1
|
Song W, Tang F, Marshall H, Fong KM, Liu F. A multiscale 3D network for lung nodule detection using flexible nodule modeling. Med Phys 2024; 51:7356-7368. [PMID: 38949577 DOI: 10.1002/mp.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Lung cancer is the most common type of cancer. Detection of lung cancer at an early stage can reduce mortality rates. Pulmonary nodules may represent early cancer and can be identified through computed tomography (CT) scans. Malignant risk can be estimated based on attributes like size, shape, location, and density. PURPOSE Deep learning algorithms have achieved remarkable advancements in this domain compared to traditional machine learning methods. Nevertheless, many existing anchor-based deep learning algorithms exhibit sensitivity to predefined anchor-box configurations, necessitating manual adjustments to obtain optimal outcomes. Conversely, current anchor-free deep learning-based nodule detection methods normally adopt fixed-size nodule models like cubes or spheres. METHODS To address these technical challenges, we propose a multiscale 3D anchor-free deep learning network (M3N) for pulmonary nodule detection, leveraging adjustable nodule modeling (ANM). Within this framework, ANM empowers the representation of target objects in an anisotropic manner, with a novel point selection strategy (PSS) devised to accelerate the learning process of anisotropic representation. We further incorporate a composite loss function that combines the conventional L2 loss and cosine similarity loss, facilitating M3N to learn nodules' intensity distribution in three dimensions. RESULTS Experiment results show that the M3N achieves 90.6% competitive performance metrics (CPM) with seven predefined false positives per scan on the LUNA 16 dataset. This performance appears to exceed that of other state-of-the-art deep learning-based networks reported in their respective publications. Individual test results also demonstrate that M3N excels in providing more accurate, adaptive bounding boxes surrounding the contours of target nodules. CONCLUSIONS The newly developed nodule detection system reduces reliance on prior knowledge, such as the general size of objects in the dataset, thus it should enhance overall robustness and versatility. Distinct from traditional nodule modeling techniques, the ANM approach aligns more closely with the morphological characteristics of nodules. Time consumption and detection results demonstrate promising efficiency and accuracy which should be validated in clinical settings.
Collapse
Affiliation(s)
- Wenjia Song
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Fangfang Tang
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Henry Marshall
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Kwun M Fong
- UQ Thoracic Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Feng Liu
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Valente IRS, Cortez PC, Neto EC, Soares JM, de Albuquerque VHC, Tavares JMRS. Automatic 3D pulmonary nodule detection in CT images: A survey. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 124:91-107. [PMID: 26652979 DOI: 10.1016/j.cmpb.2015.10.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/01/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
This work presents a systematic review of techniques for the 3D automatic detection of pulmonary nodules in computerized-tomography (CT) images. Its main goals are to analyze the latest technology being used for the development of computational diagnostic tools to assist in the acquisition, storage and, mainly, processing and analysis of the biomedical data. Also, this work identifies the progress made, so far, evaluates the challenges to be overcome and provides an analysis of future prospects. As far as the authors know, this is the first time that a review is devoted exclusively to automated 3D techniques for the detection of pulmonary nodules from lung CT images, which makes this work of noteworthy value. The research covered the published works in the Web of Science, PubMed, Science Direct and IEEEXplore up to December 2014. Each work found that referred to automated 3D segmentation of the lungs was individually analyzed to identify its objective, methodology and results. Based on the analysis of the selected works, several studies were seen to be useful for the construction of medical diagnostic aid tools. However, there are certain aspects that still require attention such as increasing algorithm sensitivity, reducing the number of false positives, improving and optimizing the algorithm detection of different kinds of nodules with different sizes and shapes and, finally, the ability to integrate with the Electronic Medical Record Systems and Picture Archiving and Communication Systems. Based on this analysis, we can say that further research is needed to develop current techniques and that new algorithms are needed to overcome the identified drawbacks.
