosynthetic and resistance enzymes. Finally, by applying an evolutionary lens, we describe concepts governing the origins and evolution of biosynthetic gene clusters and cluster-associated resistance determinants. These insights into microbes' use of antibiotics in nature, a game they have been playing for millennia, can provide inspiration for discovery technologies and management strategies to combat the growing resistance crisis.
Collapse
Affiliation(s)
- Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Elizabeth J. Culp
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
24
|
Yin Z, Dickschat JS. Cis double bond formation in polyketide biosynthesis. Nat Prod Rep 2021; 38:1445-1468. [PMID: 33475122 DOI: 10.1039/d0np00091d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2020Polyketides form a large group of bioactive secondary metabolites that usually contain one or more double bonds. Although most of the double bonds found in polyketides are trans or E-configured, several cases are known in which cis or Z-configurations are observed. Double bond formation by polyketide synthases (PKSs) is widely recognised to be catalysed by ketoreduction and subsequent dehydration of the acyl carrier protein (ACP)-tethered 3-ketoacyl intermediate in the PKS biosynthetic assembly line with a specific stereochemical course in which the ketoreduction step determines the usual trans or more rare cis double bond configuration. Occasionally, other mechanisms for the installation of cis double bonds such as double bond formation during chain release or post-PKS modifications including, amongst others, isomerisations or double bond installations by oxidation are observed. This review discusses the peculiar mechanisms of cis double bond formation in polyketide biosynthesis.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
25
|
Ye F, Shi Y, Zhao S, Li Z, Wang H, Lu C, Shen Y. 8-Deoxy-Rifamycin Derivatives from Amycolatopsis mediterranei S699 ΔrifT Strain. Biomolecules 2020; 10:biom10091265. [PMID: 32887371 PMCID: PMC7563148 DOI: 10.3390/biom10091265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023] Open
Abstract
Proansamycin X, a hypothetical earliest macrocyclic precursor in the biosynthesis of rifamycin, had never been isolated and identified. According to bioinformatics analysis, it was proposed that RifT (a putative NADH-dependent dehydrogenase) may be a candidate target responsible for the dehydrogenation of proansamycin X. In this study, the mutant strain Amycolatopsis mediterranei S699 ΔrifT was constructed by deleting the rifT gene. From this strain, eleven 8-deoxy-rifamycin derivatives (1–11) and seven known analogues (12–18) were isolated. Their structures were elucidated by extensive analysis of 1D and 2D NMR spectroscopic data and high-resolution ESI mass spectra. Compound 1 is a novel amide N-glycoside of seco-rifamycin. Compounds 2 and 3 feature conserved 11,12-seco-rifamycin W skeleton. The diverse post-modifications in the polyketide chain led to the production of 4–11. Compounds 2, 3, 5, 6, 13 and 15 exhibited antibacterial activity against Staphylococcus aureus (MIC (minimal inhibitory concentration) values of 10, 20, 20, 20, 40 and 20 μg/mL, respectively). Compounds 14, 15, 16, 17 and 18 showed potent antiproliferative activity against KG1 cells with IC50 (half maximal inhibitory concentration) values of 14.91, 44.78, 2.16, 18.67 and 8.07 μM, respectively.
Collapse
Affiliation(s)
- Feng Ye
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Shengliang Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Zhiying Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China; (F.Y.); (Y.S.); (S.Z.); (Z.L.); (C.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
- Correspondence: ; Tel.: +86-531-8838-2108
| |
Collapse
|
26
|
Hifnawy MS, Fouda MM, Sayed AM, Mohammed R, Hassan HM, AbouZid SF, Rateb ME, Keller A, Adamek M, Ziemert N, Abdelmohsen UR. The genus Micromonospora as a model microorganism for bioactive natural product discovery. RSC Adv 2020; 10:20939-20959. [PMID: 35517724 PMCID: PMC9054317 DOI: 10.1039/d0ra04025h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
This review covers the development of the genus Micromonospora as a model for natural product research and the timeline of discovery progress from the classical bioassay-guided approaches through the application of genome mining and genetic engineering techniques that target specific products. It focuses on the reported chemical structures along with their biological activities and the synthetic and biosynthetic studies they have inspired. This survey summarizes the extraordinary biosynthetic diversity that can emerge from a widely distributed actinomycete genus and supports future efforts to explore under-explored species in the search for novel natural products.
