1
|
Singh RK, Chamachi NG, Chakrabarty S, Mukherjee A. Mechanism of Unfolding of Human Prion Protein. J Phys Chem B 2017; 121:550-564. [PMID: 28030950 DOI: 10.1021/acs.jpcb.6b11416] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Misfolding and aggregation of prion proteins are associated with several neurodegenerative diseases. Therefore, understanding the mechanism of the misfolding process is of enormous interest in the scientific community. It has been speculated and widely discussed that the native cellular prion protein (PrPC) form needs to undergo substantial unfolding to a more stable PrPC* state, which may further oligomerize into the toxic scrapie (PrPSc) form. Here, we have studied the mechanism of the unfolding of the human prion protein (huPrP) using a set of extensive well-tempered metadynamics simulations. Through multiple microsecond-long metadynamics simulations, we find several possible unfolding pathways. We show that each pathway leads to an unfolded state of lower free energy than the native state. Thus, our study may point to the signature of a PrPC* form that corresponds to a global minimum on the conformational free-energy landscape. Moreover, we find that these global minima states do not involve an increased β-sheet content, as was assumed to be a signature of PrPSc formation in previous simulation studies. We have further analyzed the origin of metastability of the PrPC form through free-energy surfaces of the chopped helical segments to show that the helices, particularly H2 and H3 of the prion protein, have the tendency to form either a random coil or a β-structure. Therefore, the secondary structural elements of the prion protein are only weakly stabilized by tertiary contacts and solvation forces so that relatively weak perturbations induced by temperature, pressure, pH, and so forth can lead to substantial unfolding with characteristics of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Reman K Singh
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| | - Neharika G Chamachi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory , Pune 411008, Maharashtra, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research , Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Mangiatordi GF, Alberga D, Trisciuzzi D, Lattanzi G, Nicolotti O. Human Aquaporin-4 and Molecular Modeling: Historical Perspective and View to the Future. Int J Mol Sci 2016; 17:ijms17071119. [PMID: 27420052 PMCID: PMC4964494 DOI: 10.3390/ijms17071119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/26/2022] Open
Abstract
Among the different aquaporins (AQPs), human aquaporin-4 (hAQP4) has attracted the greatest interest in recent years as a new promising therapeutic target. Such a membrane protein is, in fact, involved in a multiple sclerosis-like immunopathology called Neuromyelitis Optica (NMO) and in several disorders resulting from imbalanced water homeostasis such as deafness and cerebral edema. The gap of knowledge in its functioning and dynamics at the atomistic level of detail has hindered the development of rational strategies for designing hAQP4 modulators. The application, lately, of molecular modeling has proved able to fill this gap providing a breeding ground to rationally address compounds targeting hAQP4. In this review, we give an overview of the important advances obtained in this field through the application of Molecular Dynamics (MD) and other complementary modeling techniques. The case studies presented herein are discussed with the aim of providing important clues for computational chemists and biophysicists interested in this field and looking for new challenges.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Domenico Alberga
- Institut de Recherche de Chimie Paris CNRS Chimie ParisTech, PSL Research University, 11 rue P. et M. Curie, F-75005 Paris, France.
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Gianluca Lattanzi
- INFN-Sez. di Bari and Dipartimento di Medicina Clinica e Sperimentale, University of Foggia, Viale Pinto, 71122 Foggia, Italy.
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, University of Bari "Aldo Moro", 70126 Bari, Italy.
| |
Collapse
|
3
|
Sawle L, Ghosh K. Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs Self-Consistency Dilemma. J Chem Theory Comput 2016; 12:861-9. [DOI: 10.1021/acs.jctc.5b00999] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lucas Sawle
- Department of Physics and
Astronomy, University of Denver, Denver, Colorado 80209, United States
| | - Kingshuk Ghosh
- Department of Physics and
Astronomy, University of Denver, Denver, Colorado 80209, United States
| |
Collapse
|
4
|
Jurkowski W. Role of D278N mutation for stability of prion dimer and tetramer structure. BIO-ALGORITHMS AND MED-SYSTEMS 2015. [DOI: 10.1515/bams-2015-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractToxicity of the prion molecule is a result of transmission of conformational change by direct contact with malignant misfolded molecule. The aim of this study is analyze the role of D278N mutation in promoting preferential oligomerization modes. Proteins exist as ensembles in equilibrium between different structural and dynamic states, including functionally relevant conformers as the most populated states as well as malfunctioning conformers as less populated states. Furthermore, the existence of different conformations allows protein oligomerization with condition-specific affinities. The maintenance of a particular role requires specific conversion between multiple stable states. Protein-protein binding may facilitate or may be a necessary condition of structural adaptation. In the case of prion disease, protein-protein interactions, resulting in prion agglomeration, have toxic effect. How exactly increased concentrations of prion oligomers trigger mechanisms leading to neuronal death is not known. Nevertheless, first oligomerization and second aggregate recognition are likely sequence of events that have to happen before any pathological condition may arise. Here, we carry out structural and dynamic analyses of the effect of disease-causing mutations on the dimerization and tetramerization of prion molecule as the first step in aggregate formation. D178N mutation has almost no effect on the monomeric structure but helps to stabilize the dimer, which consequently facilitates tetramer formation and stability.