Collapse
Affiliation(s)
- Igor Rafael S Valente
- Instituto Federal do Ceará, Campus Maracanaú, Av. Parque Central, S/N, Distrito Industrial I, 61939-140 Maracanaú, Ceará, Brazil; Universidade Federal do Ceará, Departamento de Engenharia de Teleinformática, Av. Mister Hull, S/N, Campus do Pici, 6005, 60455-760 Fortaleza, Ceará, Brazil
| | - Paulo César Cortez
- Universidade Federal do Ceará, Departamento de Engenharia de Teleinformática, Av. Mister Hull, S/N, Campus do Pici, 6005, 60455-760 Fortaleza, Ceará, Brazil
| | - Edson Cavalcanti Neto
- Universidade Federal do Ceará, Departamento de Engenharia de Teleinformática, Av. Mister Hull, S/N, Campus do Pici, 6005, 60455-760 Fortaleza, Ceará, Brazil
| | - José Marques Soares
- Universidade Federal do Ceará, Departamento de Engenharia de Teleinformática, Av. Mister Hull, S/N, Campus do Pici, 6005, 60455-760 Fortaleza, Ceará, Brazil
| | - Victor Hugo C de Albuquerque
- Programa de Pós-Graduacão em Informática Aplicada, Universidade de Fortaleza, Av. Washington Soares, 1321, Edson Queiroz, 60811341, CEP 608113-41 Fortaleza, Ceará, Brazil
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovacão em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, S/N, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Firmino M, Morais AH, Mendoça RM, Dantas MR, Hekis HR, Valentim R. Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects. Biomed Eng Online 2014; 13:41. [PMID: 24713067 PMCID: PMC3995505 DOI: 10.1186/1475-925x-13-41] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/28/2014] [Indexed: 12/25/2022] Open
Abstract
Introduction The goal of this paper is to present a critical review of major Computer-Aided Detection systems (CADe) for lung cancer in order to identify challenges for future research. CADe systems must meet the following requirements: improve the performance of radiologists providing high sensitivity in the diagnosis, a low number of false positives (FP), have high processing speed, present high level of automation, low cost (of implementation, training, support and maintenance), the ability to detect different types and shapes of nodules, and software security assurance. Methods The relevant literature related to “CADe for lung cancer” was obtained from PubMed, IEEEXplore and Science Direct database. Articles published from 2009 to 2013, and some articles previously published, were used. A systemic analysis was made on these articles and the results were summarized. Discussion Based on literature search, it was observed that many if not all systems described in this survey have the potential to be important in clinical practice. However, no significant improvement was observed in sensitivity, number of false positives, level of automation and ability to detect different types and shapes of nodules in the studied period. Challenges were presented for future research. Conclusions Further research is needed to improve existing systems and propose new solutions. For this, we believe that collaborative efforts through the creation of open source software communities are necessary to develop a CADe system with all the requirements mentioned and with a short development cycle. In addition, future CADe systems should improve the level of automation, through integration with picture archiving and communication systems (PACS) and the electronic record of the patient, decrease the number of false positives, measure the evolution of tumors, evaluate the evolution of the oncological treatment, and its possible prognosis.
Collapse
Affiliation(s)
- Macedo Firmino
- Department of Information and Computer Science, Federal Institute of Rio Grande do Norte (IFRN), Natal, Brazil.
| | | | | | | | | | | |
Collapse
|
4
|
Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 2013; 2013:942353. [PMID: 23431282 PMCID: PMC3570946 DOI: 10.1155/2013/942353] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022] Open
Abstract
This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer diagnosis. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can increase the patient's chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches for lung cancer CAD systems.