Collapse
Affiliation(s)
- Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo Egypt 11787
| | - Mohamed M Fouda
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef Egypt 62513
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef Egypt 62513
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
| | - Mostafa E Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| | - Alexander Keller
- Center for Computational and Theoretical Biology, Biocenter, University of Würzburg Hubland Nord 97074 Würzburg Germany
| | - Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
- German Centre for Infection Research (DZIF) Partner Site Tübingen Tübingen Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
- German Centre for Infection Research (DZIF) Partner Site Tübingen Tübingen Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone P.O. Box 61111 New Minia City 61519 Minia Egypt
| |
Collapse
|
27
|
Singhvi N, Gupta V, Singh P, Prakash O, Bechthold A, Singh Y, Lal R. Prediction of Transcription Factors and Their Involvement in Regulating Rifamycin Production in Amycolatopsis mediterranei S699. Indian J Microbiol 2020; 60:310-317. [PMID: 32655198 DOI: 10.1007/s12088-020-00868-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Amycolatopsis mediterranei S699 produces rifamycin B and successors of this strain are in use for the industrial production of rifamycin B. Semisynthetic derivatives of rifamycin B are used against Mycobacterium tuberculosis that causes tuberculosis. Although the rifamycin biosynthetic gene cluster was characterized two decades ago, the regulation of rifamycin B biosynthesis in Amycolatopsis mediterranei S699 is poorly understood. In this study, we analysed the genome and proteome of Amycolatopsis mediterranei S699 and identified 1102 transcription factors which comprise about 10% of the total genome. Using interactomics approaches we delineated 30 unique transcription factors directly involved in secondary metabolism that regulate rifamycin B biosynthesis. We also predict the role of RifN as hub in controlling the regulation of other genes involved in rifamycin biosynthesis. RifN is important for maintaining the integrity of the rifamycin-network. Thus, these transcription factor can be exploited to improve rifamycin B production in Amycolatopsis mediterranei S699.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Priya Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India.,Present Address: Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Om Prakash
- National Centre for Cell Sciences, Pune, Maharashtra 411007 India
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Rup Lal
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, New Delhi, 110033 India
| |
Collapse
|
28
|
Liu X, Liu Y, Lei C, Zhao G, Wang J. GlnR Dominates Rifamycin Biosynthesis by Activating the rif Cluster Genes Transcription Both Directly and Indirectly in Amycolatopsis mediterranei. Front Microbiol 2020; 11:319. [PMID: 32194530 PMCID: PMC7062684 DOI: 10.3389/fmicb.2020.00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
Because of the remarkable efficacy in treating mycobacterial infections, rifamycin and its derivatives are still first-line antimycobacterial drugs. It has been intensely studied to increase rifamycin yield from Amycolatopsis mediterranei, and nitrate is found to provide a stable and remarkable stimulating effect on the rifamycin production, a phenomenon known as "nitrate-stimulating effect (NSE)". Although the NSE has been widely used for the industrial production of rifamycin, its detailed molecular mechanism remains ill-defined. And our previous study has established that the global nitrogen regulator GlnR may participate in the NSE, but the underlying mechanism is still enigmatic. Here, we demonstrate that GlnR directly controls rifamycin biosynthesis in A. mediterranei and thus plays an essential role in the NSE. Firstly, GlnR specifically binds to the upstream region of rifZ, which leads us to uncover that rifZ has its own promoter. As RifZ is a pathway-specific activator for the whole rif cluster, GlnR indirectly upregulates the whole rif cluster transcription by directly activating the rifZ expression. Secondly, GlnR specifically binds to the upstream region of rifK, which is also characterized to have its own promoter. It is well-known that RifK is a 3-amino-5-hydroxybenzoic acid (AHBA, the starter unit of rifamycin) synthase, thus GlnR can promote the supply of the rifamycin precursor by directly activating the rifK transcription. Notably, GlnR and RifZ independently activate the rifK transcription through binding to different sites in rifK promoter region, which suggests that the cells have a sophisticated regulatory mechanism to control the AHBA biosynthesis. Collectively, this study reveals that GlnR activates the rif cluster transcription in both direct (for rifZ and rifK) and indirect (for the whole rif cluster) manners, which well interprets the phenomenon that the NSE doesn't occur in the glnR null mutant. Furthermore, this study deepens our understanding about the molecular mechanism of the NSE.
Collapse
Affiliation(s)
- Xinqiang Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Liu
- Shanghai Tolo Biotechnology Company Limited, Shanghai, China
| | - Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
29
|
Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci Rep 2020; 10:4104. [PMID: 32139731 PMCID: PMC7057963 DOI: 10.1038/s41598-020-60968-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Actinobacteria is a goldmine for the discovery of abundant secondary metabolites with diverse biological activities. This study explores antimicrobial biosynthetic potential and diversity of actinobacteria from Pobitora Wildlife Sanctuary and Kaziranga National Park of Assam, India, lying in the Indo-Burma mega-biodiversity hotspot. A total of 107 actinobacteria were isolated, of which 77 exhibited significant antagonistic activity. 24 isolates tested positive for at least one of the polyketide synthase type I, polyketide synthase type II or non-ribosomal peptide synthase genes within their genome. Their secondary metabolite pathway products were predicted to be involved in the production of ansamycin, benzoisochromanequinone, streptogramin using DoBISCUIT database. Molecular identification indicated that these actinobacteria predominantly belonged to genus Streptomyces, followed by Nocardia and Kribbella. 4 strains, viz. Streptomyces sp. PB-79 (GenBank accession no. KU901725; 1313 bp), Streptomyces sp. Kz-28 (GenBank accession no. KY000534; 1378 bp), Streptomyces sp. Kz-32 (GenBank accession no. KY000536; 1377 bp) and Streptomyces sp. Kz-67 (GenBank accession no. KY000540; 1383 bp) showed ~89.5% similarity to the nearest type strain in EzTaxon database and may be considered novel. Streptomyces sp. Kz-24 (GenBank accession no. KY000533; 1367 bp) showed only 96.2% sequence similarity to S. malaysiensis and exhibited minimum inhibitory concentration of 0.024 µg/mL against methicilin resistant Staphylococcus aureus ATCC 43300 and Candida albicans MTCC 227. This study establishes that actinobacteria isolated from the poorly explored Indo-Burma mega-biodiversity hotspot may be an extremely rich reservoir for production of biologically active compounds for human welfare.
