1
|
Wang Q, Duan D, Luo C, Huang J, Wei J, Zhang Y, Zhang K, Zhou T, Wang W, Yang S, Ma L. Astilbin exerts anti-hypersensitivity by regulating metabolic demand and neuronal activity in rodent model of neuropathic pain. Ann Med 2024; 56:2396561. [PMID: 39624967 PMCID: PMC11616750 DOI: 10.1080/07853890.2024.2396561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVE Astilbe chinensis, is a traditional Chinese medicine commonly employed for pain management. However, its primary active ingredient remains a subject of debate. METHODS Spinal nerve ligation (SNL) and formalin-induced pain models were employed. Network pharmacology and bioinformatics were utilized to identify targets. Verification was performed through spinal cord double immunofluorescence staining, quantitative PCR and whole-cell recording techniques. RESULTS In experiments conducted on neuropathic rats, both systemic and intrathecal administration of astilbin, an essential constituent, exhibited a noteworthy and dose-dependently decrease in chronic and acute pain behaviours. The ED50 value, which represents the dose at which 50% effectiveness is achieved, was measure at 7.59 μg, while the Emax value, indicating the maximum attainable effect, was found to be 60% of the maximal possible effect (% MPE). Forty-two shared targets were identified, enriching the metabolic and synaptic pathways in the network pharmacology analysis, as confirmed by transcriptomic analysis. Weighted gene co-expression network analysis (WGCNA) revealed a strong correlation between the anti-nociceptive effects of astilbin and neuronal metabolic processes. Spinal functional ultrasound (FUS) analysis indicated increased spinal blood flow intensity and changes in metabolism-related enzyme activity, including stearoyl-CoA desaturase (Scd), 17beta-hydroxysteroid dehydrogenase (Hsd17b7) and sterol 14alpha-demethylase (Cyp51) in neuropathic rats, pretreatment with astilbin decreased formalin-induced blood flow in acute pain. Bath application of astilbin dose-dependently inhibited neuronal activity by reducing the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) without affecting miniature inhibitory postsynaptic currents (mIPSCs). CONCLUSIONS In summary, this study provides evidence that astilbin alleviates pain by modulating neuronal metabolic processes and synaptic homeostasis.
Collapse
Affiliation(s)
- Qiru Wang
- Department of Pharmacy, Shanghai Cancer Center, Fudan University, Minhang Branch, Shanghai, China
| | - Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Chao Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlu Huang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbao Wei
- Department of Pharmacy, Xiamen Haicang Hospital, Xiamen, China
| | - Yang Zhang
- Shanghai Jiao Tong University Hospital, Shanghai, China
| | - Ke Zhang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Shaoxin Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People’s Hospital, Shanghai, China
| | - Le Ma
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
2
|
Smith T, Al Otaibi M, Sathish J, Djouhri L. Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats. Neuroscience 2015; 295:90-102. [DOI: 10.1016/j.neuroscience.2015.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/28/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
|
3
|
Simmons RMA, Forster B, Guo W, Knopp KL. A method to enhance the magnitude of tactile hypersensitivity following spinal nerve ligation in rats. J Neurosci Methods 2014; 233:50-3. [PMID: 24928434 DOI: 10.1016/j.jneumeth.2014.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The rat L5/L6 spinal nerve ligation model (SNL) has been widely used to investigate putative analgesics. Pursuit of novel therapies in preclinical settings requires models with consistent and reproducible phenotypes. NEW METHOD We assessed the effects of repetitive stimulation of the hindpaws of SNL and Sham surgery rats during the 2 weeks immediately after surgery on the overall rate of achieving tactile hypersensitivity, as well as the magnitude of the hypersensitivity compared to unprimed rats. Beginning on day 2 post-surgery, and continuing on alternate days for a total of seven sessions, animals underwent light brushing/tapping (termed priming) of the hindpaws ipsilateral and contralateral to surgery. RESULTS Priming the ipsilateral hindpaw enhanced the magnitude of tactile hypersensitivity such that the baseline withdrawal threshold (BWT) for primed SNL animals was significantly lower than unprimed SNL animals over post-surgical days 15-29. BWT was not different between primed and unprimed Sham rats. The percentage of SNL primed animals meeting the a priori criterion for tactile hypersensitivity of paw withdrawal threshold less than 2.0 grams was 98.9%±1.1%. COMPARISON WITH EXISTING METHOD SNL rats that did not receive stimulation (unprimed) showed significantly higher baseline hypersensitivity when evaluated on days 15-29, exemplified by only 34.5%±7.2% meeting the established <2.0g criterion. CONCLUSION Our data indicate that tactile priming during the 2 weeks immediately after SNL surgery enhances the magnitude of tactile hypersensitivity in the SNL model, and provide an optimized assay for evaluating putative analgesics.