Collapse
|
5
|
Assessing the use of digital radiography and a real-time interactive pulmonary nodule analysis system for large population lung cancer screening. Eur J Radiol 2012; 81:e451-6. [DOI: 10.1016/j.ejrad.2011.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/06/2011] [Indexed: 11/23/2022]
|
6
|
Chen S, Suzuki K, MacMahon H. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys 2011; 38:1844-58. [PMID: 21626918 DOI: 10.1118/1.3561504] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To develop a computer-aided detection (CADe) scheme for nodules in chest radiographs (CXRs) with a high sensitivity and a low false-positive (FP) rate. METHODS The authors developed a CADe scheme consisting of five major steps, which were developed for improving the overall performance of CADe schemes. First, to segment the lung fields accurately, the authors developed a multisegment active shape model. Then, a two-stage nodule-enhancement technique was developed for improving the conspicuity of nodules. Initial nodule candidates were detected and segmented by using the clustering watershed algorithm. Thirty-one shape-, gray-level-, surface-, and gradient-based features were extracted from each segmented candidate for determining the feature space, including one of the new features based on the Canny edge detector to eliminate a major FP source caused by rib crossings. Finally, a nonlinear support vector machine (SVM) with a Gaussian kernel was employed for classification of the nodule candidates. RESULTS To evaluate and compare the scheme to other published CADe schemes, the authors used a publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs. The CADe scheme based on the SVM classifier achieved sensitivities of 78.6% (110/140) and 71.4% (100/140) with averages of 5.0 (1165/233) FPs/image and 2.0 (466/233) FPs/image, respectively, in a leave-one-out cross-validation test, whereas the CADe scheme based on a linear discriminant analysis classifier had a sensitivity of 60.7% (85/140) at an FP rate of 5.0 FPs/image. For nodules classified as "very subtle" and "extremely subtle," a sensitivity of 57.1% (24/42) was achieved at an FP rate of 5.0 FPs/image. When the authors used a database developed at the University of Chicago, the sensitivities was 83.3% (40/48) and 77.1% (37/48) at an FP rate of 5.0 (240/48) FPs/image and 2.0 (96/48) FPs/image, respectively. CONCLUSIONS These results compare favorably to those described for other commercial and non-commercial CADe nodule detection systems.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
7
|
Giger ML, Chan HP, Boone J. Anniversary paper: History and status of CAD and quantitative image analysis: the role of Medical Physics and AAPM. Med Phys 2009; 35:5799-820. [PMID: 19175137 PMCID: PMC2673617 DOI: 10.1118/1.3013555] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists-as opposed to a completely automatic computer interpretation-focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous-from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects-collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more-from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.
Collapse
Affiliation(s)
- Maryellen L Giger
- Department of Radiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
8
|
Chan HP, Hadjiiski L, Zhou C, Sahiner B. Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography-a review. Acad Radiol 2008; 15:535-55. [PMID: 18423310 PMCID: PMC2800985 DOI: 10.1016/j.acra.2008.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/01/2008] [Accepted: 01/17/2008] [Indexed: 02/08/2023]
Abstract
Computer-aided detection (CADe) and computer-aided diagnosis (CADx) have been important areas of research in the last two decades. Significant progress has been made in the area of breast cancer detection, and CAD techniques are being developed in many other areas. Recent advances in multidetector row computed tomography have made it an increasingly common modality for imaging of lung diseases. A thoracic examination using thin-section computed tomography contains hundreds of images. Detection of lung cancer and pulmonary embolism on computed tomographic (CT) examinations are demanding tasks for radiologists because they have to search for abnormalities in a large number of images, and the lesions can be subtle. If successfully developed, CAD can be a useful second opinion to radiologists in thoracic CT interpretation. In this review, we summarize the studies that have been reported in these areas, discuss some challenges in the development of CAD, and identify areas that deserve particular attention in future research.
Collapse
Affiliation(s)
- Heang-Ping Chan
- Department of Radiology, Med Inn Building C477, 1500 East Medical Center Drive, The University of Michigan, Ann Arbor, MI 48109-5842, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Computer-aided diagnosis (CAD) provides a computer output as a "second opinion" in order to assist radiologists in the diagnosis of various diseases on medical images. Currently, a significant research effort is being devoted to the detection and characterization of lung nodules in thin-section computed tomography (CT) images, which represents one of the newest directions of CAD development in thoracic imaging. We describe in this article the current status of the development and evaluation of CAD schemes for the detection and characterization of lung nodules in thin-section CT. We also review a number of observer performance studies in which it was attempted to assess the potential clinical usefulness of CAD schemes for nodule detection and characterization in thin-section CT. Whereas current CAD schemes for nodule characterization have achieved high performance levels and would be able to improve radiologists' performance in the characterization of nodules in thin-section CT, current schemes for nodule detection appear to report many false positives, and, therefore, significant efforts are needed in order further to improve the performance levels of current CAD schemes for nodule detection in thin-section CT.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiology, The University of Chicago, 5841 S. Maryland Avenue, MC2026, Chicago, IL 6063, USA.
