1
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
4
|
Olufunmilayo EO, Holsinger RMD. INPP5D/SHIP1: Expression, Regulation and Roles in Alzheimer's Disease Pathophysiology. Genes (Basel) 2023; 14:1845. [PMID: 37895194 PMCID: PMC10606568 DOI: 10.3390/genes14101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, accounting for approximately 38.5 million cases of all-cause dementia. Over 60% of these individuals live in low- and middle-income countries and are the worst affected, especially by its deleterious effects on the productivity of both patients and caregivers. Numerous risk factors for the disease have been identified and our understanding of gene-environment interactions have shed light on several gene variants that contribute to the most common, sporadic form of AD. Microglial cells, the innate immune cells of the central nervous system (CNS), have long been established as guardians of the brain by providing neuroprotection and maintaining cellular homeostasis. A protein with a myriad of effects on various important signaling pathways that is expressed in microglia is the Src Homology 2 (SH2) domain-containing Inositol 5' Phosphatase 1 (SHIP1) protein. Encoded by the INPP5D (Inositol Polyphosphate-5-Phosphatase D) gene, SHIP1 has diminutive effects on most microglia signaling processes. Polymorphisms of the INPP5D gene have been found to be associated with a significantly increased risk of AD. Several studies have elucidated mechanistic processes by which SHIP1 exerts its perturbations on signaling processes in peripheral immune cells. However, current knowledge of the controllers of INPP5D/SHIP1 expression and the idiosyncrasies of its influences on signaling processes in microglia and their relevance to AD pathophysiology is limited. In this review, we summarize these discoveries and discuss the potential of leveraging INPP5D/SHIP1 as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 2002012, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Ehm P, Nelson N, Giehler S, Schaks M, Bettin B, Kirchmair J, Jücker M. Reduced expression and activity of patient-derived SHIP1 phosphatase domain mutants. Cell Signal 2023; 101:110485. [PMID: 36208705 DOI: 10.1016/j.cellsig.2022.110485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
The characterization of dysregulated proteins in cell signaling pathways is important for the development of therapeutic approaches. The PI3K/AKT/mTOR pathway is frequently upregulated in cancer cells and the SH2-containing inositol 5-phosphatase SHIP1 can act as a negative regulator of the PI3K/AKT pathway. In this study, we investigated different patient-derived mutations within the conserved phosphatase domain of SHIP1. We could demonstrate that 2 out of 7 SHIP1-phosphatase domain mutations (G585K and R673Q) possessed reduced protein expression and reduced enzymatic activity in comparison to SHIP1 wild type (WT) protein and two additional mutations (E452K, R551Q) possessed reduced enzymatic activity at a comparable expression level compared to SHIP1 WT in the cell line H1299. The investigated mutations resulted in protein expression levels that were up to 93% lower than those of the SHIP1 WT for SHIP1 mutant R673Q and the enzymatic activity was below the detection limit of the performed phosphatase assay. Whereas the protein level of the R673Q mutant was reduced in comparison to SHIP1 WT the mRNA level was comparable indicating a post-transcriptional regulation. SHIP1 R673Q was rapidly degraded, with a calculated half-life of l.5 h. In addition, SHIP1 R673Q levels were significantly increased by the treatment with the proteasome inhibitor MG-132 in comparison to the DMSO control. Therefore, SHIP1 was confirmed as the target of enhanced proteasomal degradation. Computational analysis of the wild type and mutant protein structures revealed that the loss of the positively charged arginine residue R673 is associated with the loss of two salt bridges to the negatively charged amino acids D617 and E634 leading to an intramolecular instability of the mutated SHIP1 R673Q protein. Six out of seven SHIP1 mutants significantly affected the PI3K/AKT/mTOR pathway in the three cancer cell lines H1299, Reh and Sem. Four out of seven SHIP1 mutants affected phosphorylation of AKT and its target GSK3β positively compared to SHIP1 WT, whereas a negative effect on the phosphorylation of S6 was found in five out of seven mutants. In general, SHIP1 mutants impacting signal transduction were either associated with decreased SHIP1 activity or SHIP1 expression or both. Overall, the presented results indicate a regulation of the protein expression and activity of SHIP1 by patient-derived mutations in its phosphatase domain.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nina Nelson
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Susanne Giehler
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Matthias Schaks
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Bettina Bettin
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Johannes Kirchmair
- Division of Pharmaceutica Chemistry, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
6
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
7
|
DeLuca JM, Murphy MK, Wang X, Wilson TJ. FCRL1 Regulates B Cell Receptor-Induced ERK Activation through GRB2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2688-2698. [PMID: 34697226 PMCID: PMC8629370 DOI: 10.4049/jimmunol.2100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
Regulation of BCR signaling has important consequences for generating effective Ab responses to pathogens and preventing production of autoreactive B cells during development. Currently defined functions of Fc receptor-like (FCRL) 1 include positive regulation of BCR-induced calcium flux, proliferation, and Ab production; however, the mechanistic basis of FCRL1 signaling and its contributions to B cell development remain undefined. Molecular characterization of FCRL1 signaling shows phosphotyrosine-dependent associations with GRB2, GRAP, SHIP-1, and SOS1, all of which can profoundly influence MAPK signaling. In contrast with previous characterizations of FCRL1 as a strictly activating receptor, we discover a role for FCRL1 in suppressing ERK activation under homeostatic and BCR-stimulated conditions in a GRB2-dependent manner. Our analysis of B cells in Fcrl1 -/- mice shows that ERK suppression by FCRL1 is associated with a restriction in the number of cells surviving splenic maturation in vivo. The capacity of FCRL1 to modulate ERK activation presents a potential for FCRL1 to be a regulator of peripheral B cell tolerance, homeostasis, and activation.
