1
|
Untuned broadband spiral micro-coils achieve sensitive multi-nuclear NMR TX/RX from microfluidic samples. Sci Rep 2021; 11:7798. [PMID: 33833324 PMCID: PMC8032710 DOI: 10.1038/s41598-021-87247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The low frequency plateau in the frequency response of an untuned micro-resonator permits broadband radio-frequency reception, albeit at the expense of optimal signal-to-noise ratio for a particular nucleus. In this contribution we determine useful figures of merit for broadband micro-coils, and thereby explore the parametric design space towards acceptable simultaneous excitation and reception of a microfluidic sample over a wide frequency band ranging from 13C to 1H, i.e., 125–500 MHz in an 11.74 T magnet. The detector achieves 37% of the performance of a comparably sized, tuned and matched resonator, and a linewidth of 17 ppb using standard magnet shims. The use of broadband detectors circumvents numerous difficulties introduced by multi-resonant RF detector circuits, including sample loading effects on matching, channel isolation, and field distortion.
Collapse
|
2
|
Davoodi H, Jouda M, Korvink JG, MacKinnon N, Badilita V. Broadband and multi-resonant sensors for NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:34-54. [PMID: 31481158 DOI: 10.1016/j.pnmrs.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 06/10/2023]
Abstract
It has always been of considerable interest to study the nuclear magnetic resonance response of multiple nuclei simultaneously, whether these signals arise from internuclear couplings within the same molecule, or from uncoupled nuclei within sample mixtures. The literature contains numerous uncorrelated reports on techniques employed to achieve multi-nuclear NMR detection. This paper consolidates the subset of techniques in which single coil detectors are utilized, and highlights the strengths and weaknesses of each approach, at the same time pointing the way towards future developments in the field of multi-nuclear NMR. We compare the different multi-nuclear NMR techniques in terms of performance, and present a guide to NMR probe designers towards application-based optimum design. We also review the applicability of micro-coils in the context of multi-nuclear methods. Micro-coils benefit from compact geometries and exhibit lower impedance, which provide new opportunities and challenges for the NMR probe designer.
Collapse
Affiliation(s)
- Hossein Davoodi
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany.
| | - Neil MacKinnon
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Vlad Badilita
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany.
| |
Collapse
|
3
|
Edison AS, Le Guennec A, Delaglio F, Kupče Ē. Practical Guidelines for 13C-Based NMR Metabolomics. Methods Mol Biol 2019; 2037:69-95. [PMID: 31463840 DOI: 10.1007/978-1-4939-9690-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We present an overview of 13C-based NMR metabolomics. At first glance, the low sensitivity of 13C relative to 1H NMR might seem like too great an obstacle to use this approach. However, there are several advantages to 13C NMR, whether samples can be isotopically enriched or not. At natural abundance, peaks are sharp and largely resolved, and peak frequencies are more stable to pH and other sample conditions. Statistical approaches can be used to obtain C-C and C-H correlation maps, which greatly aid in compound identification. With 13C isotopic enrichment, other experiments are possible, including both 13C-J-RES and INADEQUATE, which can be used for de novo identification of metabolites not in databases.NMR instrumentation and software has significantly improved, and probes are now commercially available that can record useful natural abundance 1D 13C spectra from real metabolomics samples in 2 h or less. Probe technology continues to improve, and the next generation should be even better. Combined with new methods of simultaneous data acquisition, which allows for two or more 1D or 2D NMR experiments to be collected using multiple receivers, very rich datasets can be collected in a reasonable amount of time that should improve metabolomics data analysis and compound identification.