| |
Collapse
|
10
|
Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys 2006; 33:2642-53. [PMID: 16898468 DOI: 10.1118/1.2208739] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed an advanced computer-aided diagnostic (CAD) scheme for the detection of various types of lung nodules on chest radiographs intended for implementation in clinical situations. We used 924 digitized chest images (992 noncalcified nodules) which had a 500 x 500 matrix size with a 1024 gray scale. The images were divided randomly into two sets which were used for training and testing of the computerized scheme. In this scheme, the lung field was first segmented by use of a ribcage detection technique, and then a large search area (448 x 448 matrix size) within the chest image was automatically determined by taking into account the locations of a midline and a top edge of the segmented ribcage. In order to detect lung nodule candidates based on a localized search method, we divided the entire search area into 7 x 7 regions of interest (ROIs: 64 x 64 matrix size). In the next step, each ROI was classified anatomically into apical, peripheral, hilar, and diaphragm/heart regions by use of its image features. Identification of lung nodule candidates and extraction of image features were applied for each localized region (128 x 128 matrix size), each having its central part (64 x 64 matrix size) located at a position corresponding to a ROI that was classified anatomically in the previous step. Initial candidates were identified by use of the nodule-enhanced image obtained with the average radial-gradient filtering technique, in which the filter size was varied adaptively depending on the location and the anatomical classification of the ROI. We extracted 57 image features from the original and nodule-enhanced images based on geometric, gray-level, background structure, and edge-gradient features. In addition, 14 image features were obtained from the corresponding locations in the contralateral subtraction image. A total of 71 image features were employed for three sequential artificial neural networks (ANNs) in order to reduce the number of false-positive candidates. All parameters for ANNs, i.e., the number of iterations, slope of sigmoid functions, learning rate, and threshold values for removing the false positives, were determined automatically by use of a bootstrap technique with training cases. We employed four different combinations of training and test image data sets which was selected randomly from the 924 cases. By use of our localized search method based on anatomical classification, the average sensitivity was increased to 92.5% with 59.3 false positives per image at the level of initial detection for four different sets of test cases, whereas our previous technique achieved an 82.8% of sensitivity with 56.8 false positives per image. The computer performance in the final step obtained from four different data sets indicated that the average sensitivity in detecting lung nodules was 70.1% with 5.0 false positives per image for testing cases and 70.4% sensitivity with 4.2 false positives per image for training cases. The advanced CAD scheme involving the localized search method with anatomical classification provided improved detection of pulmonary nodules on chest radiographs for 924 lung nodule cases.
Collapse
Affiliation(s)
- Junji Shiraishi
- Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, 5841 S. Maryland Avenue, MC 2026, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
11
|
Campadelli P, Casiraghi E, Artioli D. A fully automated method for lung nodule detection from postero-anterior chest radiographs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2006; 25:1588-603. [PMID: 17167994 DOI: 10.1109/tmi.2006.884198] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the past decades, a great deal of research work has been devoted to the development of systems that could improve radiologists' accuracy in detecting lung nodules. Despite the great efforts, the problem is still open. In this paper, we present a fully automated system processing digital postero-anterior (PA) chest radiographs, that starts by producing an accurate segmentation of the lung field area. The segmented lung area includes even those parts of the lungs hidden behind the heart, the spine, and the diaphragm, which are usually excluded from the methods presented in the literature. This decision is motivated by the fact that lung nodules may be found also in these areas. The segmented area is processed with a simple multiscale method that enhances the visibility of the nodules, and an extraction scheme is then applied to select potential nodules. To reduce the high number of false positives extracted, cost-sensitive support vector machines (SVMs) are trained to recognize the true nodules. Different learning experiments were performed on two different data sets, created by means of feature selection, and employing Gaussian and polynomial SVMs trained with different parameters; the results are reported and compared. With the best SVM models, we obtain about 1.5 false positives per image (fp/image) when sensitivity is approximately equal to 0.71; this number increases to about 2.5 and 4 fp/image when sensitivity is = 0.78 and = 0.85, respectively. For the highest sensitivity (= 0.92 and 1.0), we get 7 or 8 fp/image.
Collapse
Affiliation(s)
- Paola Campadelli
- Department of Computer Science, Universita degli Studi di Milano, Milan 20135, Italy.
| | | | | |
Collapse
|
12
|
Farag AA, El-Baz A, Gimelfarb G, El-Ghar MA, Eldiasty T. Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for CAD system design. ACTA ACUST UNITED AC 2006; 8:720-8. [PMID: 16685910 DOI: 10.1007/11566465_89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Automatic diagnosis of lung nodules for early detection of lung cancer is the goal of a number of screening studies worldwide. With the improvements in resolution and scanning time of low dose chest CT scanners, nodule detection and identification is continuously improving. In this paper we describe the latest improvements introduced by our group in automatic detection of lung nodules. We introduce a new template for nodule detection using level sets which describes various physical nodules irrespective of shape, size and distribution of gray levels. The template parameters are estimated automatically from the segmented data (after the first two steps of our CAD system for automatic nodule detection) - no a priori learning of the parameters density function is needed. We show quantitatively that this template modeling approach drastically reduces the number of false positives in the nodule detection (the third step of our CAD system for automatic nodule detection), thus improving the overall accuracy of CAD systems. We compare the performance of this approach with other approaches in the literature and with respect to human experts. The impact of the new template model includes: 1) flexibility with respect to nodule topology - thus various nodules can be detected simultaneously by the same technique; 2) automatic parameter estimation of the nodule models using the gray level information of the segmented data; and 3) the ability to provide exhaustive search for all the possible nodules in the scan without excessive processing time - this provides an enhanced accuracy of the CAD system without increase in the overall diagnosis time.