Collapse
Affiliation(s)
- Rosa Maria A Simmons
- Neuroscience Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Beth Forster
- Neuroscience Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Wenhong Guo
- Neuroscience Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Kelly L Knopp
- Neuroscience Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
4
|
Hoerbelt P, Nalwalk JW, Phillips JG, Wentland MP, Shan Z, Hough LB. Antinociceptive activity of CC44, a biotinylated improgan congener. Eur J Pharmacol 2013; 714:464-71. [PMID: 23834775 DOI: 10.1016/j.ejphar.2013.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/17/2013] [Accepted: 06/21/2013] [Indexed: 11/28/2022]
Abstract
Improgan, a non-opioid, antinociceptive drug, activates descending analgesic circuits following brain administration, but the improgan receptor remains unidentified. Since biotinylation of drugs can enhance drug potency or facilitate discovery of new drug targets, a biotinylated congener of improgan (CC44) and several related compounds were synthesized and tested for antinociceptive activity. In rats and mice, intracerebroventricular (i.c.v.) administration of CC44 produced dose-dependent reductions in thermal nociceptive (tail flick and hot plate) responses, with 5-fold greater potency than improgan. CC44 also robustly attenuated mechanical (tail pinch) nociception in normal rats and mechanical allodynia in a spinal nerve ligation model of neuropathic pain. Similar to the effects of improgan, CC44 antinociception was reversed by the GABAA agonist muscimol (consistent with activation of analgesic circuits), and was resistant to the opioid antagonist naltrexone (implying a non-opioid mechanism). Also like improgan, CC44 produced thermal antinociception when microinjected into the rostral ventromedial medulla (RVM). Unlike improgan, CC44 (i.c.v.) produced antinociception which was resistant to antagonism by the cannabinoid CB1 antagonist/inverse agonist rimonabant. CC44 was inactive in mice following systemic administration, indicating that CC44 does not penetrate the brain. Preliminary findings with other CC44 congeners suggest that the heteroaromatic nucleus (imidazole), but not the biotin moiety, is required for CC44's antinociceptive activity. These findings demonstrate that CC44 is a potent analgesic compound with many improgan-like characteristics. Since powerful techniques are available to characterize and identify the binding partners for biotin-containing ligands, CC44 may be useful in searching for new receptors for analgesic drugs.
Collapse
Affiliation(s)
- Paul Hoerbelt
- Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
5
|
Pitcher GM, Ritchie J, Henry JL. Peripheral neuropathy induces cutaneous hypersensitivity in chronically spinalized rats. PAIN MEDICINE 2013; 14:1057-71. [PMID: 23855791 DOI: 10.1111/pme.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES The present study was aimed at the issue of whether peripheral nerve injury-induced chronic pain is maintained by supraspinal structures governing descending facilitation to the spinal dorsal horn, or whether altered peripheral nociceptive mechanisms sustain central hyperexcitability and, in turn, neuropathic pain. We examined this question by determining the contribution of peripheral/spinal mechanisms, isolated from supraspinal influence(s), in cutaneous hypersensitivity in an animal model of peripheral neuropathy. METHODS Adult rats were spinalized at T8-T9; 8 days later, peripheral neuropathy was induced by implanting a 2-mm polyethylene cuff around the left sciatic nerve. Hind paw withdrawal responses to mechanical or thermal plantar stimulation were evaluated using von Frey filaments or a heat lamp, respectively. RESULTS Spinalized rats without cuff implantation exhibited a moderate decrease in mechanical withdrawal threshold on ~day 10 (P < 0.05) and in thermal withdrawal threshold on ~day 18 (P < 0.05). However, cuff-implanted spinalized rats developed a more rapid and significant decrease in mechanical (~day 4; P < 0.001) and thermal (~day 10; P < 0.05) withdrawal thresholds that remained significantly decreased through the duration of the study. CONCLUSIONS Our findings demonstrate an aberrant peripheral/spinal mechanism that induces and maintains thermal and to a greater degree tactile cutaneous hypersensitivity in the cuff model of neuropathic pain, and raise the prospect that altered peripheral/spinal nociceptive mechanisms in humans with peripheral neuropathy may have a pathologically relevant role in both inducing and sustaining neuropathic pain.