Collapse
Affiliation(s)
- Arthur S Edison
- Department of Biochemistry, University of Georgia, Athens, GA, USA. .,Department of Genetics, University of Georgia, Athens, GA, USA. .,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| | - Adrien Le Guennec
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,NMR Facility, Guy's Campus, King's College London, London, UK
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, MD, USA
| | | |
Collapse
|
4
|
Webb AG. Radiofrequency microcoils for magnetic resonance imaging and spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:55-66. [PMID: 23142002 DOI: 10.1016/j.jmr.2012.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
Small radiofrequency coils, often termed "microcoils", have found extensive use in many areas of magnetic resonance. Their advantageous properties include a very high intrinsic sensitivity, a high (several MHz) excitation and reception bandwidth, the fact that large arrays can fit within the homogeneous volume of the static magnetic field, and the very high resonance frequencies (several GHz) that can be achieved. This review concentrates on recent developments in the construction of single and multiple RF microcoil systems, and new types of experiments that can be performed using such assemblies.
Collapse
Affiliation(s)
- A G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Hu L, Hockett FD, Chen J, Zhang L, Caruthers SD, Lanza GM, Wickline SA. A generalized strategy for designing 19F/1H dual-frequency MRI coil for small animal imaging at 4.7 Tesla. J Magn Reson Imaging 2011; 34:245-52. [DOI: 10.1002/jmri.22516] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Qureshi T, Goto NK. Contemporary methods in structure determination of membrane proteins by solution NMR. Top Curr Chem (Cham) 2011; 326:123-85. [PMID: 22160391 DOI: 10.1007/128_2011_306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integral membrane proteins are vital to life, being responsible for information and material exchange between a cell and its environment. Although high-resolution structural information is needed to understand how these functions are achieved, membrane proteins remain an under-represented subset of the protein structure databank. Solution NMR is increasingly demonstrating its ability to help address this knowledge shortfall, with the development of a diverse array of techniques to counter the challenges presented by membrane proteins. Here we document the advances that are helping to define solution NMR as an effective tool for membrane protein structure determination. Developments introduced over the last decade in the production of isotope-labeled samples, reconstitution of these samples into the growing selection of NMR-compatible membrane-mimetic systems, and the approaches used for the acquisition and application of structural restraints from these complexes are reviewed.
Collapse
Affiliation(s)
- Tabussom Qureshi
- Department of Chemistry, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
7
|
Felhofer JL, Blanes L, Garcia CD. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 2010; 31:2469-86. [PMID: 20665910 PMCID: PMC2928674 DOI: 10.1002/elps.201000203] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the last years, there has been an explosion in the number of developments and applications of CE and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on the contributions published in the last 5 years, is intended to complement the articles presented in this special issue dedicated to instrumentation and to provide an overview of the general trends and some of the most remarkable developments published in the areas of high-voltage power supplies, detectors, auxiliary components, and compact systems. It also includes a few examples of alternative uses of and modifications to traditional CE instruments.
Collapse
Affiliation(s)
- Jessica L. Felhofer
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| | - Lucas Blanes
- Centre for Forensic Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| |
Collapse
|
8
|
Qian C, Brey WW. Impedance matching with an adjustable segmented transmission line. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 199:104-110. [PMID: 19406676 DOI: 10.1016/j.jmr.2009.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/23/2009] [Accepted: 04/09/2009] [Indexed: 05/27/2023]
Abstract
A capability for impedance matching between the RF probe and the spectrometer is a standard requirement for NMR. Both lumped element and branched transmission line methods are widely used for this purpose. Here, we propose to use the segmented transmission line structure which is well known in wireless communications. It relies upon reflections between transmission lines of different characteristic impedances that are serially connected to match the impedance of a coil or resonator to the characteristic impedance of the NMR spectrometer. In our implementation, two quarter wave length dielectric slugs are placed within a coaxial transmission line. Adjustment of the positions of the slugs allows the variable tuning and matching needed for NMR probes, eliminating the need for variable capacitors and inductors. As a demonstration of the usefulness of this approach, we have incorporated a variable segmented transmission line into a home-built Variable Angle Spinning probe. Finally, we discuss the range of possible application for segmented transmission line networks in NMR probe design.