Collapse
Affiliation(s)
- Aly A Farag
- CVIP Lab., University of Louisville, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
13
|
Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE TRANSACTIONS ON MEDICAL IMAGING 2006; 25:406-16. [PMID: 16608057 DOI: 10.1109/tmi.2006.871549] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
When lung nodules overlap with ribs or clavicles in chest radiographs, it can be difficult for radiologists as well as computer-aided diagnostic (CAD) schemes to detect these nodules. In this paper, we developed an image-processing technique for suppressing the contrast of ribs and clavicles in chest radiographs by means of a multiresolution massive training artificial neural network (MTANN). An MTANN is a highly nonlinear filter that can be trained by use of input chest radiographs and the corresponding "teaching" images. We employed "bone" images obtained by use of a dual-energy subtraction technique as the teaching images. For effective suppression of ribs having various spatial frequencies, we developed a multiresolution MTANN consisting of multiresolution decomposition/composition techniques and three MTANNs for three different-resolution images. After training with input chest radiographs and the corresponding dual-energy bone images, the multiresolution MTANN was able to provide "bone-image-like" images which were similar to the teaching bone images. By subtracting the bone-image-like images from the corresponding chest radiographs, we were able to produce "soft-tissue-image-like" images where ribs and clavicles were substantially suppressed. We used a validation test database consisting of 118 chest radiographs with pulmonary nodules and an independent test database consisting of 136 digitized screen-film chest radiographs with 136 solitary pulmonary nodules collected from 14 medical institutions in this study. When our technique was applied to nontraining chest radiographs, ribs and clavicles in the chest radiographs were suppressed substantially, while the visibility of nodules and lung vessels was maintained. Thus, our image-processing technique for rib suppression by means of a multiresolution MTANN would be potentially useful for radiologists as well as for CAD schemes in detection of lung nodules on chest radiographs.
Collapse
Affiliation(s)
- Kenji Suzuki
- Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
14
|
Luo P, Qian W, Romilly P. CAD-aided mammogram training. Acad Radiol 2005; 12:1039-48. [PMID: 16087097 DOI: 10.1016/j.acra.2005.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/02/2005] [Accepted: 04/18/2005] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES Although computer-aided detection (CAD) improves the diagnosis rate of early breast cancer, it has not been well integrated into radiology residency and technician training program. Moreover, CAD performance studies ignore the reader's training and experience with CAD. The purpose of this study was to investigate whether CAD training via a cognitive-perceptual based hypermedia program has effects on the performance studies of mammogram reading. MATERIALS AND METHODS Three observers read a pretest set of 80 breast cancer cases (43 negative, 23 benign, and 14 malignant cancer cases). During 4 weeks' training, the observers used a hypermedia instructional program in CAD-aided mammography interpretation. The program includes modules of CAD attention-focusing schemes, CAD procedural knowledge, and case-based simulations in mammography interpretation in consensus with CAD. By the end of the fourth week of the training, they reviewed a posttest set of cases. Data were analyzed with multireader, multicase receiver operating characteristic methods. RESULTS Three readers performed better in mammogram reading after training in CAD knowledge than they did before CAD training. CAD training and experience improved the performance of CAD-aided mammography interpretation. CONCLUSION A statistically significant difference was found in each observer's performance in CAD-aided mammogram reading before and after the training. CAD training will influence the perception, recognition, and interpretation of early breast cancer and CAD performance studies. Furthermore, the young generation of radiologic professionals can have more training in various attention-focusing features, declarative knowledge, procedural knowledge, and conditional knowledge of CAD and incorporate them into their knowledge base and strategic processing for the purpose of improving the accuracy of mammography interpretation performance.