Collapse
|
5
|
Noble GP, Walsh DJ, Miller MB, Jackson WS, Supattapone S. Requirements for mutant and wild-type prion protein misfolding in vitro. Biochemistry 2015; 54:1180-7. [PMID: 25584902 DOI: 10.1021/bi501495j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Misfolding of the prion protein (PrP) plays a central role in the pathogenesis of infectious, sporadic, and inherited prion diseases. Here we use a chemically defined prion propagation system to study misfolding of the pathogenic PrP mutant D177N in vitro. This mutation causes PrP to misfold spontaneously in the absence of cofactor molecules in a process dependent on time, temperature, pH, and intermittent sonication. Spontaneously misfolded mutant PrP is able to template its unique conformation onto wild-type PrP substrate in a process that requires a phospholipid activity distinct from that required for the propagation of infectious prions. Similar results were obtained with a second pathogenic PrP mutant, E199K, but not with the polymorphic substitution M128V. Moreover, wild-type PrP inhibits mutant PrP misfolding in a dose-dependent manner, and cofactor molecules can antagonize this effect. These studies suggest that interactions between mutant PrP, wild-type PrP, and other cellular factors may control the rate of PrP misfolding in inherited prion diseases.
Collapse
Affiliation(s)
- Geoffrey P Noble
- Department of Biochemistry, The Geisel School of Medicine at Dartmouth , Vail Building Room 311, Hanover, New Hampshire 03755, United States
| | | | | | | | | |
Collapse
|
6
|
Structural and dynamic properties of the human prion protein. Biophys J 2014; 106:1152-63. [PMID: 24606939 DOI: 10.1016/j.bpj.2013.12.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/11/2013] [Accepted: 12/26/2013] [Indexed: 11/23/2022] Open
Abstract
Prion diseases involve the conformational conversion of the cellular prion protein (PrP(C)) to its misfolded pathogenic form (PrP(Sc)). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrP(C) to PrP(Sc).
Collapse
|
7
|
Moulick R, Udgaonkar JB. Thermodynamic characterization of the unfolding of the prion protein. Biophys J 2014; 106:410-20. [PMID: 24461016 DOI: 10.1016/j.bpj.2013.11.4491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/15/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
The prion protein appears to be unusually susceptible to conformational change, and unlike nearly all other proteins, it can easily be made to convert to alternative misfolded conformations. To understand the basis of this structural plasticity, a detailed thermodynamic characterization of two variants of the mouse prion protein (moPrP), the full-length moPrP (23-231) and the structured C-terminal domain, moPrP (121-231), has been carried out. All thermodynamic parameters governing unfolding, including the changes in enthalpy, entropy, free energy, and heat capacity, were found to be identical for the two protein variants. The N-terminal domain remains unstructured and does not interact with the C-terminal domain in the full-length protein at pH 4. Moreover, the enthalpy and entropy of unfolding of moPrP (121-231) are similar in magnitude to values reported for other proteins of similar size. However, the protein has an unusually high native-state heat capacity, and consequently, the change in heat capacity upon unfolding is much lower than that expected for a protein of similar size. It appears, therefore, that the native state of the prion protein undergoes substantial fluctuations in enthalpy and hence, in structure.
Collapse
Affiliation(s)
- Roumita Moulick
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| |
Collapse
|
8
|
Cheng CJ, Daggett V. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 2014; 4:181-201. [PMID: 24970211 PMCID: PMC4030982 DOI: 10.3390/biom4010181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 12/24/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process.
Collapse
Affiliation(s)
- Chin Jung Cheng
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA.
| |
Collapse
|
9
|
Molecular Dynamics Studies on Amyloidogenic Proteins. COMPUTATIONAL METHODS TO STUDY THE STRUCTURE AND DYNAMICS OF BIOMOLECULES AND BIOMOLECULAR PROCESSES 2014. [DOI: 10.1007/978-3-642-28554-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Ye W, Wang W, Jiang C, Yu Q, Chen H. Molecular dynamics simulations of amyloid fibrils: an in silico approach. Acta Biochim Biophys Sin (Shanghai) 2013; 45:503-8. [PMID: 23532062 DOI: 10.1093/abbs/gmt026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid fibrils play causal roles in the pathogenesis of amyloid-related degenerative diseases such as Alzheimer's disease, type II diabetes mellitus, and the prion-related transmissible spongiform encephalopathies. The mechanism of fibril formation and protein aggregation is still hotly debated and remains an important open question in order to develop therapeutic method of these diseases. However, traditional molecular biological and crystallographic experiments could hardly observe atomic details and aggregation process. Molecular dynamics (MD) simulations could provide explanations for experimental results and detailed pathway of protein aggregation. In this review, we focus on the applications of MD simulations on several amyloidogenic protein systems. Furthermore, MD simulations could help us to understand the mechanism of amyloid aggregation and how to design the inhibitors.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
11
|
Zhang L, Tang R, Bai S, Connors NK, Lua LHL, Chuan YP, Middelberg APJ, Sun Y. Molecular Energetics in the Capsomere of Virus-Like Particle Revealed by Molecular Dynamics Simulations. J Phys Chem B 2013; 117:5411-21. [DOI: 10.1021/jp311170w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Zhang
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ronghong Tang
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shu Bai
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Natalie K. Connors
- Australian Institute for Bioengineering
and Nanotechnology, Centre for Biomolecular Engineering, The University of Queensland, St Lucia, QLD, 4072,
Australia
| | - Linda H. L. Lua
- Protein Expression
Facility, The University of Queensland,
St Lucia, QLD, 4072,
Australia
| | - Yap P. Chuan
- Australian Institute for Bioengineering
and Nanotechnology, Centre for Biomolecular Engineering, The University of Queensland, St Lucia, QLD, 4072,
Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering
and Nanotechnology, Centre for Biomolecular Engineering, The University of Queensland, St Lucia, QLD, 4072,
Australia
| | - Yan Sun
- Department
of Biochemical Engineering
and Key Laboratory of Systems Bioengineering of the Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Li J, Zhang L, Sun Y. Molecular basis of the initial platelet adhesion in arterial thrombosis: Molecular dynamics simulations. J Mol Graph Model 2012; 37:49-58. [DOI: 10.1016/j.jmgm.2012.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/17/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
13
|
Influence of the pathogenic mutations T188K/R/A on the structural stability and misfolding of human prion protein: Insight from molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2012; 1820:116-23. [DOI: 10.1016/j.bbagen.2011.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/26/2011] [Accepted: 11/22/2011] [Indexed: 12/15/2022]
|
14
|
NMR structure and CD titration with metal cations of human prion alpha2-helix-related peptides. Bioinorg Chem Appl 2011:10720. [PMID: 18274605 PMCID: PMC2216051 DOI: 10.1155/2007/10720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/04/2007] [Accepted: 07/11/2007] [Indexed: 11/17/2022] Open
Abstract
The 173–195 segment corresponding to the helix 2 of the C-globular prion protein domain could be one of several “spots” of intrinsic conformational flexibility. In fact, it possesses chameleon conformational behaviour and gathers several disease-associated point mutations. We have performed spectroscopic studies on the wild-type fragment 173–195 and on its D178N mutant dissolved in trifluoroethanol to mimic the in vivo system, both in the presence and in the absence of metal cations. NMR data showed that the structure of the D178N mutant is characterized by two short helices separated by a kink, whereas the wild-type peptide is fully helical. Both peptides retained these structural organizations, as monitored by CD, in the presence of metal cations. NMR spectra were however not in favour of the formation of definite ion-peptide complexes. This agrees with previous evidence that other regions of the prion protein are likely the natural target of metal cation binding.