Collapse
|
30
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
31
|
Robertsen HL, Musiol-Kroll EM. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics (Basel) 2019; 8:E157. [PMID: 31547063 PMCID: PMC6963833 DOI: 10.3390/antibiotics8040157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023] Open
Abstract
Actinomycetes are remarkable producers of compounds essential for human and veterinary medicine as well as for agriculture. The genomes of those microorganisms possess several sets of genes (biosynthetic gene cluster (BGC)) encoding pathways for the production of the valuable secondary metabolites. A significant proportion of the identified BGCs in actinomycetes encode pathways for the biosynthesis of polyketide compounds, nonribosomal peptides, or hybrid products resulting from the combination of both polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The potency of these molecules, in terms of bioactivity, was recognized in the 1940s, and started the "Golden Age" of antimicrobial drug discovery. Since then, several valuable polyketide drugs, such as erythromycin A, tylosin, monensin A, rifamycin, tetracyclines, amphotericin B, and many others were isolated from actinomycetes. This review covers the most relevant actinomycetes-derived polyketide drugs with antimicrobial activity, including anti-fungal agents. We provide an overview of the source of the compounds, structure of the molecules, the biosynthetic principle, bioactivity and mechanisms of action, and the current stage of development. This review emphasizes the importance of actinomycetes-derived antimicrobial polyketides and should serve as a "lexicon", not only to scientists from the Natural Products field, but also to clinicians and others interested in this topic.
Collapse
Affiliation(s)
- Helene L Robertsen
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Ewa M Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
32
|
da Silva AB, Silveira ER, Wilke DV, Ferreira EG, Costa-Lotufo LV, Torres MCM, Ayala AP, Costa WS, Canuto KM, de Araújo-Nobre AR, Araújo AJ, Filho JDBM, Pessoa ODL. Antibacterial Salinaphthoquinones from a Strain of the Bacterium Salinispora arenicola Recovered from the Marine Sediments of St. Peter and St. Paul Archipelago, Brazil. JOURNAL OF NATURAL PRODUCTS 2019; 82:1831-1838. [PMID: 31313922 DOI: 10.1021/acs.jnatprod.9b00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Salinaphthoquinones A-E (1-5) were isolated from a marine Salininispora arenicola strain, recovered from sediments of the St. Peter and St. Paul Archipelago, Brazil. The structures of the compounds were elucidated using a combination of spectroscopic (NMR, IR, HRESIMS) data, including single-crystal X-ray diffraction analysis. A plausible biosynthetic pathway for 1-5 is proposed. Compounds 1 to 4 displayed moderate activity against Staphylococcus aureus and Enterococcus faecalis with MIC values of 125 to 16 μg/mL.
Collapse
Affiliation(s)
- Alison B da Silva
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| | - Edilberto R Silveira
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| | - Diego V Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos , Universidade Federal do Ceará , 60.430-275 , Fortaleza - CE , Brazil
| | - Elhton G Ferreira
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos , Universidade Federal do Ceará , 60.430-275 , Fortaleza - CE , Brazil
| | - Leticia V Costa-Lotufo
- Departamento de Farmacologia , Universidade de São Paulo , 05508-900 , São Paulo - SP , Brazil
| | - Maria Conceição M Torres
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física , Universidade Federal do Ceará , 60.440-970 , Fortaleza - CE , Brazil
| | - Wendell S Costa
- Departamento de Farmácia , Universidade Federal do Ceará , 60.430-170 , Fortaleza - CE , Brazil
| | - Kirley M Canuto
- Embrapa Agroindústria Tropical , 60.511-110 , Fortaleza - CE , Brazil
| | - Alyne R de Araújo-Nobre
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia , Universidade Federal do Piauí , 64.202-020 , Parnaíba - PI , Brazil
| | - Ana Jérsia Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia , Universidade Federal do Piauí , 64.202-020 , Parnaíba - PI , Brazil
| | - José Delano B Marinho Filho
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia , Universidade Federal do Piauí , 64.202-020 , Parnaíba - PI , Brazil
| | - Otilia Deusdenia L Pessoa
- Departamento de Química Orgânica e Inorgânica , Universidade Federal do Ceará , 60.021-970 , Fortaleza - CE , Brazil
| |
Collapse
|
33
|
Eida AA, Abugrain ME, Brumsted CJ, Mahmud T. Glycosylation of acyl carrier protein-bound polyketides during pactamycin biosynthesis. Nat Chem Biol 2019; 15:795-802. [PMID: 31308531 PMCID: PMC6642016 DOI: 10.1038/s41589-019-0314-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 11/09/2022]
Abstract
Glycosylation is a common modification reaction in natural products biosynthesis and has been known to be a post assembly line tailoring process in glycosylated polyketide biosynthesis. Here, we show that in pactamycin biosynthesis glycosylation can take place on an acyl carrier protein (ACP)-bound polyketide intermediate. Using in vivo gene inactivation, chemical complementation, and in vitro pathway reconstitution we demonstrate that the 3-aminoacetophenone moiety of pactamycin is derived from 3-aminobenzoic acid by a set of discrete polyketide synthase proteins via a 3-[3-aminophenyl]3-oxopropionyl-ACP intermediate. This ACP-bound intermediate is then glycosylated by an N-glycosyltransferase, PtmJ, providing a sugar precursor for the formation of the aminocyclopentitol core structure of pactamycin. This is the first example of glycosylation of a small molecule while tethered to a carrier protein. Additionally, we demonstrate that PtmO is a hydrolase that is responsible for the release of the ACP-bound product to a free β-ketoacid that subsequently undergoes decarboxylation.