Collapse
Affiliation(s)
- Jenna M DeLuca
- Department of Microbiology, Miami University, Oxford, OH
| | | | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH
| | | |
Collapse
|
8
|
Bosch R, Mora A, Cuellar C, Ferrer G, Gorlatov S, Nomdedéu J, Montserrat E, Sierra J, Rai KR, Chiorazzi N, Moreno C. FcγRIIb-BCR coligation inhibits BCR signaling in chronic lymphocytic leukemia. Haematologica 2021; 106:306-309. [PMID: 32336680 PMCID: PMC7776347 DOI: 10.3324/haematol.2019.245795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rosa Bosch
- Laboratory of Oncology/Hematology and Transplantation, IIB Sant Pau, Barcelona
| | - Alba Mora
- Laboratory of Oncology/Hematology and Transplantation, IIB Sant Pau, Barcelona
| | - Carolina Cuellar
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research
| | | | - Josep Nomdedéu
- Laboratory of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | | | - Jorge Sierra
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| | - Kanti R Rai
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research
| | - Carol Moreno
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona
| |
Collapse
|
9
|
Crute BW, Sheraden R, Ott VL, Harley ITW, Getahun A, Cambier JC. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Front Immunol 2020; 11:592329. [PMID: 33193438 PMCID: PMC7641642 DOI: 10.3389/fimmu.2020.592329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Among the areas of most impactful recent progress in immunology is the discovery of inhibitory receptors and the subsequent translation of this knowledge to the clinic. Although the original and canonical member of this family is FcγRIIB, more recent studies defined PD1 as an inhibitory receptor that constrains T cell immunity to tumors. These studies led to development of “checkpoint blockade” immunotherapies (CBT) for cancers in which PD1 interactions with its ligand are blocked. Unfortunately, although very effective in some patients, only a small proportion respond to this therapy. This suggests that additional as yet undescribed inhibitory receptors exist, which could be exploited. Here, we describe a new platform, termed inhibitory receptor trap (IRT), for discovery of members of this family. The approach takes advantage of the fact that many of the known inhibitory receptors mediate signaling by phospho-immunoreceptor tyrosine-based inhibition motif (ITIM) mediated recruitment of Src Homology 2 (SH2) domain-containing phosphatases including the SH2 domain-containing inositol phosphatase SHIP1 encoded by the INPP5D gene and the SH2 domain-containing phosphotyrosine phosphatases SHP1 and SHP2 encoded by the PTPN6 and PTPN11 genes respectively. Here, we describe the IRT discovery platform in which the SH2 domains of inhibitory phosphatases are used for affinity-based isolation and subsequent identification of candidate effectors via immunoblotting and high sensitivity liquid chromatography–mass spectrometry. These receptors may represent alternative targets that can be exploited for improved CBT. Salient observations from these studies include the following: SH2 domains derived from the respective phosphatases bind distinct sets of candidates from different cell types. Thus, cells of different identity and different activation states express partially distinct repertoires of up and downstream phosphatase effectors. Phosphorylated PD1 binds not only SHP2 but also SHIP1, thus the latter may be important in its inhibitory function. B cell antigen receptor signaling leads predominantly to CD79 mono-phosphorylation as indicated by much greater binding to LynSH2 than Syk(SH2)2. This balance of ITAM mono- versus bi-phosphorylation likely tunes signaling by varying activation of inhibitory (Lyn) and stimulatory (Syk) pathways.
Collapse
Affiliation(s)
- Bergren W Crute
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rachel Sheraden
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Vanessa L Ott
- Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - Isaac T W Harley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| |
Collapse
|
10
|
Exploring the role of post-translational modulators of transcription factors in triple-negative breast cancer gene expression. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
11
|
Pauls SD, Hou S, Marshall AJ. SHIP interacts with adaptor protein Nck and restricts actin turnover in B cells. Biochem Biophys Res Commun 2020; 527:207-212. [PMID: 32446368 DOI: 10.1016/j.bbrc.2020.04.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
Abstract
SH2 domain-containing inositol 5'-phosphatase (SHIP) has critical functions in regulating signal transduction. In additional to its lipid phosphatase activity, SHIP engages in multiple protein-protein interactions, which can serve to localize either SHIP or its binding partners to a particular subcellular domain. Knock-out and knock-down studies have elucidated that SHIP negatively regulates the accumulation of F-actin in leukocytes, usually resulting in inhibition of actin dependent cellular activities such as spreading and migration. Here, we demonstrate that overexpression of SHIP inhibits B cell antigen receptor (BCR)-mediated cell spreading in murine and human B cell lines. B cell stimulation via the BCR or pervanadate induces an interaction between SHIP and Nck, an adaptor protein known to promote actin polymerization. Using a fluorescence recovery after photobleaching (FRAP) assay, we demonstrate that overexpression of SHIP slows F-actin dynamics in BCR-stimulated B cells and this can be overcome by co-overexpression of Nck. Our data supports a role for SHIP in limiting actin turnover and suggests it may do so in part by sequestering Nck.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron J Marshall
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
|
13
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
14
|
Enterina JR, Jung J, Macauley MS. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed J 2019; 42:218-232. [PMID: 31627864 PMCID: PMC6818156 DOI: 10.1016/j.bj.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
CD22 is an inhibitory B cell co-receptor that recognizes sialic acid-containing glycoconjugates as ligands. Interactions with its glycan ligands are key to regulating the ability of CD22 to modulate B cell function, the most widely explored of which is antagonizing B cell receptor (BCR) signaling. Most importantly, interactions of CD22 with ligands on the same cell (cis) control the organization of CD22 on the cell surface, which minimizes co-localization with the BCR. In contrast with the modest ability of CD22 to intrinsically dampen BCR signaling, glycan ligands presented on another cell (trans) along with an antigen drawn CD22 and the BCR together within an immunological synapse, strongly inhibiting BCR signaling. New concepts are emerging for how CD22 controls B cell function, such as changes in glycosylation at different stages of B cell differentiation, specifically on GC B cells. Related to these changes, new players, such galectin-9, have been discovered that regulate cell surface nanoclusters of CD22. Roles of glycan ligands in controlling CD22 are the primary focus of this review as we highlight the ability of CD22 to modulate B cell function.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada; Department of Chemistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
15
|
Sun GK, Tang LJ, Zhou JD, Xu ZJ, Yang L, Yuan Q, Ma JC, Liu XH, Lin J, Qian J, Yao DM. DOK6 promoter methylation serves as a potential biomarker affecting prognosis in de novo acute myeloid leukemia. Cancer Med 2019; 8:6393-6402. [PMID: 31486300 PMCID: PMC6797566 DOI: 10.1002/cam4.2540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Downstream of tyrosine kinase 6 (DOK6), which is specifically expressed in the nervous system, was previously recognized as an adapter only in neurite outgrowth. Recent studies also demonstrated the potential role of DOK6 in solid tumors such as gastric cancer and breast cancer. However, previous studies of DOK6 have not dealt with its roles in myeloid malignancies. Herein, we verified the promoter methylation status of DOK6 and further explored its clinical implication in de novo acute myeloid leukemia (AML). METHODS A total of 100 newly diagnosed adult AML patients were involved in the current study. DOK6 expression and methylation were detected by real-time qPCR and methylation-specific PCR (MSP), respectively. Bisulfite sequencing PCR (BSP) was performed to assess the methylation density of the DOK6 promoter. RESULTS Downstream of tyrosine kinase 6 promoter methylation was significantly increased in AML patients compared to controls (P = .037), whereas DOK6 expression significantly decreased in AML patients (P < .001). The expression of DOK6 was markedly up-regulated after treated by 5-aza-2'-deoxycytidine (5-aza-dC) in THP-1 cell lines. The methylation status of the DOK6 promoter was associated with French-American-British classifications (P = .037). There was no significant correlation existed between DOK6 expression and its promoter methylation (R = .077, P = .635). Interestingly, of whole-AML and non-APL AML patients, both have a tendency pertaining to the DOK6 methylation group and a significantly longer overall survival (OS) than the DOK6 unmethylation group (P = .042 and .036, respectively). CONCLUSION Our study suggested that DOK6 promoter hypermethylation was a common molecular event in de novo AML patients. Remarkably, DOK6 promoter methylation could serve as an independent and integrated prognostic biomarker not only in non-APL AML patients but also in AML patients who are less than 60 years old.