Collapse
|
15
|
van der Kamp MW, Daggett V. Molecular dynamics as an approach to study prion protein misfolding and the effect of pathogenic mutations. Top Curr Chem (Cham) 2011; 305:169-97. [PMID: 21526434 DOI: 10.1007/128_2011_158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computer simulation of protein dynamics offers unique high-resolution information that complements experiment. Using experimentally derived structures of the natively folded prion protein (PrP), physically realistic dynamics and conformational changes can be simulated, including the initial steps of misfolding. By introducing mutations in silico, the effect of pathogenic mutations on PrP conformation and dynamics can be assessed. Here, we briefly introduce molecular dynamics methods and review the application of molecular dynamics simulations to obtain insight into various aspects of the PrP, including the mechanism of misfolding, the response to changes in the environment, and the influence of disease-related mutations.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | | |
Collapse
|
16
|
Lingenheil M, Denschlag R, Tavan P. Highly polar environments catalyze the unfolding of PrP C helix 1. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2010; 39:1177-1192. [PMID: 20049591 DOI: 10.1007/s00249-009-0570-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 10/21/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
The first alpha-helix (H1) likely plays an important role in the conversion of the cellular prion protein (PrP(C)) into its pathogenic isoform (PrP(Sc)). In this conversion, H1 may either have to unfold or may represent a site of intermolecular contact. A recent molecular dynamics simulation suggested that H1 can unfold if it is detached from the protein core (Hirschberger et al. in Biophys J 90:3908, 2006). It has been hypothesized that the high dielectric constant epsilon (S) of the bulk water environment facilitates the unfolding of H1. To check this hypothesis, we performed a number of replica exchange molecular dynamics simulations of an H1 peptide in solvents of different epsilon (S). We found that the equilibrium helix fraction in water is less than 40%, in agreement with previous experimental findings, and that the helix unfolds much faster in water than in less polar solvents. The kinetically stabilizing effect of the organic solvents is largely unspecific and correlates well with their dielectric constant epsilon (S).
Collapse
Affiliation(s)
- Martin Lingenheil
- Department für Physik, LMU München, Oettingenstrasse 67, 80538, Munich, Germany
| | | | | |
Collapse
|
17
|
van der Kamp MW, Daggett V. The consequences of pathogenic mutations to the human prion protein. Protein Eng Des Sel 2009; 22:461-8. [PMID: 19602567 PMCID: PMC2719504 DOI: 10.1093/protein/gzp039] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 06/12/2009] [Accepted: 06/17/2009] [Indexed: 11/14/2022] Open
Abstract
Prion diseases, in which the conformational transition of the native prion protein (PrP) to a misfolded form causes aggregation and subsequent neurodegeneration, have fascinated the scientific community as this transmissible disease appears to be purely protein-based. Disease can arise due to genetic factors only. At least 30 single point mutations have been indicated to cause disease in humans. Somehow, these mutations must influence the stability, processing and/or cellular interactions of PrP, such that aggregation can occur and disease develops. In this review, the current evidence for such effects of single point mutations is discussed, indicating that PrP can be affected in many different ways, although questions remain about the mechanism by which mutations cause disease.
Collapse
Affiliation(s)
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, 98195-5013 WA, USA
| |
Collapse
|
18
|
Chiang YW, Otoshima Y, Watanabe Y, Inanami O, Shimoyama Y. Dynamics and Local Ordering of Spin-Labeled Prion Protein: An ESR Simulation Study of a Highly PH-Sensitive Site. J Biomol Struct Dyn 2008; 26:355-66. [DOI: 10.1080/07391102.2008.10507250] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Ronga L, Palladino P, Saviano G, Tancredi T, Benedetti E, Ragone R, Rossi F. Structural characterization of a neurotoxic threonine-rich peptide corresponding to the human prion protein alpha 2-helical 180-195 segment, and comparison with full-length alpha 2-helix-derived peptides. J Pept Sci 2008; 14:1096-102. [PMID: 18563793 DOI: 10.1002/psc.1046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The 173-195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several 'spots' of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation-prone conformations. Here, we report CD and NMR studies on the alpha2-helix-derived peptide of maximal length (hPrP[180-195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other alpha2-helix-derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C-terminal sequence of the PrP(C) full-length alpha2-helix and includes the highly conserved threonine-rich 188-195 segment. At neutral pH, its conformation is dominated by beta-type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of alpha-helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173-179 segment, as occurring in wild-type and mutant peptides corresponding to the full-length alpha2-helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180-195 parental region in hPrP(C) makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full-length alpha2-helix, and could play a role in determining structural rearrangements of the entire globular domain.
