1
|
Abstract
AAT (alpha-1 antitrypsin) deficiency (AATD), characterized by low levels of circulating serine protease inhibitor AAT, results in emphysematous destruction of the lung. Inherited serum deficiency disorders, such as hemophilia and AATD, have been considered ideal candidates for gene therapy. Although viral vector-meditated transduction of the liver has demonstrated utility in hemophilia, similar success has not been achieved for AATD. The challenge for AAT gene therapy is achieving protective levels of AAT locally in the lung and mitigating potential liver toxicities linked to systemically administered viral vectors. Current strategies with ongoing clinical trials involve different routes of adeno-associated virus administrations, such as intramuscular and intrapleural injections, to provide consistent therapeutic levels from nonhepatic organ sites. Nevertheless, exploration of alternative methods of nonhepatic sourcing of AAT has been of great interest in the field. In this regard, pulmonary endothelium-targeted adenovirus vector could be a key technical mandate to achieve local augmentation of AAT within the lower respiratory tract, with the potential benefit of circumventing liver toxicities. In addition, incorporation of the CRISPR/Cas9 (CRISPR-associated protein 9) nuclease system into gene-delivery technologies has provided adjunctive technologies that could fully realize a one-time treatment for sustained, lifelong expression of AAT in patients with AATD. This review will focus on the adeno-associated virus- and adenoviral vector-mediated gene therapy strategies for the pulmonary manifestations of AATD and show that endeavoring to use genome-editing techniques will advance the current strategy to one fully compatible with direct human translation.
Collapse
Affiliation(s)
- Reka Lorincz
- Department of Radiation Oncology, Biologic Therapeutics Center, School of Medicine, Washington University, St. Louis, Missouri
| | - David T Curiel
- Department of Radiation Oncology, Biologic Therapeutics Center, School of Medicine, Washington University, St. Louis, Missouri
| |
Collapse
|
2
|
Chen Z, Niu M, Sun M, Yuan Q, Yao C, Hou J, Wang H, Wen L, Fu H, Zhou F, Li Z, He Z. Transdifferentiation of human male germline stem cells to hepatocytes in vivo via the transplantation under renal capsules. Oncotarget 2017; 8:14576-14592. [PMID: 28107194 PMCID: PMC5362427 DOI: 10.18632/oncotarget.14713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022] Open
Abstract
Here we proposed a new concept that human spermatogonial stem cells (SSCs) can transdifferentiate into hepatocytes in vivo. We first established liver injury model of mice by carbon tetrachloride to provide proper environment for human SSC transplantation. Liver mesenchymal cells were isolated from mice and identified phenotypically. Human SSC line was recombined with liver mesenchymal cells, and they were transplanted under renal capsules of nude mice with liver injury. The grafts expressed hepatocyte hallmarks, including ALB, AAT, CK18, and CYP1A2, whereas germ cell and SSC markers VASA and GPR125 were undetected in these cells, implicating that human SSCs were converted to hepatocytes. Furthermore, Western blots revealed high levels of PCNA, AFP, and ALB, indicating that human SSCs-derived hepatocytes had strong proliferation potential and features of hepatocytes. In addition, ALB–, CK8–, and CYP1A2– positive cells were detected in liver tissues of recipient mice. Significantly, no obvious lesion or teratomas was observed in several important organs and tissues of recipient mice, reflecting that transplantation of human SSCs was safe and feasible. Collectively, we have for the first time demonstrated that human SSCs can be transdifferentiated to hepatocyte in vivo. This study provides a novel approach for curing liver diseases using human SSC transplantation.
Collapse
Affiliation(s)
- Zheng Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Department of General Surgery, Suqian people's Hospital, The Affiliated Hospital of Xuzhou Medical University, Jiangsu 223800, China
| | - Minghui Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Yuan
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chencheng Yao
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jingmei Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liping Wen
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongyong Fu
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Zhou
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zheng Li
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Zuping He
- State Key Laboratory of Oncogenes and Related Genes, Renji- Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Institute of Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.,Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Abstract
Physicians previously thought that heart disease was rare in patients with end stage liver disease. However, recent evidence shows that the prevalence of ischemic heart disease and cardiomyopathy is increased in transplant candidates compared to most other surgical candidates. Investigators estimate that up to 26% of all liver transplant candidates have at least one critical coronary artery stenosis and that at least half of these patients will die perioperatively of cardiac complications. Cardiomyopathy also occurs in greater frequency. While all patients with advanced cardiac disease have defects in cardiac performance, a larger than expected number of patients have classical findings of dilated, restrictive and hypertrophic cardiomyopathy. This may explain why up to 56% of patients suffer from hypoxemia due to pulmonary edema following transplant surgery. There is considerable controversy on how to screen transplant candidates for the presence of heart disease. Questions focus upon, which patients should be screened and what tests should be used. This review examines screening strategies for transplant candidates and details the prognostic value of common tests used to identify ischemic heart disease. We also review the physiological consequences of cardiomyopathy in transplant candidates and explore the specific syndrome of “cirrhotic cardiomyopathy”.