Collapse
Affiliation(s)
- Guo-Kang Sun
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing-Dong Zhou
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Lan Yang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Yuan
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| | - Jun Qian
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Franks SE, Cambier JC. Putting on the Brakes: Regulatory Kinases and Phosphatases Maintaining B Cell Anergy. Front Immunol 2018; 9:665. [PMID: 29681901 PMCID: PMC5897502 DOI: 10.3389/fimmu.2018.00665] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
B cell antigen receptor (BCR) signaling is a tightly regulated process governed by both positive and negative mediators/regulators to ensure appropriate responses to exogenous and autologous antigens. Upon naïve B cell recognition of antigen CD79 [the immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling subunit of the BCR] is phosphorylated and recruits Src and Syk family kinases that then phosphorylate proximal intermediaries linked to downstream activating signaling circuitry. This plasma membrane localized signalosome activates PI3K leading to generation of PIP3 critical for membrane localization and activation of plecktrin homology domain-containing effectors. Conversely, in anergic B cells, chronic antigen stimulation drives biased monophosphorylation of CD79 ITAMs leading to recruitment of Lyn, but not Syk, which docks only to bi-phosphorylated ITAMS. In this context, Lyn appears to function primarily as a driver of inhibitory signaling pathways promoting the inhibition of the PI3K pathway by inositol phosphatases, SHIP-1 and PTEN, which hydrolyze PIP3 to PIP2. Lyn may also exert negative regulation of signaling through recruitment of SHP-1, a tyrosine phosphatase that dephosphorylates activating signaling molecules. Alleles of genes that encode or regulate expression of components of this axis, including SHIP-1, SHP-1, Csk/PTPn22, and Lyn, have been shown to confer risk of autoimmunity. This review will discuss functional interplay of components of this pathway and the impact of risk alleles on its function.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| |
Collapse
|
17
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Liu CF, Min XY, Wang N, Wang JX, Ma N, Dong X, Zhang B, Wu W, Li ZF, Zhou W, Li K. Complement Receptor 3 Has Negative Impact on Tumor Surveillance through Suppression of Natural Killer Cell Function. Front Immunol 2017; 8:1602. [PMID: 29209332 PMCID: PMC5702005 DOI: 10.3389/fimmu.2017.01602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
Complement receptor 3 (CR3) is expressed abundantly on natural killer (NK) cells; however, whether it plays roles in NK cell-dependent tumor surveillance is largely unknown. Here, we show that CR3 is an important negative regulator of NK cell function, which has negative impact on tumor surveillance. Mice deficient in CR3 (CD11b-/- mice) exhibited a more activated NK phenotype and had enhanced NK-dependent tumor killing. In a B16-luc melanoma-induced lung tumor growth and metastasis model, mice deficient in CR3 had reduced tumor growth and metastases, compared with WT mice. In addition, adaptive transfer of NK cells lacking CR3 (into NK-deficient mice) mediated more efficient suppression of tumor growth and metastases, compared with the transfer of CR3 sufficient NK cells, suggesting that CR3 can impair tumor surveillance through suppression of NK cell function. In vitro analyses showed that engagement of CR3 with iC3b (classical CR3 ligand) on NK cells negatively regulated NK cell activity and effector functions (i.e. direct tumor cell killing, antibody-dependent NK-mediated tumor killing). Cell signaling analyses showed that iC3b stimulation caused activation of Src homology 2 domain-containing inositol-5-phosphatase-1 (SHIP-1) and JNK, and suppression of ERK in NK cells, supporting that iC3b mediates negative regulation of NK cell function through its effects on SHIP-1, JNK, and ERK signal transduction pathways. Thus, our findings demonstrate a previously unknown role for CR3 in dysregulation of NK-dependent tumor surveillance and suggest that the iC3b/CR3 signaling is a critical negative regulator of NK cell function and may represent a new target for preserving NK cell function in cancer patients and improving NK cell-based therapy.
Collapse
Affiliation(s)
- Cheng-Fei Liu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Yun Min
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Naiyin Wang
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xia Dong
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Bing Zhang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Weiju Wu
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Zong-Fang Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Wuding Zhou
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol 2017; 47:932-945. [PMID: 28480512 DOI: 10.1002/eji.201646795] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
The phosphoinositide phosphatase SHIP is a critical regulator of immune cell activation. Despite considerable study, the mechanisms controlling SHIP activity to ensure balanced cell activation remain incompletely understood. SHIP dampens BCR signaling in part through its association with the inhibitory coreceptor Fc gamma receptor IIB, and serves as an effector for other inhibitory receptors in various immune cell types. The established paradigm emphasizes SHIP's inhibitory receptor-dependent function in regulating phosphoinositide 3-kinase signaling by dephosphorylating the phosphoinositide PI(3,4,5)P3 ; however, substantial evidence indicates that SHIP can be activated independently of inhibitory receptors and can function as an intrinsic brake on activation signaling. Here, we integrate historical and recent reports addressing the regulation and function of SHIP in immune cells, which together indicate that SHIP acts as a multifunctional protein controlled by multiple regulatory inputs, and influences downstream signaling via both phosphatase-dependent and -independent means. We further summarize accumulated evidence regarding the functions of SHIP in B cells, T cells, NK cells, dendritic cells, mast cells, and macrophages, and data suggesting defective expression or activity of SHIP in autoimmune and malignant disorders. Lastly, we discuss the biological activities, therapeutic promise, and limitations of small molecule modulators of SHIP enzymatic activity.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Binding and inhibition of the ternary complex factor Elk-4/Sap1 by the adapter protein Dok-4. Biochem J 2017; 474:1509-1528. [PMID: 28275114 DOI: 10.1042/bcj20160832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 01/25/2023]
Abstract
The adapter protein Dok-4 (downstream of kinase-4) has been reported as both an activator and inhibitor of Erk and Elk-1, but lack of knowledge about the identity of its partner molecules has precluded any mechanistic insight into these seemingly conflicting properties. We report that Dok-4 interacts with the transactivation domain of Elk-4 through an atypical phosphotyrosine-binding domain-mediated interaction. Dok-4 possesses a nuclear export signal and can relocalize Elk-4 from nucleus to cytosol, whereas Elk-4 possesses two nuclear localization signals that restrict interaction with Dok-4. The Elk-4 protein, unlike Elk-1, is highly unstable in the presence of Dok-4, through both an interaction-dependent mechanism and a pleckstrin homology domain-dependent but interaction-independent mechanism. This is reversed by proteasome inhibition, depletion of endogenous Dok-4 or lysine-to-arginine mutation of putative Elk-4 ubiquitination sites. Finally, Elk-4 transactivation is potently inhibited by Dok-4 overexpression but enhanced by Dok-4 knockdown in MDCK renal tubular cells, which correlates with increased basal and EGF-induced expression of Egr-1, Fos and cylcinD1 mRNA, and cell proliferation despite reduced Erk activation. Thus, Dok-4 can target Elk-4 activity through multiple mechanisms, including binding of the transactivation domain, nuclear exclusion and protein destabilization, without a requirement for inhibition of Erk.