Collapse
Affiliation(s)
- Luisa Ronga
- Dipartimento delle Scienze Biologiche and C.I.R.Pe.B., Università Federico II di Napoli, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Watanabe Y, Hiraoka W, Shimoyama Y, Horiuchi M, Kuwabara M, Inanami O. Instability of familial spongiform encephalopathy-related prion mutants. Biochem Biophys Res Commun 2007; 366:244-9. [PMID: 18062918 DOI: 10.1016/j.bbrc.2007.11.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
Abstract
We examined the influence of D177N (D178N in humans) mutation on the conformational stability of the S2 region of moPrP(C) with varying pHs by using the SDSL-ESR technique. The ESR spectrum of D177N at pH 7.5 was narrower than that of Y161R1, referred to as WT( *). The ESR spectrum of D177N did not change when pH in the solution decreased to pH 4.0. Our results suggested that the disappearance of a salt bridge (D177-R163) induced the increase in the instability of S2 region. Moreover, the line shape of the ESR spectrum obtained from H176S neighboring the salt bridge linked to the S2 region was similar to D177N. These results indicate that the protonation of H176 is strongly associated with the stability of S2 region. These findings are important for understanding the mechanism by which the disruption of the salt bridge in the S2 region forms the pathogenic PrP(Sc) structure in hereditary prion disease.
Collapse
Affiliation(s)
- Yasuko Watanabe
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Contribution of a putative salt bridge and backbone dynamics in the structural instability of human prion protein upon R208H mutation. Biochem Biophys Res Commun 2007; 364:719-24. [PMID: 17980350 DOI: 10.1016/j.bbrc.2007.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 10/02/2007] [Indexed: 11/20/2022]
Abstract
Molecular dynamics simulation method is used to assess the contribution of a disease-associated salt bridge in the early stages of the conformational rearrangement of human prion protein upon Arg208-->His mutation, which causes Creutzfeldt-Jakob disease. Previous investigations have suggested that the breakage of this putative salt bridge (D144/E146<-->Arg208) between helix 1 and helix 3 is responsible for such a mutation-driven process. So far, no experimental data has been reported in order to distinguish the contribution of this single salt bridge in the initial steps of amyloid formation. Consequently, we decided to investigate the role of this salt bridge in early conformational rearrangements. To remove the salt bridge without perturbations in the backbone structure, the neutralized states of the involved residues were used. Three 10-ns molecular dynamics simulations on three initial structures have been performed. The results revealed that the early stages of the conformational rearrangements, against common belief, are mainly associated with the mutation-induced global changes in the backbone dynamics but not with the breaking of the salt bridge.
Collapse
|
22
|
Ji HF, Zhang HY. A comparative molecular dynamics study on thermostability of human and chicken prion proteins. Biochem Biophys Res Commun 2007; 359:790-4. [PMID: 17560545 DOI: 10.1016/j.bbrc.2007.05.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 11/16/2022]
Abstract
To compare the thermostabilities of human and chicken normal cellular prion proteins (HuPrP(C) and CkPrP(C)), molecular dynamics (MD) simulations were performed for both proteins at an ensemble level (10 parallel simulations at 400 K and 5 parallel simulations at 300 K as a control). It is found that the thermostability of HuPrP(C) is comparable with that of CkPrP(C), which implicates that the non-occurrence of prion diseases in non-mammals cannot be completely attributed to the thermodynamic properties of non-mammalian PrP(C).
Collapse
Affiliation(s)
- Hong-Fang Ji
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China
| | | |
Collapse
|
23
|
Gorfe AA, Caflisch A. Ser170 controls the conformational multiplicity of the loop 166-175 in prion proteins: implication for conversion and species barrier. FASEB J 2007; 21:3279-87. [PMID: 17522379 DOI: 10.1096/fj.07-8292com] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The self-perpetuating conversion of cellular prion proteins (PrP(C)) into an aggregated beta-sheet rich conformation is associated with transmissible spongiform encephalopathies (TSE). The loop 166-175 (L1) in PrP(C), which displays sequence and structural variation among species, has been suggested to play a role in species barrier, in particular against transmission of TSE from cervids to domestic and laboratory animals. L1 is ordered in elk PrP, as well as in a mouse/elk hybrid (in which L1 of mouse is replaced by elk) but not in other species such as mice, humans, and bovine. To investigate the source and significance of L1 dynamics, we carried out explicit solvent molecular dynamics simulations (approximately 0.5 micros in total) of the mouse prion protein, the mouse/elk hybrid, and control simulations, in which the mouse sequence is reintroduced into the structure of the mouse/elk hybrid. We found that the flexibility of L1 correlates with the backbone dynamics of Ser170. Furthermore, L1 mobility promotes a substantial displacement of Tyr169, rupture of the Asp178-Tyr128 and Asp178-Tyr169 side chain hydrogen bonds, as well as disruption of Tyr169-Phe175 pi-stacking interaction. The simulation results go beyond the available experimental data because they highlight the dependence of this network of interactions on residue 170 and L1 plasticity.