Collapse
Affiliation(s)
- Auday A Eida
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Mostafa E Abugrain
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Corey J Brumsted
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA. .,Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
34
|
Martín JF, Ramos A, Liras P. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics (Basel) 2019; 8:antibiotics8030087. [PMID: 31262015 PMCID: PMC6784220 DOI: 10.3390/antibiotics8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type ansamycins with antitumoral activity. They are produced by Streptomyces hygroscopicus var. geldanus, Streptomyces lydicus and Streptomyces autolyticus among other Streptomyces strains. Geldanamycins interact with the Hsp-90 chaperone, a protein that has a key role in tumorigenesis of human cells. Geldanamycin is a polyketide antibiotic and the polyketide synthase contain seven modules organized in three geldanamycin synthases genes named gdmAI, gdmAII, and gdmAIII. The loading domain of GdmI activates AHBA, and also related hydroxybenzoic acid derivatives, forming geldanamycin analogues. Three regulatory genes, gdmRI, gdmRII, and gdmRIII were found associated with the geldanamycin gene cluster in S. hygroscopicus strains. GdmRI and GdmRII are LAL-type (large ATP binding regulators of the LuxR family) transcriptional regulators, while GdmRIII belongs to the TetR-family. All three are positive regulators of geldanamycin biosynthesis and are strictly required for expression of the geldanamycin polyketide synthases. In S. autolyticus the gdmRIII regulates geldanamycin biosynthesis and also expression of genes in the elaiophylin gene cluster, an unrelated macrodiolide antibiotic. The biosynthesis of geldanamycin is very sensitive to the inorganic phosphate concentration in the medium. This regulation is exerted through the two components system PhoR-PhoP. The phoRP genes of S. hygroscopicus are linked to phoU encoding a transcriptional modulator. The phoP gene was deleted in S. hygroscopicus var geldanus and the mutant was unable to grow in SPG medium unless supplemented with 5 mM phosphate. Also, the S. hygroscopicus pstS gene involved in the high affinity phosphate transport was cloned, and PhoP binding sequences (PHO boxes), were found upstream of phoU, phoRP, and pstS; the phoRP-phoU sequences were confirmed by EMSA and nuclease footprinting protection assays. The PhoP binding sequence consists of 11 nucleotide direct repeat units that are similar to those found in S. coelicolor Streptomyces avermitilis and other Streptomyces species. The available genetic information provides interesting tools for modification of the biosynthetic and regulatory mechanisms in order to increase geldanamycin production and to obtain new geldanamycin analogues with better antitumor properties.
Collapse
Affiliation(s)
- Juan F Martín
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain.
| | - Angelina Ramos
- Instituto de Biotecnología (INBIOTEC). Av. Real 1, 24006 León, Spain
| | - Paloma Liras
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain
| |
Collapse
|
35
|
Acharya D, Miller I, Cui Y, Braun DR, Berres ME, Styles MJ, Li L, Kwan J, Rajski SR, Blackwell HE, Bugni TS. Omics Technologies to Understand Activation of a Biosynthetic Gene Cluster in Micromonospora sp. WMMB235: Deciphering Keyicin Biosynthesis. ACS Chem Biol 2019; 14:1260-1270. [PMID: 31120241 PMCID: PMC6591704 DOI: 10.1021/acschembio.9b00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
DNA
sequencing of a large collection of bacterial genomes reveals
a wealth of orphan biosynthetic gene clusters (BGCs) with no identifiable
products. BGC silencing, for those orphan clusters that are truly
silent, rather than those whose products have simply evaded detection
and cluster correlation, is postulated to result from transcriptional
inactivation of these clusters under standard laboratory conditions.
Here, we employ a multi-omics approach to demonstrate how interspecies
interactions modulate the keyicin producing kyc cluster
at the transcriptome level in cocultures of kyc-bearing Micromonospora sp. and a Rhodococcus sp.
We further correlate coculture dependent changes in keyicin production
to changes in transcriptomic and proteomic profiles and show that
these changes are attributable to small molecule signaling consistent
with a quorum sensing pathway. In piecing together the various elements
underlying keyicin production in coculture, this study highlights
how omics technologies can expedite future efforts to understand and
exploit silent BGCs.