Collapse
Affiliation(s)
- Graham M Pitcher
- Departments of Physiology and Psychiatry, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
6
|
Duraku LS, Hossaini M, Schüttenhelm BN, Holstege JC, Baas M, Ruigrok TJ, Walbeehm ET. Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Exp Neurol 2013; 241:13-24. [DOI: 10.1016/j.expneurol.2012.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/24/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022]
|
7
|
Allchorne AJ, Gooding HL, Mitchell R, Fleetwood-Walker SM. A novel model of combined neuropathic and inflammatory pain displaying long-lasting allodynia and spontaneous pain-like behaviour. Neurosci Res 2012; 74:230-8. [PMID: 23131427 DOI: 10.1016/j.neures.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 11/25/2022]
Abstract
Many clinical cases of chronic pain exhibit both neuropathic and inflammatory components. In contrast, most animal models of chronic pain focus on one type of injury alone. Here we present a novel combined model of both neuropathic and inflammatory pain and characterise its distinctive properties. This combined model of chronic constriction injury (CCI) and intraplantar Complete Freund's Adjuvant (CFA) injection results in enhanced mechanical allodynia, thermal hyperalgesia, a static weight bearing deficit, and notably pronounced spontaneous foot lifting (SFL) behaviour (which under our conditions was not seen in either individual model and may reflect ongoing/spontaneous pain). Dorsal root ganglion (DRG) expression of Activating Transcription Factor-3 (ATF-3), a marker of axonal injury, was no greater in the combined model than CCI alone. Initial pharmacological characterisation of the new model showed that the SFL was reversed by gabapentin or diclofenac, typical analgesics for neuropathic or inflammatory pain respectively, but not by mexiletine, a Na(+) channel blocker effective in both neuropathic and inflammatory pain models. Static weight bearing deficit was moderately reduced by gabapentin, whereas only diclofenac reversed mechanical allodynia. This novel animal model of chronic pain may prove a useful test-bed for further analysing the pharmacological susceptibility of complicated clinical pain states.
Collapse
Affiliation(s)
- Andrew J Allchorne
- Centre for Neuroregeneration, School of Biomedical Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK
| | | | | | | |
Collapse
|
8
|
Duraku LS, Hossaini M, Hoendervangers S, Falke LL, Kambiz S, Mudera VC, Holstege JC, Walbeehm ET, Ruigrok TJH. Spatiotemporal dynamics of re-innervation and hyperinnervation patterns by uninjured CGRP fibers in the rat foot sole epidermis after nerve injury. Mol Pain 2012; 8:61. [PMID: 22935198 PMCID: PMC3492210 DOI: 10.1186/1744-8069-8-61] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
The epidermis is innervated by fine nerve endings that are important in mediating nociceptive stimuli. However, their precise role in neuropathic pain is still controversial. Here, we have studied the role of epidermal peptidergic nociceptive fibers that are located adjacent to injured fibers in a rat model of neuropathic pain. Using the Spared Nerve Injury (SNI) model, which involves complete transections of the tibial and common peroneal nerve while sparing the sural and saphenous branches, mechanical hypersensitivity was induced of the uninjured lateral (sural) and medial (saphenous) area of the foot sole. At different time points, a complete foot sole biopsy was taken from the injured paw and processed for Calcitonin Gene-Related Peptide (CGRP) immunohistochemistry. Subsequently, a novel 2D-reconstruction model depicting the density of CGRP fibers was made to evaluate the course of denervation and re-innervation by uninjured CGRP fibers. The results show an increased density of uninjured CGRP-IR epidermal fibers on the lateral and medial side after a SNI procedure at 5 and 10 weeks. Furthermore, although in control animals the density of epidermal CGRP-IR fibers in the footpads was lower compared to the surrounding skin of the foot, 10 weeks after the SNI procedure, the initially denervated footpads displayed a hyper-innervation. These data support the idea that uninjured fibers may play a considerable role in development and maintenance of neuropathic pain and that it is important to take larger biopsies to test the relationship between innervation of injured and uninjured nerve areas.