Collapse
Affiliation(s)
- Alemayehu A Gorfe
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
24
|
Lennon CW, Cox HD, Hennelly SP, Chelmo SJ, McGuirl MA. Probing structural differences in prion protein isoforms by tyrosine nitration. Biochemistry 2007; 46:4850-60. [PMID: 17397138 PMCID: PMC2562509 DOI: 10.1021/bi0617254] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two conformational isomers of recombinant hamster prion protein (residues 90-232) have been probed by reaction with two tyrosine nitration reagents, peroxynitrite and tetranitromethane. Two conserved tyrosine residues (tyrosines 149 and 150) are not labeled by either reagent in the normal cellular form of the prion protein. These residues become reactive after the protein has been converted to the beta-oligomeric isoform, which is used as a model of the fibrillar form that causes disease. After conversion, a decrease in reactivity is noted for two other conserved residues, tyrosine 225 and tyrosine 226, whereas little to no effect was observed for other tyrosines. Thus, tyrosine nitration has identified two specific regions of the normal prion protein isoform that undergo a change in chemical environment upon conversion to a structure that is enriched in beta-sheet.
Collapse
Affiliation(s)
- Christopher W. Lennon
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana, Missoula, MT 59812 USA
| | | | - Scott P. Hennelly
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana, Missoula, MT 59812 USA
| | | | - Michele A. McGuirl
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, The University of Montana, Missoula, MT 59812 USA
- Corresponding author information: Michele A. McGuirl, Clapp Building 204, Division of Biological Sciences, 32 Campus Drive The University of Montana, Missoula, MT 59812, , (406) 243-4404 phone, (406) 243-4304 fax
| |
Collapse
|
25
|
Shamsir MS, Dalby AR. Beta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein. Biophys J 2007; 92:2080-9. [PMID: 17172295 PMCID: PMC1861792 DOI: 10.1529/biophysj.106.092320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 11/16/2006] [Indexed: 12/30/2022] Open
Abstract
Previous molecular dynamic simulations have reported elongation of the existing beta-sheet in prion proteins. Detailed examination has shown that these elongations do not extend beyond the proline residues flanking these beta-sheets. In addition, proline has also been suggested to possess a possible structural role in preserving protein interaction sites by preventing invasion of neighboring secondary structures. In this work, we have studied the possible structural role of the flanking proline residues by simulating mutant structures with alternate substitution of the proline residues with valine. Simulations showed a directional inhibition of elongation, with the elongation progressing in the direction of valine including evident inhibition of elongation by existing proline residues. This suggests that the flanking proline residues in prion proteins may have a containment role and would confine the beta-sheet within a specific length.
Collapse
Affiliation(s)
- Mohd S Shamsir
- Biology Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor
| | | |
Collapse
|
26
|
DeMarco ML, Daggett V. Molecular Mechanism for Low pH Triggered Misfolding of the Human Prion Protein†. Biochemistry 2007; 46:3045-54. [PMID: 17315950 DOI: 10.1021/bi0619066] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational changes in the prion protein cause transmissible spongiform encephalopathies, also referred to as prion diseases. In its native state, the prion protein is innocuous (PrPC), but it can misfold into a neurotoxic and infectious isoform (PrPSc). The full-length cellular form of the prion protein consists of residues 23-230, with over half of the sequence belonging to the unstructured N-terminal domain and the remaining residues forming a small globular domain. During misfolding and aggregation, portions of both the structured and unstructured domains are incorporated into the aggregates. After limited proteolysis by proteinase K, the most abundant fragment from brain-derived prion fibrils is a 141-residue fragment composed of residues 90-230. Here we describe simulations of this fragment of the human prion protein at low pH, which triggers misfolding, and at neutral pH as a control. The simulations, in agreement with experiment, show that this biologically and pathologically relevant prion construct is stable and native-like at neutral pH. In contrast, at low pH the prion protein is destabilized via disruption of critical long-range salt bridges. In one of the low pH simulations this destabilization resulted in a conformational transition to a PrPSc-like isoform consistent with our previous simulations of a smaller construct.
Collapse
Affiliation(s)
- Mari L DeMarco
- Department of Medicinal Chemistry, Biomolecular Structure and Design Program, University of Washington, Seattle, Washington 98195-7610, USA
| | | |
Collapse
|
27
|
Schettino V, Chelli R, Marsili S, Barducci A, Faralli C, Pagliai M, Procacci P, Cardini G. Problems in molecular dynamics of condensed phases. Theor Chem Acc 2007. [DOI: 10.1007/s00214-006-0223-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Novak P, Giannakopulos AE. Chemical cross-linking and mass spectrometry as structure determination tools. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:105-13. [PMID: 17881777 DOI: 10.1255/ejms.868] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical cross-linking is becoming a valuable tool for the high-order structure determination of proteins and protein complexes. Cross-linking methodology is able to provide low-resolution structures when at least something is known already about the proteins under investigation. The suitability of top-down and bottom-up methodologies is discussed and further potential applications of chemical cross-linking of proteins, as well as combinations with other techniques such as hydrogen/deuterium exchange and molecular modeling, are suggested.