Collapse
Affiliation(s)
- Deepa Acharya
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Ian Miller
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Yusi Cui
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Mark E. Berres
- Bioinformatics Resource Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Matthew J. Styles
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jason Kwan
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
36
|
Liu SH, Wang W, Wang KB, Zhang B, Li W, Shi J, Jiao RH, Tan RX, Ge HM. Heterologous Expression of a Cryptic Giant Type I PKS Gene Cluster Leads to the Production of Ansaseomycin. Org Lett 2019; 21:3785-3788. [DOI: 10.1021/acs.orglett.9b01237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kai Biao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Braesel J, Lee JH, Arnould B, Murphy BT, Eustáquio AS. Diazaquinomycin Biosynthetic Gene Clusters from Marine and Freshwater Actinomycetes. JOURNAL OF NATURAL PRODUCTS 2019; 82:937-946. [PMID: 30896942 PMCID: PMC6902439 DOI: 10.1021/acs.jnatprod.8b01028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tuberculosis is an infectious disease of global concern. Members of the diazaquinomycin (DAQ) class of natural products have shown potent and selective activity against drug-resistant Mycobacterium tuberculosis. However, poor solubility has prevented further development of this compound class. Understanding DAQ biosynthesis may provide a viable route for the generation of derivatives with improved properties. We have sequenced the genomes of two actinomycete bacteria that produce distinct DAQ derivatives. While software tools for automated biosynthetic gene cluster (BGC) prediction failed to detect DAQ BGCs, comparative genomics using MAUVE alignment led to the identification of putative BGCs in the marine Streptomyces sp. F001 and in the freshwater Micromonospora sp. B006. Deletion of the identified daq BGC in strain B006 using CRISPR-Cas9 genome editing abolished DAQ production, providing experimental evidence for BGC assignment. A complete model for DAQ biosynthesis is proposed based on the genes identified. Insufficient knowledge of natural product biosynthesis is one of the major challenges of productive genome mining approaches. The results reported here fill a gap in knowledge regarding the genetic basis for the biosynthesis of DAQ antibiotics. Moreover, identification of the daq BGC shall enable future generations of improved derivatives using biosynthetic methods.
Collapse
Affiliation(s)
- Jana Braesel
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jung-Ho Lee
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benoit Arnould
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Brian T. Murphy
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
38
|
Müller R, Wright GD. Dedication: Heinz Floss and Christopher Walsh-pioneers in natural product chemical biology. J Ind Microbiol Biotechnol 2019; 46:251-255. [PMID: 30729342 DOI: 10.1007/s10295-019-02139-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Rolf Müller
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada. .,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
39
|
Shi Y, Zhang J, Tian X, Wu X, Li T, Lu C, Shen Y. Isolation of 11,12- seco-Rifamycin W Derivatives Reveals a Cleavage Pattern of the Rifamycin Ansa Chain. Org Lett 2019; 21:900-903. [PMID: 30714736 DOI: 10.1021/acs.orglett.8b03792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study reported the isolation and characterization of 11 rifamycin congeners including six new ones (1-6) from the agar fermentation extract of Amycolatopsis mediterranei S699. Compounds 1 and 2 are rifamycin glycosides named as rifamycinosides A and B, respectively. Their polyketide skeleton represents a novel cleavage pattern of the rifamycin ansa chain. Compounds 6 and 8 showed potential T3SS inhibitory activity, and 6 induced G2/M phase arrest and caused DNA damage in HCT116 cells.
Collapse
Affiliation(s)
- Yanrong Shi
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital , The Fourth Military Medical University , Changle West Street 15 , Xi'an , Shaanxi 710032 , P.R. China
| | - Xiuyu Tian
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Xingkang Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China.,Modern Research Center for Traditional Chinese Medicine , Shanxi University , No. 92, Wucheng Road , Taiyuan , Shanxi 030006 , P.R. China
| | - Tianhong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , No. 44 West Wenhua Road , Jinan , Shandong 250012 , P.R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Academic City , No. 3491 Platina Way , Hitech Zone, Guiyang , Guizhou 550014 , P.R. China
| |
Collapse
|
40
|
Li Z, Zhu D, Shen Y. Discovery of novel bioactive natural products driven by genome mining. Drug Discov Ther 2018; 12:318-328. [DOI: 10.5582/ddt.2018.01066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhongyue Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| | - Deyu Zhu
- School of Basic Medical Sciences, Shandong University
| | - Yuemao Shen
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
41
|
Peng Q, Gao G, Lü J, Long Q, Chen X, Zhang F, Xu M, Liu K, Wang Y, Deng Z, Li Z, Tao M. Engineered Streptomyces lividans Strains for Optimal Identification and Expression of Cryptic Biosynthetic Gene Clusters. Front Microbiol 2018; 9:3042. [PMID: 30619133 PMCID: PMC6295570 DOI: 10.3389/fmicb.2018.03042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022] Open
Abstract
Streptomyces lividans is a suitable host for the heterologous expression of biosynthetic gene clusters (BGCs) from actinomycetes to discover “cryptic” secondary metabolites. To improve the heterologous expression of BGCs, herein we optimized S. lividans strain SBT5 via the stepwise integration of three global regulatory genes and two codon-optimized multi-drug efflux pump genes and deletion of a negative regulatory gene, yielding four engineered strains. All optimization steps were observed to promote the heterologous production of polyketides, non-ribosomal peptides, and hybrid antibiotics. The production increments of these optimization steps were additional, so that the antibiotic yields were several times or even dozens of times higher than the parent strain SBT5 when the final optimized strain, S. lividans LJ1018, was used as the heterologous expression host. The heterologous production of these antibiotics in S. lividans LJ1018 and GX28 was also much higher than in the strains from which the BGCs were isolated. S. lividans LJ1018 and GX28 markedly promoted the heterologous production of secondary metabolites, without requiring manipulation of gene expression components such as promoters on individual gene clusters. Therefore, these strains are well-suited as heterologous expression hosts for secondary metabolic BGCs. In addition, we successfully conducted high-throughput library expression and functional screening (LEXAS) of one bacterial artificial chromosome library and two cosmid libraries of three Streptomyces genomes using S. lividans GX28 as the library-expression host. The LEXAS experiments identified clones carrying intact BGCs sufficient for the heterologous production of piericidin A1, murayaquinone, actinomycin D, and dehydrorabelomycin. Notably, due to lower antibiotic production, the piericidin A1 BGC had been overlooked in a previous LEXAS screening using S. lividans SBT5 as the expression host. These results demonstrate the feasibility and superiority of S. lividans GX28 as a host for high-throughput screening of genomic libraries to mine cryptic BGCs and bioactive compounds.