Collapse
|
21
|
Malbec O, Cassard L, Albanesi M, Jönsson F, Mancardi D, Chicanne G, Payrastre B, Dubreuil P, Vivier E, Daëron M. Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils. Sci Signal 2016; 9:ra126. [PMID: 27999175 DOI: 10.1126/scisignal.aag1401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic and autoimmune inflammation are associated with the activation of mast cells and basophils by antibodies against allergens or auto-antigens, respectively. Both cell types express several receptors for the Fc portion of antibodies, the engagement of which by antigen-antibody complexes controls their responses. When aggregated on the plasma membrane, high-affinity immunoglobulin E (IgE) receptors (FcεRI) and low-affinity IgG receptors (FcγRIIIA in mice, FcγRIIA in humans) induce these cells to release and secrete proinflammatory mediators, chemokines, and cytokines that account for clinical symptoms. When coaggregated with activating receptors on the same cells, other low-affinity IgG receptors (FcγRIIB in both species) inhibit mast cell and basophil activation. We found that FcγRIIB inhibited not only signals triggered by activating receptors with which they were coengaged (cis-inhibition), but also signals triggered by receptors engaged independently (trans-inhibition). Trans-inhibition acted upon the FcεRI-dependent activation of mouse mast cells, mouse basophils, and human basophils, and upon growth factor receptor (Kit)-dependent normal mouse mast cell proliferation, as well as the constitutive in vitro proliferation and the in vivo growth of oncogene (v-Abl)-transformed mastocytoma cells. Trans-inhibition was induced by receptors, whether inhibitory (FcγRIIB) or activating (FcεRI), which recruited the lipid phosphatase SHIP1. By hydrolyzing PI(3,4,5)P3, SHIP1 induced a global unresponsiveness that affected biological responses triggered by receptors that use phosphoinositide 3-kinase to signal. These data suggest that trans-inhibition controls numerous physiological and pathological processes, and that it may be used as a therapeutic tool in inflammation, especially but not exclusively, in allergy and autoimmunity.
Collapse
Affiliation(s)
- Odile Malbec
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Lydie Cassard
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Marcello Albanesi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - David Mancardi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Gaëtan Chicanne
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Patrice Dubreuil
- Inserm, Unité 1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Université, Marseille, France.,CNRS, UMR 7258, Marseille, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.,Hôpital de la Conception, Marseille, France
| | - Marc Daëron
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France. .,Inserm, Unité 760, Paris, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
22
|
Getahun A, Cambier JC. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol Rev 2016; 268:66-73. [PMID: 26497513 DOI: 10.1111/imr.12336] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
23
|
Getahun A, Beavers NA, Larson SR, Shlomchik MJ, Cambier JC. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J Exp Med 2016; 213:751-69. [PMID: 27114609 PMCID: PMC4854724 DOI: 10.1084/jem.20150537] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/10/2016] [Indexed: 01/19/2023] Open
Abstract
Cambier et al. show that the tyrosine phosphatase SHP-1 and the inositol phosphatase SHIP-1 are required to maintain B cell anergy. Many autoreactive B cells persist in the periphery in a state of unresponsiveness called anergy. This unresponsiveness is rapidly reversible, requiring continuous BCR interaction with self-antigen and resultant regulatory signaling for its maintenance. Using adoptive transfer of anergic B cells with subsequent acute induction of gene deletion or expression, we demonstrate that the continuous activities of independent inhibitory signaling pathways involving the tyrosine phosphatase SHP-1 and the inositol phosphatase SHIP-1 are required to maintain anergy. Acute breach of anergy by compromise of either of these pathways leads to rapid cell activation, proliferation, and generation of short-lived plasma cells that reside in extrafollicular foci. Results are consistent with predicted/observed reduction in the Lyn–SHIP-1–PTEN–SHP-1 axis function in B cells from systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Nicole A Beavers
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Sandy R Larson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
24
|
Akerlund J, Getahun A, Cambier JC. B cell expression of the SH2-containing inositol 5-phosphatase (SHIP-1) is required to establish anergy to high affinity, proteinacious autoantigens. J Autoimmun 2015; 62:45-54. [PMID: 26152931 DOI: 10.1016/j.jaut.2015.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 01/31/2023]
Abstract
Many self-reactive B cells exist in the periphery in a rapidly reversible state of unresponsiveness referred to as anergy. Reversibility of anergy indicates that chronically occupied BCR must transduce non-durable regulatory signals that maintain unresponsiveness. Consistent with such a mechanism, studies of immunoglobulin transgenic, as well as naturally occurring polyclonal autoreactive B cells demonstrate activation of the inositol 5-phosphatase SHIP-1 in anergic cells, and low affinity chromatin autoantigen-reactive B cells have been shown to require expression of this phosphatase to maintain anergy. However, it has been reported that anergy of B cells recognizing high affinity soluble antigen may not require SHIP-1, and is instead mediated by upregulation of the inositol 3-phosphatase PTEN. To further explore this apparent difference in mechanism we analyzed the effect of B cell-targeted SHIP-1 deletion on immune tolerance of high affinity anti-HEL B cells in mice expressing soluble HEL (MD4.ML-5). We report that SHIP-1 functions to dampen responses of naïve and low-dose antigen-primed B cells in vitro, and is required for induction of B cell tolerance. Thus, while anergy of B cells reactive with low affinity and likely polyvalent chromatin antigens is maintained by activation of inhibitory signaling circuitry involving SHIP-1, anergy of B cells recognizing soluble self antigen with high affinity also requires increased activity of SHIP-1.
Collapse
Affiliation(s)
- Janie Akerlund
- Department of Immunology and Microbiology, University of Colorado School of Medicine, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, USA.
| |
Collapse
|
25
|
Draber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol 2015; 778:11-23. [PMID: 25941081 DOI: 10.1016/j.ejphar.2015.02.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic.
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Iva Polakovicova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
26
|
Meguenani M, Miljkovic-Licina M, Fagiani E, Ropraz P, Hammel P, Aurrand-Lions M, Adams RH, Christofori G, Imhof BA, Garrido-Urbani S. Junctional adhesion molecule B interferes with angiogenic VEGF/VEGFR2 signaling. FASEB J 2015; 29:3411-25. [PMID: 25911611 DOI: 10.1096/fj.15-270223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022]
Abstract
De novo formation of blood vessels is a pivotal mechanism during cancer development. During the past few years, antiangiogenic drugs have been developed to target tumor vasculature. However, because of limitations and adverse effects observed with current therapies, there is a strong need for alternative antiangiogenic strategies. Using specific anti-junctional adhesion molecule (JAM)-B antibodies and Jam-b-deficient mice, we studied the role in antiangiogenesis of JAM-B. We found that antibodies against murine JAM-B, an endothelium-specific adhesion molecule, inhibited microvessel outgrowth from ex vivo aortic rings and in vitro endothelial network formation. In addition, anti-JAM-B antibodies blocked VEGF signaling, an essential pathway for angiogenesis. Moreover, increased aortic ring branching was observed in aortas isolated from Jam-b-deficient animals, suggesting that JAM-B negatively regulates proangiogenic pathways. In mice, JAM-B expression was detected in de novo-formed blood vessels of tumors, but anti-JAM-B antibodies unexpectedly did not reduce tumor growth. Accordingly, JAM-B deficiency in vivo had no impact on blood vessel formation, suggesting that targeting JAM-B in vivo may be offset by other proangiogenic mechanisms. In conclusion, despite the promising effects observed in vitro, targeting JAM-B during tumor progression seems to be inefficient as a stand-alone antiangiogenesis therapy.