Collapse
|
6
|
Nussler A, Konig S, Ott M, Sokal E, Christ B, Thasler W, Brulport M, Gabelein G, Schormann W, Schulze M, Ellis E, Kraemer M, Nocken F, Fleig W, Manns M, Strom SC, Hengstler JG. Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 2006; 45:144-59. [PMID: 16730092 DOI: 10.1016/j.jhep.2006.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In recent years the interest in liver cell therapy has been increasing continuously, since the demand for whole liver transplantations in human beings far outweighs the supply. From the clinical point of view, transplantation of hepatocytes or hepatocyte-like cells may represent an alternative to orthotopic liver transplants in acute liver failure, for the correction of genetic disorders resulting in metabolically deficient states, and for late stage liver disease such as cirrhosis. Although the concept of cell therapy for various diseases of the liver is widely accepted, the practical approach in humans often remains difficult. An international expert panel critically discussed the recent published data on clinical and experimental hepatocyte transplantation and the possible role of stem cells in liver tissue repair. This paper aims to summarise the present status of cell based therapies for liver diseases and to identify areas of future preclinical and clinical research.
Collapse
Affiliation(s)
- Andreas Nussler
- Fresenius Biotech Bad Homburg, Division of Cell Therapy, Bad Homburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bono W, Moutie O, Benomar A, Aïdi S, el Alaoui-Faris M, Yahyaoui M, Chkili T. [Wilson's disease. Clinical presentation, treatment and evolution in 21 cases]. Rev Med Interne 2002; 23:419-31. [PMID: 12064213 DOI: 10.1016/s0248-8663(02)00589-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Wilson's disease is characterized by neuropsychiatric symptoms with frequent extrapyramidal and intellectual presentations. They have an insidious evolution that leads to a late diagnosis and less therapeutic effectiveness in the advanced forms. METHODS We report 21 cases of Wilson's disease with neurological complications, emphasizing clinical semiology, diagnostic means and problems of the therapeutics in our country. RESULTS The average age at the beginning of the disease was 17.6 years, with a female prevalence (8/13). The signs at first were mostly all neurological (71.4%), then psychiatric (19%) or hepatic (19%). The most common neurological signs were dystonia of members (81%), dysarthria (76%), tremors (76%) or disorders of motoricity (71.4%). Sometimes there were sialorrhea or disorders of the handwriting. The Kayser-Fleischer ring was present in 19 patients. Eighteen patients had clinical and/or biological hepatic involvement. The diagnosis was confirmed by biochemical examinations, which found a low rate of copper in blood, a sinking rate of ceruloplasmin and a very high rate of urinary copper. The cerebral computer tomography shows a cortical and/or subcortical atrophy (37%), and/or a low density of the central grey cores (35%). The treatment was based on D-penicillamine and/or zinc sulfate, according to the availability of the drugs. The evolution was favourable among 18 patients (85%) and not good in 42.8% of the cases. Six of the first patients had poor evolution after many years of follow-up. Finally, only 12 patients (57%) had a very good outcome. The family investigation made among 17 patients revealed 13 family cases. The only predictive factor of a poor evolution was the therapeutic noncompliance (P = 0.006). CONCLUSIONS The neurological presentations are traditional during the Wilson's disease, but are often ignored. We must suspect the disease in children when faced with disorders of handwriting or school failures and in the adult, when faced with neurological symptoms in a patient having a hepatic disease. We must not hesitate to consider it even given purely psychiatric signs, and we had better know to seek the neurological ones.
Collapse
Affiliation(s)
- W Bono
- Service de neurologie, hôpital des spécialités, CHU Ibn Sina, Rabat, Maroc.
| | | | | | | | | | | | | |
Collapse
|