Collapse
Affiliation(s)
- Qinying Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guixi Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Lü
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingshan Long
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefei Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yemin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Castro-Falcón G, Millán-Aguiñaga N, Roullier C, Jensen PR, Hughes CC. Nitrosopyridine Probe To Detect Polyketide Natural Products with Conjugated Alkenes: Discovery of Novodaryamide and Nocarditriene. ACS Chem Biol 2018; 13:3097-3106. [PMID: 30272441 DOI: 10.1021/acschembio.8b00598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An optimized nitroso-based probe that facilitates the discovery of conjugated alkene-containing natural products in unprocessed extracts was developed. It chemoselectively reacts with conjugated olefins via a nitroso-Diels-Alder cyclization to yield derivatives with a distinct chromophore and an isotopically unique bromine atom that can be rapidly identified using liquid chromatography/mass spectrometry and a bioinformatics tool called MeHaloCoA (Marine Halogenated Compound Analysis). The probe is ideally employed when genome-mining techniques identify strains containing polyketide gene clusters with two or more repeating KS-AT-DH-KR-ACP domain sequences, which are required for the biosynthesis of conjugated alkenes. Comparing the reactivity and spectral properties of five brominated arylnitroso reagents with model compounds spiramycin, bufalin, rapamycin, and rifampicin led to the identification of 5-bromo-2-nitrosopyridine as the most suitable probe structure. The utility of the dienophile probe was then demonstrated in bacterial extracts. Tylactone, novodaryamide and daryamide A, piperazimycin A, and the saccharamonopyrones A and B were cleanly labeled in extracts from their respective bacterial producers, in high regioselectivity but with varying degrees of diastereoselectivity. Further application of the method led to the discovery of a new natural product called nocarditriene, containing an unprecedented epoxy-2,3,4,5-tetrahydropyridine structure, from marine-derived Nocardiopsis strain CNY-503.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Catherine Roullier
- Mer Molécules Santé - EA2160, Université de Nantes, 44035 Nantes-cedex 1, France
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
43
|
Qi F, Lei C, Li F, Zhang X, Wang J, Zhang W, Fan Z, Li W, Tang GL, Xiao Y, Zhao G, Li S. Deciphering the late steps of rifamycin biosynthesis. Nat Commun 2018; 9:2342. [PMID: 29904078 PMCID: PMC6002545 DOI: 10.1038/s41467-018-04772-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/12/2018] [Indexed: 12/12/2022] Open
Abstract
Rifamycin-derived drugs, including rifampin, rifabutin, rifapentine, and rifaximin, have long been used as first-line therapies for the treatment of tuberculosis and other deadly infections. However, the late steps leading to the biosynthesis of the industrially important rifamycin SV and B remain largely unknown. Here, we characterize a network of reactions underlying the biosynthesis of rifamycin SV, S, L, O, and B. The two-subunit transketolase Rif15 and the cytochrome P450 enzyme Rif16 are found to mediate, respectively, a unique C–O bond formation in rifamycin L and an atypical P450 ester-to-ether transformation from rifamycin L to B. Both reactions showcase interesting chemistries for these two widespread and well-studied enzyme families. The enzymes Rif15 and Rif16 are involved in the late steps of the biosynthesis of rifamycins, a group of antibiotics. Here, the authors characterized these two proteins and found that they catalyse unusual biochemical reactions.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Fengwei Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Zhen Fan
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
44
|
Barajas JF, Zargar A, Pang B, Benites VT, Gin J, Baidoo EEK, Petzold CJ, Hillson NJ, Keasling JD. Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B 2 Biosynthesis. Chembiochem 2018; 19:1391-1395. [PMID: 29603548 DOI: 10.1002/cbic.201800169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 11/10/2022]
Abstract
Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. Although β-amino acid loading in the fluvirucin B2 polyketide pathway was proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. Here we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferases to selectively transfer β-amino acids onto a polyketide synthase (PKS) loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.