Collapse
Affiliation(s)
- Liron S Duraku
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Djouhri L, Fang X, Koutsikou S, Lawson SN. Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 2012; 153:1824-1836. [PMID: 22721911 PMCID: PMC3425771 DOI: 10.1016/j.pain.2012.04.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 03/25/2012] [Accepted: 04/23/2012] [Indexed: 01/24/2023]
Abstract
Partial nerve injury leads to peripheral neuropathic pain. This injury results in conducting/uninterrupted (also called uninjured) sensory fibres, conducting through the damaged nerve alongside axotomised/degenerating fibres. In rats seven days after L5 spinal nerve axotomy (SNA) or modified-SNA (added loose-ligation of L4 spinal nerve with neuroinflammation-inducing chromic-gut), we investigated a) neuropathic pain behaviours and b) electrophysiological changes in conducting/uninterrupted L4 dorsal root ganglion (DRG) neurons with receptive fields (called: L4-receptive-field-neurons). Compared to pretreatment, modified-SNA rats showed highly significant increases in spontaneous-foot-lifting duration, mechanical-hypersensitivity/allodynia, and heat-hypersensitivity/hyperalgesia, that were significantly greater than after SNA, especially spontaneous-foot-lifting. We recorded intracellularly in vivo from normal L4/L5 DRG neurons and ipsilateral L4-receptive-field-neurons. After SNA or modified-SNA, L4-receptive-field-neurons showed the following: a) increased percentages of C-, Ad-, and Ab-nociceptors and cutaneous Aa/b-low-threshold mechanoreceptors with ongoing/spontaneous firing; b) spontaneous firing in C-nociceptors that originated peripherally; this was at a faster rate in modified-SNA than SNA; c) decreased electrical thresholds in A-nociceptors after SNA; d) hyperpolarised membrane potentials in A-nociceptors and Aa/b-low-threshold-mechanoreceptors after SNA, but not C-nociceptors; e) decreased somatic action potential rise times in C- and A-nociceptors, not Aa/b-low-threshold-mechanoreceptors. We suggest that these changes in subtypes of conducting/uninterrupted neurons after partial nerve injury contribute to the different aspects of neuropathic pain as follows: spontaneous firing in nociceptors to ongoing/spontaneous pain; spontaneous firing in Aa/b-low-threshold-mechanoreceptors to dysesthesias/paresthesias; and lowered A-nociceptor electrical thresholds to A-nociceptor sensitization, and greater evoked pain.
Collapse
Affiliation(s)
- Laiche Djouhri
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
10
|
Pang MH, Kim Y, Jung KW, Cho S, Lee DH. A series of case studies: practical methodology for identifying antinociceptive multi-target drugs. Drug Discov Today 2012; 17:425-34. [PMID: 22269134 DOI: 10.1016/j.drudis.2012.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/03/2011] [Accepted: 01/09/2012] [Indexed: 12/16/2022]
Abstract
Since the introduction of drug discovery based on single targets, the number of newly developed drugs has steadily declined, and the reliablility of the current drug-discovery paradigm has been unceasingly questioned. As an alternative, an emerging approach pursuing multi-targeting drugs has arisen to reflect multifactorial diseases caused by the complex networks of various mechanisms. The purpose of this paper is to review multi-target drugs and introduce our progress in establishing a practical methodology for identifying antinociceptive multi-target drugs. We have adopted a system of ex vivo efficacy screening using long-term potentiation in rat spinal cord as a surrogate biomarker for neuropathic pain. A bait-target approach is also adopted to lure an unknown target combination that induces synergistic mechanisms.
Collapse
Affiliation(s)
- Min-Hee Pang
- Biomedical Research Institute, Vivozon, Inc., Seoul, 136-703, Republic of Korea
| | | | | | | | | |
Collapse
|
11
|
Albrecht PJ, Nalwalk JW, Hough LB. Efficacy of improgan, a non-opioid analgesic, in neuropathic pain. Brain Res 2011; 1424:32-7. [PMID: 22015352 DOI: 10.1016/j.brainres.2011.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/22/2011] [Accepted: 10/02/2011] [Indexed: 02/05/2023]
Abstract
Improgan, a non-opioid analgesic, is known to act in the rodent brain stem to produce highly effective antinociception in several acute pain tests. However, improgan has not been studied in any models of chronic pain. To assess the efficacy of improgan in an animal model of neuropathic pain, the effects of this drug were studied on mechanical allodynia following unilateral spinal nerve ligation (SNL) in rats. Intracerebroventricular (icv) improgan (40-80 μg) produced complete, reversible, dose-dependent attenuation of hind paw mechanical allodynia for up to 1h after administration, with no noticeable behavioral or motor side effects. Intracerebral (ic) microinjections of improgan (5-30 μg) into the rostral ventromedial medulla (RVM) also reversed the allodynia, showing this brain area to be an important site for improgan's action. The recently-demonstrated suppression of RVM ON-cell activity by improgan may account for the presently-observed anti-allodynic activity. The present findings suggest that brain-penetrating, improgan-like drugs developed for human use could be effective medications for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Phillip J Albrecht
- Center for Neuropharmacology and Neuroscience, Albany Medical College MC-136, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
12
|
Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 2011; 193:267-75. [PMID: 21458249 DOI: 10.1016/j.aanat.2011.02.011] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/29/2022]
Abstract
Wallerian degeneration is a cascade of stereotypical events in reaction to injury of nerve fibres. These events consist of cellular and molecular alterations, including macrophage invasion, activation of Schwann cells, as well as neurotrophin and cytokine upregulation. This review focuses on cellular and molecular changes distal to various types of peripheral nerve injury which simultaneously contribute to axonal regeneration and neuropathic pain induction. In addition to the stereotypical events of Wallerian degeneration, various types of nerve damage provide different conditions for both axonal regeneration and neuropathic pain induction. Wallerian degeneration of injured peripheral nerve is associated with an inflammatory response including rapid upregulation of the immune signal molecules like cytokines, chemokines and transcription factors with both beneficial and detrimental effects on nerve regeneration or neuropathic pain induction. A better understanding of the molecular interactions between the immune system and peripheral nerve injury would open the possibility for targeting these inflammatory mediators in therapeutic interventions. Understanding the pleiotropic effects of cytokines/chemokines, however, requires investigating their highly specific pathways and precise points of action.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, Brno, Czech Republic.