Collapse
Affiliation(s)
- Mehdi Meguenani
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Marijana Miljkovic-Licina
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Ernesta Fagiani
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Patricia Ropraz
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Philippe Hammel
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Michel Aurrand-Lions
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Ralf H Adams
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Gerhard Christofori
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Beat A Imhof
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| | - Sarah Garrido-Urbani
- *Department of Pathology and Immunology, Medical Faculty, University Medical Center, University of Geneva, Geneva, Switzerland; Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Basel, Switzerland; Unité Mixte de Recherche 1068, Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Marseille, France; Institut Paoli-Calmettes, Marseille, France; Marseille Université, Marseille, France; Unité Mixte de Recherche 7258, Centre National de la Recherche Scientifique, Marseille, France; Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Münster, Germany; and Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Hobeika E, Nielsen PJ, Medgyesi D. Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med (Berl) 2015; 93:143-58. [PMID: 25627575 DOI: 10.1007/s00109-015-1252-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/15/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023]
Abstract
It is becoming more and more accepted that, in addition to producing autoantibodies, B lymphocytes have other important functions that influence the development of autoimmunity. For example, autoreactive B cells are able to produce inflammatory cytokines and activate pathogenic T cells. B lymphocytes can react to extracellular signals with a range of responses from anergy to autoreactivity. The final outcome is determined by the relative contribution of signaling events mediated by activating and inhibitory pathways. Besides the B cell antigen receptor (BCR), several costimulatory receptors expressed on B cells can also induce B cell proliferation and survival, or regulate antibody production. These include CD19, CD40, the B cell activating factor receptor, and Toll-like receptors. Hyperactivity of these receptors clearly contributes to breaking B-cell tolerance in several autoimmune diseases. Inhibitors of these activating signals (including protein tyrosine phosphatases, deubiquitinating enzymes and several adaptor proteins) are crucial to control B-cell activation and maintain B-cell tolerance. In this review, we summarize the inhibitory signaling mechanisms that counteract B-cell activation triggered by the BCR and the coreceptors.
Collapse
Affiliation(s)
- Elias Hobeika
- BIOSS Centre of Biological Signalling Studies, University of Freiburg and Department for Molecular Immunology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | | |
Collapse
|
28
|
Huber M, Gibbs BF. SHIP1 and the negative control of mast cell/basophil activation by supra-optimal antigen concentrations. Mol Immunol 2015; 63:32-7. [DOI: 10.1016/j.molimm.2014.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
29
|
Evidence for SH2 domain-containing 5'-inositol phosphatase-2 (SHIP2) contributing to a lymphatic dysfunction. PLoS One 2014; 9:e112548. [PMID: 25383712 PMCID: PMC4226566 DOI: 10.1371/journal.pone.0112548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
The lymphatic vasculature plays a critical role in a number of disease conditions of increasing prevalence, such as autoimmune disorders, obesity, blood vascular diseases, and cancer metastases. Yet, unlike the blood vasculature, the tools available to interrogate the molecular basis of lymphatic dysfunction/disease have been lacking. More recently, investigators have reported that dysregulation of the PI3K pathway is involved in syndromic human diseases that involve abnormal lymphatic vasculatures, but there have been few compelling results that show the direct association of this molecular pathway with lymphatic dysfunction in humans. Using near-infrared fluorescence lymphatic imaging (NIRFLI) to phenotype and next generation sequencing (NGS) for unbiased genetic discovery in a family with non-syndromic lymphatic disease, we discovered a rare, novel mutation in INPPL1 that encodes the protein SHIP2, which is a negative regulator of the PI3K pathway, to be associated with lymphatic dysfunction in the family. In vitro interrogation shows that SHIP2 is directly associated with impairment of normal lymphatic endothelial cell (LEC) behavior and that SHIP2 associates with receptors that are associated in lymphedema, implicating its direct involvement in the lymphatic vasculature.
Collapse
|
30
|
Abstract
Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5'-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein-protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.
Collapse
|
31
|
Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Fas(lpr) mouse. Proc Natl Acad Sci U S A 2013; 110:20194-9. [PMID: 24282294 DOI: 10.1073/pnas.1317632110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNA-155 (miR-155) regulates antibody responses and subsequent B-cell effector functions to exogenous antigens. However, the role of miR-155 in systemic autoimmunity is not known. Using the death receptor deficient (Fas(lpr)) lupus-prone mouse, we show here that ablation of miR-155 reduced autoantibody responses accompanied by a decrease in serum IgG but not IgM anti-dsDNA antibodies and a reduction of kidney inflammation. MiR-155 deletion in Fas(lpr) B cells restored the reduced SH2 domain-containing inositol 5'-phosphatase 1 to normal levels. In addition, coaggregation of the Fc γ receptor IIB with the B-cell receptor in miR-155(-/-)-Fas(lpr) B cells resulted in decreased ERK activation, proliferation, and production of switched antibodies compared with miR-155 sufficient Fas(lpr) B cells. Thus, by controlling the levels of SH2 domain-containing inositol 5'-phosphatase 1, miR-155 in part maintains an activation threshold that allows B cells to respond to antigens.
Collapse
|
32
|
Bounab Y, Hesse AM, Iannascoli B, Grieco L, Couté Y, Niarakis A, Roncagalli R, Lie E, Lam KP, Demangel C, Thieffry D, Garin J, Malissen B, Daëron M. Proteomic analysis of the SH2 domain-containing leukocyte protein of 76 kDa (SLP76) interactome in resting and activated primary mast cells [corrected]. Mol Cell Proteomics 2013; 12:2874-89. [PMID: 23820730 PMCID: PMC3790297 DOI: 10.1074/mcp.m112.025908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/29/2013] [Indexed: 11/06/2022] Open
Abstract
We report the first proteomic analysis of the SLP76 interactome in resting and activated primary mouse mast cells. This was made possible by a novel genetic approach used for the first time here. It consists in generating knock-in mice that express signaling molecules bearing a C-terminal tag that has a high affinity for a streptavidin analog. Tagged molecules can be used as molecular baits to affinity-purify the molecular complex in which they are engaged, which can then be studied by mass spectrometry. We examined first SLP76 because, although this cytosolic adapter is critical for both T cell and mast cell activation, its role is well known in T cells but not in mast cells. Tagged SLP76 was expressed in physiological amounts and fully functional in mast cells. We unexpectedly found that SLP76 is exquisitely sensitive to mast cell granular proteases, that Zn(2+)-dependent metalloproteases are especially abundant in mast cells and that they were responsible for SLP76 degradation. Adding a Zn(2+) chelator fully protected SLP76 in mast cell lysates, thereby enabling an efficient affinity-purification of this adapter with its partners. Label-free quantitative mass spectrometry analysis of affinity-purified SLP76 interactomes uncovered both partners already described in T cells and novel partners seen in mast cells only. Noticeably, molecules inducibly recruited in both cell types primarily concur to activation signals, whereas molecules recruited in activated mast cells only are mostly associated with inhibition signals. The transmembrane adapter LAT2, and the serine/threonine kinase with an exchange factor activity Bcr were the most recruited molecules. Biochemical and functional validations established the unexpected finding that Bcr is recruited by SLP76 and positively regulates antigen-induced mast cell activation. Knock-in mice expressing tagged molecules with a normal tissue distribution and expression therefore provide potent novel tools to investigate signalosomes and to uncover novel signaling molecules in mast cells.