Collapse
Affiliation(s)
- Jesus F Barajas
- Department of Energy Agile BioFoundry, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Amin Zargar
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
| | - Bo Pang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
| | - Veronica T Benites
- Department of Energy Agile BioFoundry, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
| | - Jennifer Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
| | - Edward E K Baidoo
- Department of Energy Agile BioFoundry, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
| | - Christopher J Petzold
- Department of Energy Agile BioFoundry, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
| | - Nathan J Hillson
- Department of Energy Agile BioFoundry, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, 5885 Hollis Street, 4th floor, Emeryville, CA, 94608, USA.,QB3 Institute, University of California-Berkeley, 174 Stanley Hall, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California-Berkeley, 201 Gilman Hall, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, 2800 kgs., Lingby, Denmark
| |
Collapse
|
45
|
Xiao YS, Zhang B, Zhang M, Guo ZK, Deng XZ, Shi J, Li W, Jiao RH, Tan RX, Ge HM. Rifamorpholines A-E, potential antibiotics from locust-associated actinobacteria Amycolatopsis sp. Hca4. Org Biomol Chem 2018; 15:3909-3916. [PMID: 28422262 DOI: 10.1039/c7ob00614d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cultivation of locust associated rare actinobacteria, Amycolatopsis sp. HCa4, has provided five unusual macrolactams rifamorpholines A-E. Their structures were determined by interpretation of spectroscopic and crystallographic data. Rifamorpholines A-E possess an unprecedented 5/6/6/6 ring chromophore, representing a new subclass of rifamycin antibiotics. The biosynthetic pathway for compounds 1-5 involves a key 1,6-cyclization for the formation of the morpholine ring. Compounds 2 and 4 showed potent activities against methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 4.0 and 8.0 μM, respectively.
Collapse
Affiliation(s)
- Yong Sheng Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zepeda Mendoza ML, Xiong Z, Escalera-Zamudio M, Runge AK, Thézé J, Streicker D, Frank HK, Loza-Rubio E, Liu S, Ryder OA, Samaniego Castruita JA, Katzourakis A, Pacheco G, Taboada B, Löber U, Pybus OG, Li Y, Rojas-Anaya E, Bohmann K, Carmona Baez A, Arias CF, Liu S, Greenwood AD, Bertelsen MF, White NE, Bunce M, Zhang G, Sicheritz-Pontén T, Gilbert MPT. Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nat Ecol Evol 2018; 2:659-668. [PMID: 29459707 PMCID: PMC5868727 DOI: 10.1038/s41559-018-0476-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/11/2018] [Indexed: 11/21/2022]
Abstract
Adaptation to specialized diets often requires modifications at both genomic and microbiome levels. We applied a hologenomic approach to the common vampire bat (Desmodus rotundus), one of the only three obligate blood-feeding (sanguivorous) mammals, to study the evolution of its complex dietary adaptation. Specifically, we assembled its high-quality reference genome (scaffold N50 = 26.9 Mb, contig N50 = 36.6 kb) and gut metagenome, and compared them against those of insectivorous, frugivorous and carnivorous bats. Our analyses showed a particular common vampire bat genomic landscape regarding integrated viral elements, a dietary and phylogenetic influence on gut microbiome taxonomic and functional profiles, and that both genetic elements harbour key traits related to the nutritional (for example, vitamin and lipid shortage) and non-nutritional (for example, nitrogen waste and osmotic homeostasis) challenges of sanguivory. These findings highlight the value of a holistic study of both the host and its microbiota when attempting to decipher adaptations underlying radical dietary lifestyles.
Collapse
Affiliation(s)
- M Lisandra Zepeda Mendoza
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Zijun Xiong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Marina Escalera-Zamudio
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Anne Kathrine Runge
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, UK
| | - Daniel Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine & MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Hannah K Frank
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Elizabeth Loza-Rubio
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal-INIFAP, Ciudad de México, Mexico
| | - Shengmao Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
| | | | | | - George Pacheco
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Taboada
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ulrike Löber
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | - Yang Li
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Edith Rojas-Anaya
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal-INIFAP, Ciudad de México, Mexico
| | - Kristine Bohmann
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Aldo Carmona Baez
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Undergraduate Program for Genomic Sciences, Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Shiping Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Mads F Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Nicole E White
- Australian Wildlife Forensic Services, Department of Environment and Agriculture, Curtin University, Perth, Australia
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Australia
| | - Michael Bunce
- Australian Wildlife Forensic Services, Department of Environment and Agriculture, Curtin University, Perth, Australia
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Australia
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Sicheritz-Pontén
- Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - M P Thomas Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
- Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Australia.