| |
Collapse
|
13
|
Cytokine Antagonism Reduces Pain and Modulates Spinal Astrocytic Reactivity After Cervical Nerve Root Compression. Ann Biomed Eng 2010; 38:2563-76. [DOI: 10.1007/s10439-010-0012-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
14
|
Jang J, Lee B, Nam T, Kim J, Kim D, Leem J. Peripheral contributions to the mechanical hyperalgesia following a lumbar 5 spinal nerve lesion in rats. Neuroscience 2010; 165:221-32. [DOI: 10.1016/j.neuroscience.2009.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/22/2009] [Accepted: 09/30/2009] [Indexed: 02/04/2023]
|
15
|
Governing role of primary afferent drive in increased excitation of spinal nociceptive neurons in a model of sciatic neuropathy. Exp Neurol 2008; 214:219-28. [PMID: 18773893 DOI: 10.1016/j.expneurol.2008.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/31/2008] [Accepted: 08/10/2008] [Indexed: 01/07/2023]
Abstract
Previously we reported that the cuff model of peripheral neuropathy, in which a 2 mm polyethylene tube is implanted around the sciatic nerve, exhibits aspects of neuropathic pain behavior in rats similar to those in humans and causes robust hyperexcitation of spinal nociceptive dorsal horn neurons. The mechanisms mediating this increased excitation are not known and remain a key unresolved question in models of peripheral neuropathy. In anesthetized adult male Sprague-Dawley rats 2-6 weeks after cuff implantation we found that elevated discharge rate of single lumbar (L(3-4)) wide dynamic range (WDR) neurons persists despite acute spinal transection (T9) but is reversed by local conduction block of the cuff-implanted sciatic nerve; lidocaine applied distal to the cuff (i.e. between the cuff and the cutaneous receptive field) decreased spontaneous baseline discharge of WDR dorsal horn neurons approximately 40% (n=18) and when applied subsequently proximal to the cuff, i.e. between the cuff and the spinal cord, it further reduced spontaneous discharge by approximately 60% (n=19; P<0.05 proximal vs. distal) to a level that was not significantly different from that of naive rats. Furthermore, in cuff-implanted rats WDR neurons (n=5) responded to mechanical cutaneous stimulation with an exaggerated afterdischarge which was reversed entirely by proximal nerve conduction block. These results demonstrate that the hyperexcited state of spinal dorsal horn neurons observed in this model of peripheral neuropathy is not maintained by tonic descending facilitatory mechanisms. Rather, on-going afferent discharges originating from the sciatic nerve distal to, at, and proximal to the cuff maintain the synaptically-mediated gain in discharge of spinal dorsal horn WDR neurons and hyperresponsiveness of these neurons to cutaneous stimulation. Our findings reveal that ectopic afferent activity from multiple regions along peripheral nerves may drive CNS changes and the symptoms of pain associated with peripheral neuropathy.