Collapse
Affiliation(s)
- Yacine Bounab
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| | - Anne-Marie- Hesse
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Bruno Iannascoli
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| | - Luca Grieco
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Yohann Couté
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Anna Niarakis
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Romain Roncagalli
- §§Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix Marseille, UM2, Marseille, France
- ¶¶Inserm, U1104, Marseille, France
- ‖‖CNRS, UMR7280, Marseille, France
- Centre d'Immunophénomique, Inserm US012, CNRS UMS3367, Université Aix Marseille, Marseille, France
| | - Eunkyung Lie
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-601, Korea
| | - Kong-Peng Lam
- Immunology Group, Bioprocessing Technology Institute, A*STAR, Singapore
| | - Caroline Demangel
- Institut Pasteur, Département d'Immunologie, Unité d'Immunobiologie de l'infection, Paris, France
| | - Denis Thieffry
- ‡‡Institut de Biologie de l'Ecole Normale Supérieure (IBENS), UMR ENS-CNRS 8197-Inserm 1024, Paris, France
| | - Jérôme Garin
- ¶CEA, IRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
- ‖Inserm, U1038, Grenoble, France
- **Univ. Grenoble Alpes, iRTSV, Laboratoire de Biologie à Grande Echelle, Grenoble, France
| | - Bernard Malissen
- §§Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix Marseille, UM2, Marseille, France
- ¶¶Inserm, U1104, Marseille, France
- ‖‖CNRS, UMR7280, Marseille, France
- Centre d'Immunophénomique, Inserm US012, CNRS UMS3367, Université Aix Marseille, Marseille, France
| | - Marc Daëron
- From the ‡Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, and Centre d'Immunologie Humaine Paris, France
- §Inserm, U760 and UMS20, Paris, France
| |
Collapse
|
33
|
Kundu K, Costa F, Huber M, Reth M, Backofen R. Semi-supervised prediction of SH2-peptide interactions from imbalanced high-throughput data. PLoS One 2013; 8:e62732. [PMID: 23690949 PMCID: PMC3656881 DOI: 10.1371/journal.pone.0062732] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/22/2013] [Indexed: 01/08/2023] Open
Abstract
Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies) and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2 domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83 AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second, we improve performance when considering high order correlations between the ligand positions employing regularization techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding, uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2-domains, freely available to the scientific community under the following URLs: http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/SH2PepInt.tar.gz and http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar.gz, respectively.
Collapse
Affiliation(s)
- Kousik Kundu
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Fabrizio Costa
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Aachen, Germany
| | - Michael Reth
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Department of Molecular Immunology, Max Planck Institute of Immunology, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
34
|
Bounab Y, Getahun A, Cambier JC, Daëron M. Phosphatase regulation of immunoreceptor signaling in T cells, B cells and mast cells. Curr Opin Immunol 2013; 25:313-20. [PMID: 23684445 DOI: 10.1016/j.coi.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/30/2022]
Abstract
Recent progress has begun to reveal the often complex and changing roles of phosphotyrosine and phosphoinositide phosphatases in regulation of immunoreceptor signaling. The resultant confusion has been further increased by discoveries of new players. Here we provide a review of recent progress in defining the roles of these enzymes in immunoreceptor-dependent mast cell, T cell and B cell activation.
Collapse
Affiliation(s)
- Yacine Bounab
- Institut Pasteur, Département d'Immunologie, Centre d'Immunologie Humaine, Paris, France
| | | | | | | |
Collapse
|
35
|
Jönsson F, Mancardi DA, Albanesi M, Bruhns P. Neutrophils in local and systemic antibody-dependent inflammatory and anaphylactic reactions. J Leukoc Biol 2013; 94:643-56. [PMID: 23532517 DOI: 10.1189/jlb.1212623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils are notorious for their efficacy in microbial killing. Various mechanisms, such as phagocytosis, production of ROS, cytokines/chemokines and lipid mediators, degranulation of antimicrobials and enzymes, as well as NETosis contribute to this capacity. However, every incidence of neutrophil activation bears a risk to cause damage to the host. Several distinct steps, i.e., adhesion to endothelial cells, transmigration, chemotaxis, cytokine stimulation, and TLR signaling, are thought to control the extent of neutrophil activation. In the absence of a microbial stimulus, other pathways can induce neutrophil activation, among which FcR-induced activation when neutrophils encounter ICs. In these situations (inflammation, autoimmunity, allergy), neutrophils may act as primary or secondary effectors of immune reactions. In the presence of circulating ICs, neutrophils can indeed get stimulated directly in the bloodstream and trigger an immune response. Upon deposition of antibody complexes inside of tissues, neutrophils are first recruited and primed before being highly activated to amplify the ongoing inflammation. This review focuses on the engagement, activation, and responses of neutrophils to antibody ICs, inside of tissues or in the vasculature.
Collapse
Affiliation(s)
- Friederike Jönsson
- 2.Département d'Immunologie, Institut Pasteur, Inserm U760, 25 rue du Docteur Roux, 75015 Paris, France. or
| | | | | | | |
Collapse
|
36
|
Huber M. Activation/Inhibition of mast cells by supra-optimal antigen concentrations. Cell Commun Signal 2013; 11:7. [PMID: 23339289 PMCID: PMC3598417 DOI: 10.1186/1478-811x-11-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/13/2013] [Indexed: 01/12/2023] Open
Abstract
Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with “its own Ag”, thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5′-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra-optimal crosslinking holds great potential for identifying novel targets for pharmacologic therapeutic intervention to benefit patients with acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstr, 30, 52074, Aachen, Germany.
| |
Collapse
|
37
|
Hooker E, Baldwin C, Lemay S. New insights into Dok-4 PTB domain structure and function. Biochem Biophys Res Commun 2012; 427:67-72. [PMID: 22982678 DOI: 10.1016/j.bbrc.2012.08.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 01/17/2023]
Abstract
The seven members of the Dok adapter protein family share a highly conserved phosphotyrosine-binding (PTB) domain. In the case of Dok-1, 2 and 3, the PTB domain binds to the lipid phosphatase Ship1, a key component of their inhibitory signaling mechanisms in immune cells. In contrast to most other Dok family members, Dok-4 is expressed widely but is poorly understood, largely because of limited knowledge of its partner molecules. We previously showed that, in contrast to the Dok-1 PTB domain (defined as aa 107-260), the homologous sequence in Dok-4 (aa 100-233) bound very poorly to Ret, a known Dok-4 partner. In the current study, we show that binding of Dok-4 to Ret requires residues C-terminal to the previously defined PTB domain boundaries (up to aa 246). These residues are predicted to form an extension in a critical C-terminal α-helix. We show that the Dok-4 PTB domain also binds the phosphorylated NPXY motifs in Ship1 but not Ship2. Finally, we found that a rare human single nucleotide polymorphism causing a R186H substitution in the PTB domain abolishes tyrosine phosphorylation of Dok-4 by Ret. In addition to providing a clearer understanding of Dok-4 PTB domain structure and function, our findings point to a potential mechanism for Dok-4 inhibitory signaling in T-cells and to the possibility of a rare Dok-4-related phenotype in humans.