- Norwegian University of Science and Technology, University Museum, Trondheim, Norway.
| |
Collapse
|
47
|
Lei C, Wang J, Liu Y, Liu X, Zhao G, Wang J. A feedback regulatory model for RifQ-mediated repression of rifamycin export in Amycolatopsis mediterranei. Microb Cell Fact 2018; 17:14. [PMID: 29375035 PMCID: PMC5787919 DOI: 10.1186/s12934-018-0863-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the important role of rifamycin in curing tuberculosis infection, the study on rifamycin has never been stopped. Although RifZ, which locates within the rifamycin biosynthetic cluster, has recently been characterized as a pathway-specific regulator for rifamycin biosynthesis, little is known about the regulation of rifamycin export. RESULTS In this work, we proved that the expression of the rifamycin efflux pump (RifP) was regulated by RifQ, a TetR-family transcriptional regulator. Deletion of rifQ had little impact on bacterial growth, but resulted in improved rifamycin production, which was consistent with the reverse transcription PCR results that RifQ negatively regulated rifP's transcription. With electrophoretic mobility shift assay and DNase I Footprinting assay, RifQ was found to directly bind to the promoter region of rifP, and a typical inverted repeat was identified within the RifQ-protected sequences. The transcription initiation site of rifP was further characterized and found to be upstream of the RifQ binding sites, well explaining the RifQ-mediated repression of rifP's transcription in vivo. Moreover, rifamycin B (the end product of rifamycin biosynthesis) remarkably decreased the DNA binding affinity of RifQ, which led to derepression of rifamycin export, reducing the intracellular concentration of rifamycin B as well as its toxicity against the host. CONCLUSIONS Here, we proved that the export of rifamycin B was repressed by RifQ in Amycolatopsis mediterranei, and the RifQ-mediated repression could be specifically relieved by rifamycin B, the end product of rifamycin biosynthesis, based on which a feedback model was proposed for regulation of rifamycin export. With the findings here, one could improve the antibiotic yield by simply inactivating the negative regulator of the antibiotic transporter.
Collapse
Affiliation(s)
- Chao Lei
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Jingzhi Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Yuanyuan Liu
- Shanghai Tolo Biotechnology Company Limited, Shanghai, 200233, China
| | - Xinqiang Liu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China.,Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, China.
| |
Collapse
|
48
|
Li X, Wu X, Zhu J, Shen Y. Amexanthomycins A–J, pentangular polyphenols produced by Amycolatopsis mediterranei S699∆rifA. Appl Microbiol Biotechnol 2017; 102:689-702. [DOI: 10.1007/s00253-017-8648-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
49
|
Li XM, Li XM, Lu CH. Abscisic acid-type sesquiterpenes and ansamycins from Amycolatopsis alba DSM 44262. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:946-953. [PMID: 28276761 DOI: 10.1080/10286020.2017.1285909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Two new abscisic acid-type sesquiterpenes (1, 2), and one new ansamycin (3), together with four known ansamycins, namely ansacarbamitocins 4-7, were isolated from the fermentation extract of Amycolatopsis alba DSM 44262. The structures of the new compounds were elucidated to be (E)-3-methyl-5-(2,6,6-trimethyl-3-oxocyclohex-1-enyl)pent-2-enoic acid (1) and (E)-3-methyl-5-(2,6,6-trimethyl-4-oxocyclohex-2-enyl)pent-2-enoic acid (2), and 9-O-methylansacarbamitocin A1 (3), on the basis of comprehensive analysis of spectroscopic data, respectively. The antimicrobial activities were also evaluated for all seven compounds.
Collapse
Affiliation(s)
- Xiao-Mei Li
- a Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Jinan , China
| | - Xiao-Man Li
- a Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Jinan , China
| | - Chun-Hua Lu
- a Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences, Shandong University , Jinan , China
| |
Collapse
|
50
|
Shah DD, You YO, Cane DE. Stereospecific Formation of E- and Z-Disubstituted Double Bonds by Dehydratase Domains from Modules 1 and 2 of the Fostriecin Polyketide Synthase. J Am Chem Soc 2017; 139:14322-14330. [PMID: 28902510 DOI: 10.1021/jacs.7b08896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dehydratase domain FosDH1 from module 1 of the fostriecin polyketide synthase (PKS) catalyzed the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP1 (5) and (E)-2-butenoyl-FosACP1 (11), as established by a combination of direct LC-MS/MS and chiral GC-MS. FosDH1 did not act on either (3S)-3-hydroxybutyryl-FosACP1 (6) or (Z)-2-butenoyl-FosACP1 (12). FosKR2, the ketoreductase from module 2 of the fostriecin PKS that normally provides the natural substrate for FosDH2, was shown to catalyze the NADPH-dependent stereospecific reduction of 3-ketobutyryl-FosACP2 (23) to (3S)-3-hydroxybutyryl-FosACP2 (8). Consistent with this finding, FosDH2 catalyzed the interconversion of the corresponding triketide substrates (3R,4E)-3-hydroxy-4-hexenoyl-FosACP2 (18) and (2Z,4E)-2,4-hexadienoyl-FosACP2 (21). FosDH2 also catalyzed the stereospecific hydration of (Z)-2-butenoyl-FosACP2 (14) to (3S)-3-hydroxybutyryl-FosACP2 (8). Although incubation of FosDH2 with (3S)-3-hydroxybutyryl-FosACP2 (8) did not result in detectable accumulation of (Z)-2-butenoyl-FosACP2 (14), FosDH2 catalyzed the slow exchange of the 3-hydroxy group of 8 with [18O]-water. FosDH2 unexpectedly could also support the stereospecific interconversion of (3R)-3-hydroxybutyryl-FosACP2 (7) and (E)-2-butenoyl-FosACP2 (13).
Collapse
Affiliation(s)
- Dhara D Shah
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Young-Ok You
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|