Collapse
|
16
|
Ji G, Zhou S, Kochukov MY, Westlund KN, Carlton SM. Plasticity in intact A delta- and C-fibers contributes to cold hypersensitivity in neuropathic rats. Neuroscience 2007; 150:182-93. [PMID: 17945425 DOI: 10.1016/j.neuroscience.2007.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Cold hypersensitivity is a common sensory abnormality accompanying peripheral neuropathies and is difficult to treat. Progress has been made in understanding peripheral mechanisms underlying neuropathic pain but little is known concerning peripheral mechanisms of cold hypersensitivity. The aim of this study was to analyze the contribution of uninjured primary afferents to the cold hypersensitivity that develops in neuropathic rats. Rats with a lumbar 5 (L5) and L6 spinal nerve ligation (SNL, Chung model) but not sham, developed mechanical allodynia, evidenced by decreased paw withdrawal thresholds and increased magnitude of response to von Frey stimulation. Cold hypersensitivity also developed in SNL but not sham rats, evidenced by enhanced nociceptive behaviors induced by placement on a cold plate (6 degrees C) or application of icilin (a transient receptor potential M8 (TRPM8)/transient receptor potential A1 (TRPA1) receptor agonist) to nerve-injured hind paws. Single fiber recordings demonstrated that the mean conduction velocities of intact L4 cutaneous A delta- and C-fibers were not different between naive and SNL rats; however, mechanical thresholds of the A delta- but not the C-fibers were significantly decreased in SNL compared with naive. There was a higher prevalence of C-mechanoheat-cold (CMHC) fibers in SNL compared with naive, but the overall percentage of cold-sensitive C-fibers was not significantly increased compared with naive. This was in contrast to the numerous changes in A delta-fibers: the percentage of L4 cold sensitive A delta-, but not C-fibers, was significantly increased, the percentage of L4 icilin-sensitive A delta-, but not C-fibers, was significantly increased, the icilin-induced activity of L4 A delta-, but not C-fibers, was significantly increased. Icilin-induced activity was blocked by the TRPA1 antagonist Ruthenium Red. The results indicate plasticity in both A delta- and C-uninjured fibers, but A delta fibers appear to provide a major contribution to cold hypersensitivity in neuropathic rats.
Collapse
Affiliation(s)
- G Ji
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Marine Biomedical Institute, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | | | | | |
Collapse
|
17
|
Rothman SM, Winkelstein BA. Chemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination. Brain Res 2007; 1181:30-43. [PMID: 17920051 DOI: 10.1016/j.brainres.2007.08.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/19/2007] [Accepted: 08/28/2007] [Indexed: 12/24/2022]
Abstract
Both chemical irritation and mechanical compression affect radicular pain from disc herniation. However, relative effects of these insults on pain symptoms are unclear. This study investigated chemical and mechanical contributions for painful cervical nerve root injury. Accordingly, the C7 nerve root separately underwent chromic gut exposure, 10gf compression, or their combination. Mechanical allodynia was assessed, and glial reactivity in the C7 spinal cord tissue was assayed at days 1 and 7 by immunohistochemistry using GFAP and OX-42 as markers of astrocytes and microglia, respectively. Both chromic gut irritation and 10gf compression produced ipsilateral increases in allodynia over sham (p<0.048); combining the two insults significantly (p<0.027) increased ipsilateral allodynia compared to either insult alone. Behavioral hypersensitivity was also produced in the contralateral forepaw for all injuries, but only the combined insult was significantly increased over sham (p<0.031). Astrocytic activation was significantly increased over normal (p<0.001) in the ipsilateral dorsal horn at 1 day after either compression or the combined injury. By day 7, GFAP-reactivity was further increased for the combined injury compared to day 1 (p<0.001). In contrast, spinal OX-42 staining was generally variable, with only mild activation at day 1. By day 7 after the combined injury, there were significant (p<0.003) bilateral increases in OX-42 staining over normal. Spinal astrocytic and microglial reactivity follow different patterns after chemical root irritation, compression, and a combined insult. The combination of transient compression and chemical irritation produces sustained bilateral hypersensitivity, sustained ipsilateral spinal astrocytic activation and late onset bilateral spinal microglial activation.
Collapse
Affiliation(s)
- Sarah M Rothman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
18
|
Bigbee AJ, Hoang TX, Havton LA. At-level neuropathic pain is induced by lumbosacral ventral root avulsion injury and ameliorated by root reimplantation into the spinal cord. Exp Neurol 2006; 204:273-82. [PMID: 17187780 PMCID: PMC2756497 DOI: 10.1016/j.expneurol.2006.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/30/2006] [Accepted: 11/06/2006] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is common after traumatic injuries to the cauda equina/conus medullaris and brachial plexus. Clinically, this pain is difficult to treat and its mechanisms are not well understood. Lesions to the ventral roots are common in these injuries, but are rarely considered as potential contributors to pain. We examined whether a unilateral L6-S1 ventral root avulsion (VRA) injury in adult female rats might elicit pain within the dermatome projecting to the adjacent, uninjured L5 spinal segment. Additionally, a subset of subjects had the avulsed L6-S1 ventral roots reimplanted (VRA+Imp) into the lateral funiculus post-avulsion to determine whether this neural repair strategy elicits or ameliorates pain. Behavioral tests for mechanical allodynia and hyperalgesia were performed weekly over 7 weeks post-injury at the hindpaw plantar surface. Allodynia developed early and persisted post-VRA, whereas VRA+Imp rats exhibited allodynia only at 1 week post-operatively. Hyperalgesia was not observed at any time in any experimental group. Quantitative immunohistochemistry showed increased levels of inflammatory markers in laminae III-V and in the dorsal funiculus of the L5 spinal cord of VRA, but not VRA+Imp rats, specific to areas that receive projections from mechanoreceptive, but not nociceptive, primary afferents. These data suggest that sustained at-level neuropathic pain can develop following a pure motor lesion, whereas the pain may be ameliorated by acute root reimplantation. We believe that our findings are of translational research interest, as root implantation surgery is emerging as a potentially useful strategy for the repair of cauda equina/conus medullaris injuries.