Collapse
Affiliation(s)
- Erika Hooker
- Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada H3A 2B4
| | | | | |
Collapse
|
38
|
MacGlashan DW. IgE-dependent signaling as a therapeutic target for allergies. Trends Pharmacol Sci 2012; 33:502-9. [PMID: 22749712 PMCID: PMC3427396 DOI: 10.1016/j.tips.2012.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 01/21/2023]
Abstract
Atopic diseases are complex, with many immunological participants, but the central element in their expression is IgE antibody. In an atopic individual, the immune system pathologically reacts to environmental substances by producing IgE, and these allergen-specific IgE antibodies confer to IgE receptor-bearing cells responsiveness to the environmental substances. Mast cells and basophils are central to the immediate hypersensitivity reaction that is mediated by IgE. In humans, there are various other immune cells, notably dendritic cells and B cells, which can also bind IgE. For mast cells, basophils and dendritic cells, the receptor that binds IgE is the high-affinity receptor, FcɛRI. For B cells and a few other cell types, the low affinity receptor, FcɛRII, provides the cell with a means to sense the presence of IgE. This overview will focus on events following activation of the high-affinity receptor because FcɛRI generates the classical immediate hypersensitivity reaction.
Collapse
|
39
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
40
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|
41
|
Williams EL, Tutt AL, French RR, Chan HTC, Lau B, Penfold CA, Mockridge CI, Roghanian A, Cox KL, Verbeek JS, Glennie MJ, Cragg MS. Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcγRIIB (CD32B). Eur J Immunol 2012; 42:2109-20. [DOI: 10.1002/eji.201142302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/03/2012] [Accepted: 05/09/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Emily L. Williams
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Alison L. Tutt
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Ruth R. French
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - H. T. Claude Chan
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Betty Lau
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Christine A. Penfold
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - C. Ian Mockridge
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Ali Roghanian
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Kerry L. Cox
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - J. Sjef Verbeek
- Department of Human Genetics; Leiden University Medical Centre; Leiden; The Netherlands
| | - Martin J. Glennie
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| |
Collapse
|
42
|
Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 2012; 336:1178-81. [PMID: 22555432 PMCID: PMC3777391 DOI: 10.1126/science.1213368] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Germinal centers (GCs) generate memory B and plasma cells, which are essential for long-lived humoral immunity. GC B cells with high-affinity B cell receptors (BCRs) are selectively expanded. To enable this selection, BCRs of such cells are thought to signal differently from those with lower affinity. We show that, surprisingly, most proliferating GC B cells did not demonstrate active BCR signaling. Rather, spontaneous and induced signaling was limited by increased phosphatase activity. Accordingly, both SH2 domain-containing phosphatase-1 (SHP-1) and SH2 domain-containing inositol 5 phosphatase were hyperphosphorylated in GC cells and remained colocalized with BCRs after ligation. Furthermore, SHP-1 was required for GC maintenance. Intriguingly, GC B cells in the cell-cycle G(2) period regained responsiveness to BCR stimulation. These data have implications for how higher-affinity B cells are selected in the GC.
Collapse
Affiliation(s)
- Ashraf M Khalil
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
43
|
Waterman PM, Marschner S, Brandl E, Cambier JC. The inositol 5-phosphatase SHIP-1 and adaptors Dok-1 and 2 play central roles in CD4-mediated inhibitory signaling. Immunol Lett 2012; 143:122-30. [PMID: 22370159 DOI: 10.1016/j.imlet.2012.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 11/26/2022]
Abstract
CD4 functions to enhance the sensitivity of T cells to antigenic peptide/MHC class II. However, if aggregated in isolation, e.g. in the absence of T cell receptor (TCR), CD4 can transduce yet undefined signals that lead to T cell unresponsiveness to antigen and apoptosis. In Human Immunodeficiency Virus-1 (HIV-1) disease, CD4(+) T cell loss can result from gp120-induced CD4 signaling in uninfected cells. We show here that CD4 aggregation leads to Lck-dependent phosphorylation of the RasGAP adaptors Downstream of kinase-1/2 (Dok-1/2) and the inositol 5-phosphatase-1 (SHIP-1) and association of the two molecules. Studies using SHIP-1 shRNA, knockout mice and decoy inhibitors further indicate that CD4-mediated inhibition of TCR-mediated T cell activation is SHIP-1 and Dok-1/2 dependent, and involves SHIP-1 hydrolysis of Phosphatidylinositol 3,4,5-trisphosophate (PI(3,4,5)P3) needed for TCR signaling. Our studies provide evidence for a novel mechanism by which ill-timed CD4-mediated signals activated by ligands such as HIV-1 gp120 lead to disarmament of the immune system.
Collapse
Affiliation(s)
- Paul M Waterman
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, United States
| | | | | | | |
Collapse
|
44
|
Draber P, Halova I, Levi-Schaffer F, Draberova L. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front Immunol 2012; 2:95. [PMID: 22566884 PMCID: PMC3342071 DOI: 10.3389/fimmu.2011.00095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022] Open
Abstract
Aggregation of the high-affinity IgE receptor (FcεRI) initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of spleen tyrosine kinase (Syk). Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs). These proteins are characterized by a short extracellular domain, a single transmembrane domain, and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), linker for activation of X cells (LAX), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG), and growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT)]; engagement of four of them (LAT, NTAL, LAX, and PAG) in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production, and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | | | | | | |
Collapse
|
45
|
Mukherjee O, Weingarten L, Padberg I, Pracht C, Sinha R, Hochdörfer T, Kuppig S, Backofen R, Reth M, Huber M. The SH2-domain of SHIP1 interacts with the SHIP1 C-terminus: impact on SHIP1/Ig-α interaction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:206-14. [PMID: 22182704 DOI: 10.1016/j.bbamcr.2011.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
The SH2-containing inositol 5'-phosphatase, SHIP1, negatively regulates signal transduction from the B cell antigen receptor (BCR). The mode of coupling between SHIP1 and the BCR has not been elucidated so far. In comparison to wild-type cells, B cells expressing a mutant IgD- or IgM-BCR containing a C-terminally truncated Ig-α respond to pervanadate stimulation with markedly reduced tyrosine phosphorylation of SHIP1 and augmented activation of protein kinase B. This indicates that SHIP1 is capable of interacting with the C-terminus of Ig-α. Employing a system of fluorescence resonance energy transfer in S2 cells, we can clearly demonstrate interaction between the SH2-domain of SHIP1 and Ig-α. Furthermore, a fluorescently labeled SH2-domain of SHIP1 translocates to the plasma membrane in an Ig-α-dependent manner. Interestingly, whereas the SHIP1 SH2-domain can be pulled-down with phospho-peptides corresponding to the immunoreceptor tyrosine-based activation motif (ITAM) of Ig-α from detergent lysates, no interaction between full-length SHIP1 and the phosphorylated Ig-α ITAM can be observed. Further studies show that the SH2-domain of SHIP1 can bind to the C-terminus of the SHIP1 molecule, most probably by inter- as well as intra-molecular means, and that this interaction regulates the association between different forms of SHIP1 and Ig-α.