Collapse
Affiliation(s)
- Chunqi Qian
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, USA.
| | | |
Collapse
|
9
|
Kc R, Henry ID, Park GHJ, Raftery D. Design and construction of a versatile dual volume heteronuclear double resonance microcoil NMR probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 197:186-92. [PMID: 19138541 PMCID: PMC2679250 DOI: 10.1016/j.jmr.2008.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 05/05/2023]
Abstract
Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at (1)H-(2)D (upper coil) and (1)H-(13)C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8-1.1 Hz with good mass sensitivity for both (1)H and (13)C NMR detection. (13)C-directly detected (2)D HETCOR spectra of 5% v/v (13)C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed.
Collapse
Affiliation(s)
| | | | | | - Daniel Raftery
- Author to whom correspondence should be addressed: Dr. Daniel Raftery, Professor of Chemistry, Purdue University, Department of Chemistry, 560 Oval Dr., West Lafayette, IN 47907, Office: (765) 494-6070, FAX: (765) 494-0239,
| |
Collapse
|
10
|
Hopson RE, Peti W. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy. Methods Mol Biol 2008; 426:447-458. [PMID: 18542883 DOI: 10.1007/978-1-60327-058-8_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microcoil NMR spectroscopy is based on the increase of coil sensitivity for smaller coil diameters (approximately 1/d). Microcoil NMR probes deliver a remarkable mass-based sensitivity increase (8- to 12-fold) when compared with commonly used 5-mm NMR probes. Although microcoil NMR probes are a well established analytical tool for small molecule liquid-state NMR spectroscopy, after spectroscopy only recently have microcoil NMR probes become available for biomolecular NMR spectroscopy. This chapter highlights differences between commercially available microcoil NMR probes suitable for biomolecular NMR spectroscopy. Furthermore, it provides practical guidance for the use of microcoil probes and shows direct applications for structural biology and structural genomics, such as optimal target screening and structure determination, among others.
Collapse
|
11
|
Dossey AT, Walse SS, Rocca JR, Edison AS. Single insect NMR: A new tool to probe chemical biodiversity. ACS Chem Biol 2006; 1:511-4. [PMID: 17168538 DOI: 10.1021/cb600318u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of analytical limitations, multiple animals or plants are typically required to identify natural products. Using a unique 1-mm high-temperature superconducting NMR probe, we directly examined the chemical composition of defensive secretions from walking stick insects. Individual milkings were dissolved in D2O without purification and examined by NMR within 10 min of secretion. We found that Anisomorpha buprestoides secretes similar quantities of glucose and mixtures of monoterpene dialdehydes that are stereoisomers of dolichodial. Different individual animals produce different stereoisomeric mixtures, the ratio of which varies between individual animals raised in the same container and fed the same food. Another walking stick, Peruphasma schultei, also secretes glucose and a single, unique stereoisomer that we are naming "peruphasmal". These observations suggest a previously unrecognized significance of aqueous components in walking stick defensive sprays. Single-insect variability of venom demonstrates the potential importance of chemical biodiversity at the level of individual animals.
Collapse
|
12
|
Brey WW, Edison AS, Nast RE, Rocca JR, Saha S, Withers RS. Design, construction, and validation of a 1-mm triple-resonance high-temperature-superconducting probe for NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 179:290-3. [PMID: 16423543 DOI: 10.1016/j.jmr.2005.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 12/20/2005] [Accepted: 12/20/2005] [Indexed: 05/06/2023]
Abstract
We report a 600-MHz 1-mm triple-resonance high-temperature-superconducting (HTS) probe for nuclear magnetic resonance spectroscopy. The probe has a real sample volume of about 7.5 microl, an active volume of 6.3 microl, and appears to have the highest mass sensitivity at any field strength. The probe is constructed with four sets of HTS coils that are tuned to 1H, 2H, 13C, and 15N, and there is a z-axis gradient. The coils are cooled with a conventional Bruker CryoPlatform to about 20 K, and the sample chamber can be regulated above or below room temperature over a moderate range using a Bruker variable temperature unit. The absolute S/N for 0.1% ethylbenzene is approximately 1/3 that of a conventional 5mm probe with just 1/70 of the sample volume. We demonstrate the utility of this probe for small molecules and proteins with 2D spectra of just 1.7 microg of ibuprofen and 400 microM 15N-labeled ubiquitin.