Collapse
Affiliation(s)
- Petr Novak
- Institute of Microbiology, Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
29
|
Watanabe Y, Inanami O, Horiuchi M, Hiraoka W, Shimoyama Y, Inagaki F, Kuwabara M. Identification of pH-sensitive regions in the mouse prion by the cysteine-scanning spin-labeling ESR technique. Biochem Biophys Res Commun 2006; 350:549-56. [PMID: 17022940 DOI: 10.1016/j.bbrc.2006.09.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/18/2006] [Indexed: 12/01/2022]
Abstract
We analyzed the pH-induced mobility changes in moPrP(C) alpha-helix and beta-sheets by cysteine-scanning site-directed spin labeling (SDSL) with ESR. Nine amino acid residues of alpha-helix1 (H1, codon 143-151), four amino acid residues of beta-sheet1 (S1, codon 127-130), and four amino acid residues of beta-sheet2 (S2, codon 160-163) were substituted for by cysteine residues. These recombinant mouse PrP(C) (moPrP(C)) mutants were reacted with a methane thiosulfonate sulfhydryl-specific spin labeling reagent (MTSSL). The 1/deltaH of the central (14N hyperfine) component (M(I) = 0) in the ESR spectrum of spin-labeled moPrP(C) was measured as a mobility parameter of nitroxide residues (R1). The mobilities of E145R1 and Y149R1 at pH 7.4, which was identified as a tertiary contact site by a previous NMR study of moPrP, were lower than those of D143R1, R147R1, and R150R1 reported on the helix surface. Thus, the mobility in the H1 region in the neutral solution was observed with the periodicity associated with a helical structure. On the other hand, the values in the S2 region, known to be located in the buried side, were lower than those in the S1 region located in the surface side. These results indicated that the mobility parameter of the nitroxide label was well correlated with the 3D structure of moPrP. Furthermore, the present study clearly demonstrated three pH-sensitive sites in moPrP, i.e., (1) the N-terminal tertiary contact site of H1, (2) the C-terminal end of H1, and (3) the S2 region. In particular, among these pH-sensitive sites, the N-terminal tertiary contact region of H1 was found to be the most pH-sensitive one and was easily converted to a flexible structure by a slight decrease of pH in the solution. These data provided molecular evidence to explain the cellular mechanism for conversion from PrP(C) to PrP(Sc) in acidic organelles such as the endosome.
Collapse
Affiliation(s)
- Yasuko Watanabe
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18-Jo Nishi 9-chome, Sapporo 060-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Artali R, Bombieri G, Calabi L, Del Pra A. A molecular dynamics study of human serum albumin binding sites. ACTA ACUST UNITED AC 2006; 60:485-95. [PMID: 15950224 DOI: 10.1016/j.farmac.2005.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 04/04/2005] [Indexed: 11/22/2022]
Abstract
A 2.0 ns unrestrained Molecular Dynamics was used to elucidate the geometric and dynamic properties of the HSA binding sites. The structure is not stress affected and the rmsds calculated from the published crystallographic data are almost constant for all the simulation time, with an averaged value of 2.4A. The major variability is in the C-terminus region. The trajectory analysis of the IIA binding site put in evidence fast oscillations for the Cgamma@Leu203...Cgamma@Leu275 and Cgamma@Leu219...Cgamma@Leu260 distances, with fluctuations around 250 ps, 1000 ps and over for the first, while the second is smoothly increasing with the simulation time from 7 to 10A. These variations are consistent with a volume increase up to 20% confirmed by the inter-domain contacts analysis, in particular for the pair O@Pro148...Ogamma@Ser283, representing the change of distance between IB-h9 and IIA-h6, O@Glu149...Ogamma@Ser189 for sub-domains IB-h9/IIA-h1 and N@Val339...Odelta2@Asp447 sub-domains IIB-h9/IIIA-h1. These inter-domain motions confirm the flexibility of the unfatted HSA with possible binding site pre-formation.
Collapse
Affiliation(s)
- Roberto Artali
- Istituto di Chimica Farmaceutica e Tossicologica, Università di Milano, Viale Abruzzi 42, 20131 Milano, Italy.
| | | | | | | |
Collapse
|
31
|
Colacino S, Tiana G, Broglia RA, Colombo G. The determinants of stability in the human prion protein: insights into folding and misfolding from the analysis of the change in the stabilization energy distribution in different conditions. Proteins 2006; 62:698-707. [PMID: 16432880 DOI: 10.1002/prot.20804] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamic evolution of the PrP(C) from its NMR-derived conformation to a beta-sheet-rich, aggregation-prone conformation is studied through all-atom, explicit solvent molecular dynamics in different temperature and pH conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach aimed at identifying the key residues for the stabilization and folding of the protein. It is shown that under native conditions the stabilization energy is concentrated in regions of the helices H1 and H3, whereas under misfolding conditions (low pH, high temperature, or mutations in selected sites) it is spread out over helix H2. Misfolding appears to be a rearrangement of the chain that disrupts most of the native secondary structure of the protein, producing some beta-rich conformations with an energy distribution similar to that of the native state.
Collapse
|
32
|
Affiliation(s)
- Valerie Daggett
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195-7610, USA
| |
Collapse
|
33
|
Langella E, Improta R, Crescenzi O, Barone V. Assessing the acid–base and conformational properties of histidine residues in human prion protein (125–228) by means of pK
a
calculations and molecular dynamics simulations. Proteins 2006; 64:167-77. [PMID: 16639746 DOI: 10.1002/prot.20979] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A thorough study of the acid-base behavior of the four histidines and the other titratable residues of the structured domain of human prion protein (125-228) is presented. By using multi-tautomer electrostatic calculations, average titration curves have been built for all titratable residues, using the whole bundles of NMR structures determined at pH 4.5 and 7.0. According to our results, (1) only histidine residues are likely to be involved in the first steps of the pH-driven conformational transition of prion protein; (2) the pK(a)'s of His140 and His177 are approximately 7.0, whereas those of His155 and His187 are < 5.5. 10-ns long molecular dynamics simulations have been performed on five different models, corresponding to the most significant combinations of histidine protonation states. A critical comparison between the available NMR structures and our computational results (1) confirms that His155 and His187 are the residues whose protonation is involved in the conformational rearrangement of huPrP in mildly acidic condition, and (2) shows how their protonation leads to the destructuration of the C-terminal part of HB and to the loss of the last turn of HA that represent the crucial microscopic steps of the rearrangement.