Collapse
Affiliation(s)
- Oindrilla Mukherjee
- RWTH Aachen University, Medical Faculty, Department of Biochemistry and Molecular Immunology, Institute of Biochemistry and Molecular Biology, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
O'Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li QZ, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 2011; 35:746-56. [PMID: 22078222 DOI: 10.1016/j.immuni.2011.10.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/16/2011] [Accepted: 10/13/2011] [Indexed: 12/17/2022]
Abstract
Anergic B cells are characterized by impaired signaling and activation after aggregation of their antigen receptors (BCR). The molecular basis of this impairment is not understood. In studies reported here, Src homology-2 (SH2)-containing inositol 5-phosphatase SHIP-1 and its adaptor Dok-1 were found to be constitutively phosphorylated in anergic B cells, and activation of this inhibitory circuit was dependent on Src-family kinase activity and consequent to biased BCR immunoreceptor tyrosine-based activation motif (ITAM) monophosphorylation. B cell-targeted deletion of SHIP-1 caused severe lupus-like disease. Moreover, absence of SHIP-1 in B cells led to loss of anergy as indicated by restoration of BCR signaling, loss of anergic surface phenotype, and production of autoantibodies. Thus, chronic BCR signals maintain anergy in part via ITAM monophosphorylation-directed activation of an inhibitory signaling circuit involving SHIP-1 and Dok-1.
Collapse
Affiliation(s)
- Shannon K O'Neill
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mercier PL, Bachvarova M, Plante M, Gregoire J, Renaud MC, Ghani K, Têtu B, Bairati I, Bachvarov D. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol 2011; 5:438-53. [PMID: 21856257 DOI: 10.1016/j.molonc.2011.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022] Open
Abstract
In attempt to discover novel aberrantly hypermethylated genes with putative tumor suppressor function in epithelial ovarian cancer (EOC), we applied expression profiling following pharmacologic inhibition of DNA methylation in EOC cell lines. Among the genes identified, one of particular interest was DOK1, or downstream of tyrosine kinase 1, previously recognized as a candidate tumor suppressor gene (TSG) for leukemia and other human malignancies. Using bisulfite sequencing, we determined that a 5'-non-coding DNA region (located at nt -1158 to -850, upstream of the DOK1 translation start codon) was extensively hypermethylated in primary serous EOC tumors compared with normal ovarian specimens; however, this hypermethylation was not associated with DOK1 suppression. On the contrary, DOK1 was found to be strongly overexpressed in serous EOC tumors as compared to normal tissue and importantly, DOK1 overexpression significantly correlated with improved progression-free survival (PFS) values of serous EOC patients. Ectopic modulation of DOK1 expression in EOC cells and consecutive functional analyses pointed toward association of DOK1 expression with increased EOC cell migration and proliferation, and better sensitivity to cisplatin treatment. Gene expression profiling and consecutive network and pathway analyses were also confirmative for DOK1 association with EOC cell migration and proliferation. These analyses were also indicative for DOK1 protective role in EOC tumorigenesis, linked to DOK1-mediated induction of some tumor suppressor factors and its suppression of pro-metastasis genes. Taken together, our findings are suggestive for a possible tumor suppressor role of DOK1 in EOC; however its implication in enhanced EOC cell migration and proliferation restrain us to conclude that DOK1 represents a true TSG in EOC. Further studies are needed to more completely elucidate the functional implications of DOK1 and other members of the DOK gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Pierre-Luc Mercier
- Department of Molecular Medicine, Laval University, Quebec (Quebec), Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The PI3K pathway drives the maturation of mast cells via microphthalmia transcription factor. Blood 2011; 118:3459-69. [PMID: 21791431 DOI: 10.1182/blood-2011-04-351809] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mast cell maturation is poorly understood. We show that enhanced PI3K activation results in accelerated maturation of mast cells by inducing the expression of microphthalmia transcription factor (Mitf). Conversely, loss of PI3K activation reduces the maturation of mast cells by inhibiting the activation of AKT, leading to reduced Mitf but enhanced Gata-2 expression and accumulation of Gr1(+)Mac1(+) myeloid cells as opposed to mast cells. Consistently, overexpression of Mitf accelerates the maturation of mast cells, whereas Gata-2 overexpression mimics the loss of the PI3K phenotype. Expressing the full-length or the src homology 3- or BCR homology domain-deleted or shorter splice variant of the p85α regulatory subunit of PI3K or activated AKT or Mitf in p85α-deficient cells restores the maturation but not growth. Although deficiency of both SHIP and p85α rescues the maturation of SHIP(-/-) and p85α(-/-) mast cells and expression of Mitf; in vivo, mast cells are rescued in some, but not all tissues, due in part to defective KIT signaling, which is dependent on an intact src homology 3 and BCR homology domain of p85α. Thus, p85α-induced maturation, and growth and survival signals, in mast cells can be uncoupled.
Collapse
|
49
|
Mehta P, Wavreille AS, Justiniano SE, Marsh RL, Yu J, Burry RW, Jarjoura D, Eubank T, Caligiuri MA, Butchar JP, Tridandapani S. LyGDI, a novel SHIP-interacting protein, is a negative regulator of FcγR-mediated phagocytosis. PLoS One 2011; 6:e21175. [PMID: 21695085 PMCID: PMC3114867 DOI: 10.1371/journal.pone.0021175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 05/23/2011] [Indexed: 12/28/2022] Open
Abstract
SHIP and SHIP-2 are inositol phosphatases that regulate FcγR-mediated phagocytosis through catalytic as well as non-catalytic mechanisms. In this study we have used two-dimensional fluorescence difference gel electrophoresis (DIGE) analysis to identify downstream signaling proteins that uniquely associate with SHIP or SHIP-2 upon FcγR clustering in human monocytes. We identified LyGDI as a binding partner of SHIP, associating inducibly with the SHIP/Grb2/Shc complex. Immunodepletion and competition experiments with recombinant SHIP domains revealed that Grb2 and the proline-rich domain of SHIP were necessary for SHIP-LyGDI association. Functional studies in primary human monocytes showed that LyGDI sequesters Rac in the cytosol, preventing it from localizing to the membrane. Consistent with this, suppression of LyGDI expression resulted in significantly enhanced FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Payal Mehta
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Anne-Sophie Wavreille
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven E. Justiniano
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Rachel L. Marsh
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jianhua Yu
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard W. Burry
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, Ohio, United States of America
| | - David Jarjoura
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Timothy Eubank
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael A. Caligiuri
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Condé C, Gloire G, Piette J. Enzymatic and non-enzymatic activities of SHIP-1 in signal transduction and cancer. Biochem Pharmacol 2011; 82:1320-34. [PMID: 21672530 DOI: 10.1016/j.bcp.2011.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/27/2011] [Indexed: 12/29/2022]
Abstract
PI3K cascade is a central signaling pathway regulating cell proliferation, growth, differentiation, and survival. Tight regulation of the PI3K signaling pathway is necessary to avoid aberrant cell proliferation and cancer development. Together with SHIP-1, the inositol phosphatases PTEN and SHIP-2 are the gatekeepers of this pathway. In this review, we will focus on SHIP-1 functions. Negative regulation of immune cell activation by SHIP-1 is well characterized. Besides its catalytic activity, SHIP-1 also displays non-enzymatic activity playing role in several immune pathways. Indeed, SHIP-1 exhibits several domains that mediate protein-protein interaction. This review emphasizes the negative regulation of immune cell activation by SHIP-1 that is mediated by its protein-protein interaction.
Collapse
Affiliation(s)
- Claude Condé
- Laboratory of Virology & Immunology, GIGA-Research B34, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|