Collapse
Affiliation(s)
- William W Brey
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | | | | | | | | | | |
Collapse
|
13
|
Li Y, Webb AG, Saha S, Brey WW, Zachariah C, Edison AS. Comparison of the performance of round and rectangular wire in small solenoids for high-field NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44:255-62. [PMID: 16477681 DOI: 10.1002/mrc.1777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper considers the effects of conductor geometry on the performance of small solenoidal coils for high-field NMR. First, a simple analytical model is presented for investigating the effects of conductor geometry on the current distribution in such coils. The model was used to derive optimum parameters for coils constructed from wire with either rectangular or circular cross-sections as a function of the length-to-diameter ratio. Second, a commercial software package utilizing full three-dimensional finite-element solutions to Maxwell's equations was used to confirm the basic findings of the simple analytical model, and also to compare simulated S/N estimations with experimental NMR spectra acquired with 2.5 mm and 1.0 mm-diameter solenoid coils: reasonable agreement was found. Third, as a demonstration of the usefulness of such coils for mass-limited samples, multidimensional experiments were performed at 750 MHz on approximately 4.7 nmol (41 microg) of PF1061, a protein from Pyrococcus furiosus.
Collapse
Affiliation(s)
- Yu Li
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | | | | | | | | | | |
Collapse
|
14
|
Webb AG. Nuclear magnetic resonance coupled microseparations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43:688-96. [PMID: 16049953 DOI: 10.1002/mrc.1616] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The increased separation efficiency afforded by reducing the size of the separation column has resulted in 'microseparations' becoming an important component in many chemical and biochemical applications. The coupling of microseparations with NMR detection is an area of increasing interest owing to the high structural information of NMR. In order to couple efficiently with the separation, the NMR detector must be reduced in size to correspond to that of the separation peak. This paper summarizes some of the approaches used in coupling NMR detection with pressure-driven and electrophoretic microseparations, the design of small NMR detectors and applications of this technology.
Collapse
Affiliation(s)
- A G Webb
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 61801, USA.
| |
Collapse
|
15
|
Webb AG. Microcoil nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 2005; 38:892-903. [PMID: 16087050 DOI: 10.1016/j.jpba.2005.01.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 01/15/2005] [Accepted: 01/22/2005] [Indexed: 11/16/2022]
Abstract
In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.
Collapse
Affiliation(s)
- A G Webb
- Department of Electrical and Computer Engineering, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 4221 Beckman Institute, 405 N. Mathews, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Yamauchi K, Janssen JWG, Kentgens APM. Implementing solenoid microcoils for wide-line solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 167:87-96. [PMID: 14987602 DOI: 10.1016/j.jmr.2003.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 12/02/2003] [Indexed: 05/24/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) probeheads using solenoid microcoils with an inner diameter of 300-400 microm are developed for the study of mass-limited solid samples. Some attention is paid to the mechanical ruggedness of the probes allowing sample changing. The performance, in terms of sensitivity and RF-characteristics, of these probeheads is studied for (1)H, (31)P, and (27)Al in different model compounds in view of the feasibility of specific applications. The results show that the sensitivity is high enough to detect approximately 10(14) spins/sqrt Hz with a signal-to-noise ratio of 1 in a single scan. A specific advantage of microcoils for solid-state NMR applications is that they can generate extremely high RF-fields if implemented in appropriate circuits. Using RF-powers in the hundreds of Watts range, RF-fields well in excess of 1MHz can be made. This allows the excitation of spectra of nuclei whose resonance lines are dispersed of several megahertz. This is particularly useful for quadrupolar nuclei experiencing large quadrupolar interactions as is demonstrated for (27)Al in single crystal and powdered minerals.
Collapse
Affiliation(s)
- K Yamauchi
- Department of Physical Chemistry/Solid-State NMR, NSRIM Center, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | |
Collapse
|