Collapse
Affiliation(s)
- A J Bigbee
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | | | |
Collapse
|
19
|
Djouhri L, Koutsikou S, Fang X, McMullan S, Lawson SN. Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J Neurosci 2006; 26:1281-92. [PMID: 16436616 PMCID: PMC6674571 DOI: 10.1523/jneurosci.3388-05.2006] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous pain, a poorly understood aspect of human neuropathic pain, is indicated in animals by spontaneous foot lifting (SFL). To determine whether SFL is caused by spontaneous firing in nociceptive neurons, we studied the following groups of rats: (1) untreated; (2) spinal nerve axotomy (SNA), L5 SNA 1 week earlier; (3) mSNA (modified SNA), SNA plus loose ligation of the adjacent L4 spinal nerve with inflammation-inducing chromic gut; and (4) CFA (complete Freund's adjuvant), intradermal complete Freund's adjuvant-induced hindlimb inflammation 1 and 4 d earlier. In all groups, recordings of SFL and of spontaneous activity (SA) in ipsilateral dorsal root ganglion (DRG) neurons (intracellularly) were made. Evoked pain behaviors were measured in nerve injury (SNA/mSNA) groups. Percentages of nociceptive-type C-fiber neurons (C-nociceptors) with SA increased in intact L4 but not axotomized L5 DRGs in SNA and mSNA (to 35%), and in L4/L5 DRGs 1-4 d after CFA (to 38-25%). SFL occurred in mSNA but not SNA rats. It was not correlated with mechanical allodynia, extent of L4 fiber damage [ATF3 (activation transcription factor 3) immunostaining], or percentage of L4 C-nociceptors with SA. However, L4 C-nociceptors with SA fired faster after mSNA (1.8 Hz) than SNA (0.02 Hz); estimated L4 total firing rates were approximately 5.0 and approximately 0.6 kHz, respectively. Similarly, after CFA, faster L4 C-nociceptor SA after 1 d was associated with SFL, whereas slower SA after 4 d was not. Thus, inflammation causes L4 C-nociceptor SA and SFL. Overall, SFL was related to SA rate in intact C-nociceptors. Both L5 degeneration and chromic gut cause inflammation. Therefore, both SA and SFL/spontaneous pain after nerve injury (mSNA) may result from cumulative neuroinflammation.
Collapse
Affiliation(s)
- Laiche Djouhri
- Department of Physiology, Medical School, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | |
Collapse
|
20
|
Yen LD, Bennett GJ, Ribeiro-da-Silva A. Sympathetic sprouting and changes in nociceptive sensory innervation in the glabrous skin of the rat hind paw following partial peripheral nerve injury. J Comp Neurol 2006; 495:679-90. [PMID: 16506190 DOI: 10.1002/cne.20899] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies have suggested that sympathetic sprouting in the periphery may contribute to the development and persistence of sympathetically maintained pain in animal models of neuropathic pain. In the present study, we examined changes in the cutaneous innervation in rats with a chronic constriction injury to the sciatic nerve. At several periods postinjury, hind paw skin was harvested and processed by using a monoclonal antibody against dopamine-beta-hydroxylase to detect sympathetic fibers and a polyclonal antibody against calcitonin gene-related peptide to identify peptidergic sensory fibers. We observed migration and branching of sympathetic fibers into the upper dermis of the hind paw skin, where they were normally absent. This migration was first detected at 2 weeks, peaked at 4-6 weeks, and lasted for at least 20 weeks postlesion. At 8 weeks postlesion, there was a dramatic increase in the density of peptidergic fibers in the upper dermis. Quantification revealed that densities of peptidergic fibers 8 weeks postlesion were significantly above levels in sham animals. The ectopic sympathetic fibers did not innervate blood vessels but formed a novel association and wrapped around sprouted peptidergic nociceptive fibers. Our data show a long-term sympathetic and sensory innervation change in the rat hind paw skin after the chronic constriction injury. This novel fiber arrangement after nerve lesion may play an important role in the development and persistence of sympathetically maintained neuropathic pain after partial nerve lesions.