Collapse
Affiliation(s)
- Emma Langella
- Dipartimento di Chimica, Universitá Federico II, Complesso di Monte S. Angelo, Napoli, Italy
| | | | | | | |
Collapse
|
34
|
Barducci A, Chelli R, Procacci P, Schettino V, Gervasio FL, Parrinello M. Metadynamics Simulation of Prion Protein: β-Structure Stability and the Early Stages of Misfolding. J Am Chem Soc 2006; 128:2705-10. [PMID: 16492057 DOI: 10.1021/ja057076l] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study we have used molecular dynamics simulations to study the stability of the antiparallel beta-sheet in cellular mouse prion protein (PrP(C)) and in the D178N mutant. In particular, using the recently developed non-Markovian metadynamics method, we have evaluated the free energy as a function of a reaction coordinate related to the beta-sheet disruption/growth. We found that the antiparallel beta-sheet is significantly weaker in the pathogenic D178N mutant than in the wild-type PrP(C). The destabilization of PrP(C) beta-structure in the D178N mutant is correlated to the weakening of the hydrogen bonding network involving the mutated residue, Arg164 and Tyr128 side chains. This in turn indicates that such a network apparently provides a safety mechanism for the unzipping of the antiparallel beta-sheet in the PrP(C). We conclude that the antiparallel beta-sheet is likely to undergo disruption rather than growth under pathogenic conditions, in agreement with recent models of the misfolded monomer that assume a parallel beta-helix.
Collapse
|
35
|
An evaluation of non-periodic boundary condition models in molecular dynamics simulations using prion octapeptides as probes. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2005.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
De Simone A, Dodson GG, Verma CS, Zagari A, Fraternali F. Prion and water: tight and dynamical hydration sites have a key role in structural stability. Proc Natl Acad Sci U S A 2005; 102:7535-40. [PMID: 15894615 PMCID: PMC1140432 DOI: 10.1073/pnas.0501748102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The propensity to form fibril in disease-related proteins is a widely studied phenomenon, but its correlation, if any, with structural characteristics of the associated proteins is not clearly understood. However, the observation has been made that some proteins that readily form amyloid have a significant number of backbone H bonds that are exposed to solvent molecules, suggesting that these regions have a propensity toward protein interaction and aggregation [Fernandez, A. & Scheraga, H. A. (2003) Proc. Natl. Acad. Sci. USA 100, 113-118]. High-resolution x-ray structures of the sheep and human C-terminal prion protein have provided a useful description of surface and partially buried waters. By molecular dynamics simulations, we investigated the structural role of these water molecules. The solvent dynamical behavior on the protein surface reveals significant features about the stability and the potential interactions of the prion protein. The protein presents regions of tightly bound conserved waters that are necessary to hold in place local elements of the fold, as well as regions where the local water is in fast exchange with bulk water. These results are evidenced by a map of the spatial distribution entropy of the solvent around the protein. The particular behavior of the solvent around these regions may be crucial in the folding stability and in terms of aggregation loci.
Collapse
Affiliation(s)
- Alfonso De Simone
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
37
|
Ji HF, Zhang HY, Shen L. The Role of Electrostatic Interaction in Triggering the Unraveling of Stable Helix 1 in Normal Prion Protein. A Molecular Dynamics Simulation Investigation. J Biomol Struct Dyn 2005; 22:563-70. [PMID: 15702928 DOI: 10.1080/07391102.2005.10507026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The conversion of normal prion protein (PrPC) into scrapie isoform (PrPSc) is a key event in the pathogenesis of prion diseases. However, the conversion mechanism has given rise to much controversy. For instance, there is much debate on the behavior of helix 1 (H1) in the conversion. A series of experiments demonstrated that H1 in isolated state was very stable under a variety of conditions. But, other experiments indicated that helices 2 and 3 rather than H1 were retained in PrPSc. In this paper, molecular dynamics (MD) simulation is employed to investigate the dynamic behavior of H1. It is revealed that although the helix 1 of Human PrPC (HuPrPC) is very stable in the isolated state, it becomes unstable when incorporated into native HuPrPC, which likely results from the long-range electrostatic interaction between Asp147 and Arg208 located in the helices 1 and 3, respectively. This explanation is supported by experimental evaluation and MD simulation on D147N mutant of HuPrPC that the mutant becomes a little more stable than the wild type HuPrPC. This finding not only help to reconcile the existing debate on the role of helix 1 in the PrPC-->PrPSc transition, but also reveals a possible mechanism for triggering the PrPC-->PrPSc conversion.
Collapse
Affiliation(s)
- Hong-Fang Ji
- Laboratory for Computational Biology, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo 255049, PR China
| | | | | |
Collapse
|
38
|
Shamsir MS, Dalby AR. One gene, two diseases and three conformations: Molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures. Proteins 2005; 59:275-90. [PMID: 15739202 DOI: 10.1002/prot.20401] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD) are associated to the same mutation at codon 178 but differentiate into clinicopathologically distinct diseases determined by this mutation and a naturally occurring methionine-valine polymorphism at codon 129 of the prion protein gene. It has been suggested that the clinical and pathological difference between FFI and CJD is caused by different conformations of the prion protein. Using molecular dynamics (MD), we investigated the effect of the mutation at codon 178 and the polymorphism at codon 129 on prion protein dynamics and conformation at normal and elevated temperatures. Four model structures were examined with a focus on their dynamics and conformational changes. The results showed differences in stability and dynamics between polymorphic variants. Methionine variants demonstrated a higher stability than valine variants. Elongation of existing beta-sheets and formation of new beta-sheets was found to occur more readily in valine polymorphic variants. We also discovered the inhibitory effect of proline residue on existing beta-sheet elongation.