Collapse
Affiliation(s)
- Ping Luo
- University of South Florida, Tampa, 33612-9497, USA
| | | | | |
Collapse
|
15
|
Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol 2005; 12:191-201. [PMID: 15721596 DOI: 10.1016/j.acra.2004.11.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 11/11/2004] [Accepted: 11/17/2004] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVE We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs. MATERIALS AND METHODS Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, in 91 chest radiographs. With our current CAD scheme based on a difference-image technique and linear discriminant analysis, we achieved a sensitivity of 82.4%, with 4.5 false positives per image. We developed the multi-MTANN for further reduction of the false positive rate. An MTANN is a highly nonlinear filter that can be trained with input images and corresponding teaching images. To reduce the effects of background levels in chest radiographs, we applied a background-trend-correction technique, followed by contrast normalization, to the input images for the MTANN. For enhancement of nodules, the teaching image was designed to contain the distribution for a "likelihood of being a nodule." Six MTANNs in the multi-MTANN were trained by using typical nodules and six different types of non-nodules (false positives). RESULTS Use of the trained multi-MTANN eliminated 68.3% of false-positive findings with a reduction of one true-positive result. The false-positive rate of our original CAD scheme was improved from 4.5 to 1.4 false positives per image, at an overall sensitivity of 81.3%. CONCLUSION Use of a multi-MTANN substantially reduced the false-positive rate of our CAD scheme for lung nodule detection on chest radiographs, while maintaining a level of sensitivity.
Collapse
Affiliation(s)
- Kenji Suzuki
- Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
16
|
Automatic Detection and Recognition of Lung Abnormalities in Helical CT Images Using Deformable Templates. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2004 2004. [DOI: 10.1007/978-3-540-30136-3_104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
El-Baz A, Farag AA, Falk R, La Rocca R. A unified approach for detection, visualization, and identification of lung abnormalities in chest spiral CT scans. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0531-5131(03)00475-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
van Ginneken B, ter Haar Romeny BM, Viergever MA. Computer-aided diagnosis in chest radiography: a survey. IEEE TRANSACTIONS ON MEDICAL IMAGING 2001; 20:1228-1241. [PMID: 11811823 DOI: 10.1109/42.974918] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The traditional chest radiograph is still ubiquitous in clinical practice, and will likely remain so for quite some time. Yet, its interpretation is notoriously difficult. This explains the continued interest in computer-aided diagnosis for chest radiography. The purpose of this survey is to categorize and briefly review the literature on computer analysis of chest images, which comprises over 150 papers published in the last 30 years. Remaining challenges are indicated and some directions for future research are given.
Collapse
Affiliation(s)
- B van Ginneken
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands.
| | | | | |
Collapse
|
19
|
Abstract
CAD methods may provide radiologists with tools to obtain more accurate diagnoses for lung cancer. Considerable effort has been devoted to developing CAD tools for CXR; however, these are limited by the fundamental constraints of the projective CXR modality. CT provides far more detailed information that can be exploited better by CAD systems. There has been very little work done in this area to date, although the basic technology has already been developed through the more extensive research in the computer vision areas supported by industry and the military. Initial prototype CT CAD systems have been described that are highly effective in detecting small pulmonary nodules and in predicting malignancy of nodules. CT is now achieving momentum in the study of lung cancer. It has taken time for this modality to gain acceptance because of several factors: higher radiation dose, higher cost, and the novelty of use in this application. It is important to note that the technology for CT scanners is still rapidly evolving. As the speed, resolution, and cost of CT scanners continue to improve, computer techniques for the measurement and analysis of nodules will also achieve corresponding improvements in accuracy and diagnostic utility. Future knowledge-based CT CAD systems will provide detailed analysis of the related conditions of the lungs, such as emphysema, and diagnostic analysis of nodules. The issue is not whether CAD will improve the performance and capabilities of the radiologist, but at what rate their development and the corresponding improvement will occur. Current prototype CAD systems may be considered as tools. As such they will improve the performance of the user/radiologist if they are well engineered and if the user understands their capabilities and limitations. These systems need to be improved by knowledge-based engineering, which is notoriously difficult to implement robustly and requires model refinement and optimization based on a large database of cases. Research should be directed at developing these methods rather than comparing prototype systems with current practices. Future performance should be expected to exceed that of today's grand masters.
Collapse
Affiliation(s)
- A P Reeves
- School of Electrical Engineering, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
20
|
|