Collapse
Affiliation(s)
- Laurene D Yen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
21
|
Grelik C, Bennett GJ, Ribeiro-da-Silva A. Autonomic fibre sprouting and changes in nociceptive sensory innervation in the rat lower lip skin following chronic constriction injury. Eur J Neurosci 2005; 21:2475-87. [PMID: 15932605 DOI: 10.1111/j.1460-9568.2005.04089.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study we used immunocytochemistry to investigate whether autonomic fibres sprouted in the skin of the lower lip in a rat model of neuropathic pain. We used a bilateral chronic constriction injury (CCI) of the mental nerve (MN), a branch of the trigeminal nerve. In this model, we also studied the accompanying changes in peptidergic [calcitonin gene-related peptide (CGRP)-immunoreactive] sensory fibres, as well as in trkA receptor immunoreactivity in the sensory nerves. Autonomic (sympathetic and parasympathetic) fibre sprouting was first observed 1 week post-injury with a peak in the number of sprouted fibres occurring at 4 and 6 weeks post-CCI. CGRP-IR fibres almost disappeared at 2 weeks post-CCI, but quickly sprouted, leading to a significant peak above sham levels 4 weeks post-injury. trkA receptor expression was found to be up-regulated in small cutaneous nerves 4 weeks post-CCI, returning to sham levels by 8 weeks post-CCI. There was no sympathetic fibre sprouting in the trigeminal ganglion following CCI. At 4 weeks post-CCI, rats displayed spontaneous, directed grooming to the area innervated by the MN that was not seen in sham animals, which we interpreted as a sign of spontaneous pain or dysesthesiae. Collectively, our findings indicate that as a result of autonomic sprouting due to CCI of the MN, remaining intact nociceptive fibres may potentially develop sensitivity to sympathetic and parasympathetic stimulation, which may have a role in the generation of abnormal pain following nerve injury.
Collapse
Affiliation(s)
- C Grelik
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
22
|
Moalem G, Grafe P, Tracey DJ. Chemical mediators enhance the excitability of unmyelinated sensory axons in normal and injured peripheral nerve of the rat. Neuroscience 2005; 134:1399-411. [PMID: 16039795 DOI: 10.1016/j.neuroscience.2005.05.046] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 04/18/2005] [Accepted: 05/12/2005] [Indexed: 11/24/2022]
Abstract
Ectopic excitation of nociceptive axons by chemical mediators may contribute to symptoms in neuropathic pain. In this study, we have measured the excitability of unmyelinated rat C-fiber axons in isolated segments of sural nerves under different experimental conditions. (1) We demonstrate in normal rats that several mediators including ATP, serotonin (5-HT), 1-(3-chlorophenyl)biguanide (5-HT3 receptor agonist), norepinephrine, acetylcholine and capsaicin alter electrophysiological parameters of C-fibers which indicate an increase of axonal excitability. Other mediators such as histamine, glutamate, prostaglandin E(2) and the cytokines tumor necrosis factor alpha, interleukin-1beta and interleukin-6 did not produce such effects. (2) The effects of several mediators were tested after peripheral nerve injury (partial ligation or spared nerve injury). Sural nerves from such animals did not show significant changes when compared with controls. (3) We tested whether the effects of chemical mediators on axonal excitability are due to actions on the sensory C-fiber afferents or the postganglionic sympathetic efferents. In order to distinguish these effects, we performed surgical sympathectomy of the lumbar sympathetic chain, including the L3, L4 and L5 ganglia. Sympathectomy did not markedly influence the effects of mediators on axonal excitability (except that the norepinephrine effect was significantly diminished). In conclusion, our data suggest a constitutive rather than inducible expression of axonal receptors for some chemical mediators on the axonal membrane of unmyelinated fibers. Most of the changes in axonal excitability take place in sensory C-fiber afferents rather than in postganglionic sympathetic efferents. Thus, it is possible that certain immune and glial cell mediators released in or around the nerve following injury or inflammation influence the excitability of intact nociceptive fibers. This mechanism could contribute to ectopic excitation of axons in neuropathic pain.
Collapse
Affiliation(s)
- G Moalem
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|