Collapse
Affiliation(s)
- Mohd S Shamsir
- Schools of Biological and Chemical Sciences and Engineering and Computer Science, University of Exeter, Washington Singer Laboratories, Prince of Wales Road, Exeter, UK
| | | |
Collapse
|
39
|
Barducci A, Chelli R, Procacci P, Schettino V. Misfolding pathways of the prion protein probed by molecular dynamics simulations. Biophys J 2004; 88:1334-43. [PMID: 15556981 PMCID: PMC1305135 DOI: 10.1529/biophysj.104.049882] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the cellular monomeric form of the benign prion protein is now well characterized, a model for the monomer of the misfolded conformation (PrP(Sc)) remains elusive. PrP(Sc) quickly aggregates into highly insoluble fibrils making experimental structural characterization very difficult. The tendency to aggregation of PrP(Sc) in aqueous solution implies that the monomer fold must be hydrophobic. Here, by using molecular dynamics simulations, we have studied the cellular mouse prion protein and its D178N pathogenic mutant immersed in a hydrophobic environment (solution of CCl4), to reveal conformational changes and/or local structural weaknesses of the prion protein fold in unfavorable structural and thermodynamic conditions. Simulations in water have been also performed. Although observing in general a rather limited conformation activity in the nanosecond timescale, we have detected a significant weakening of the antiparallel beta-sheet of the D178N mutant in CCl4 and to a less extent in water. No weakening is observed for the native prion protein. The increase of beta-structure in the monomer, recently claimed as evidence for misfolding to PrP(Sc), has been also observed in this study irrespective of the thermodynamic or structural conditions, showing that this behavior is very likely an intrinsic characteristic of the prion protein fold.
Collapse
|
40
|
Sekijima M, Motono C, Yamasaki S, Kaneko K, Akiyama Y. Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: insight into dynamics and properties. Biophys J 2003; 85:1176-85. [PMID: 12885661 PMCID: PMC1303235 DOI: 10.1016/s0006-3495(03)74553-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Accepted: 04/10/2003] [Indexed: 11/16/2022] Open
Abstract
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).
Collapse
Affiliation(s)
- Masakazu Sekijima
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | | | | | | | | |
Collapse
|
41
|
Gu W, Wang T, Zhu J, Shi Y, Liu H. Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions. Biophys Chem 2003; 104:79-94. [PMID: 12834829 DOI: 10.1016/s0301-4622(02)00340-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Four 10-ns molecular dynamics (MD) simulations of the human prion protein domain (HuPrP 125-228) in explicit water solution have been performed. Each of the simulations mimicked a different environment of the protein: the neutral pH environment was simulated with all histidine residues neutral and bearing a ND proton and with other titratable side chains charged, the weakly acidic environment was simulated with all titratable side chains charged, the strongly acidic environment was simulated with all titratable side chains protonated. The protein in neutral pH environment was simulated at both ambient (298 K) and higher (350 K) temperatures. The native fold is stable in the neutral pH/ambient temperature simulation. Through out all other simulations, a quite stable core consisted of 10-20 residues around the disulfide bond retain their initial conformations. However, the secondary structures of the protein show changes of various degrees compared to the native fold, parts of the helices unfolded and the beta-sheets extended. Our simulations indicated that the heat-induced unfolding and acid-induced unfolding of HuPrP might follow different pathways: the initial stage of the acid-induced unfolding may include not only changes in secondary structures, but also changes in the tertiary structures. Under the strongly acidic condition, obvious tertiary structure changes take place after 10-ns simulation, the secondary structure elements and the loops becoming more parallel to each other, resulting in a compact state, which was stabilized by a large number of new, non-native side chain-side chain contacts. Such tertiary structure changes were not observed in the higher temperature simulation, and intuitively, they may favor the further extension of the beta-sheets and eventually the agglomeration of multiple protein molecules. The driving forces for this tertiary structure changes are discussed. Two additional 10-ns MD simulations, one with Asp202 protonated and the other with Glu196 protonated compared to the neutral pH simulation, were carried out. The results showed that the stability of the native fold is very subtle and can be strongly disturbed by eliminating a single negative charge at one of such key sites. Correlations of our results with previous experimental and theoretical studies are discussed.
Collapse
Affiliation(s)
- Wei Gu
- Key Laboratory of Structural Biology, University of Science and Technology of China, Chinese Academy of Sciences, School of Life Sciences, Hefei, Anhui 230026, PR China
| | | | | | | | | |
Collapse
|
42
|
Santini S, Claude JB, Audic S, Derreumaux P. Impact of the tail and mutations G131V and M129V on prion protein flexibility. Proteins 2003; 51:258-65. [PMID: 12660994 DOI: 10.1002/prot.10348] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within the "protein-only" hypothesis, a detailed mechanism for the conversion of a alpha-helix to beta-sheet structure is unclear. We have investigated the effects of the tail 90-123 and the point mutations G131V and M129V on prion protein conformational plasticity at neutral pH. Molecular dynamics simulations show that the dynamics of the core 124-226 is essentially independent of the tail and that the point mutation G131V does not affect PrP thermodynamic stability. Both mutations, however, enhance the flexibility of residues that participate in the two-step process for prion propagation. They also extend the short beta-sheet in the normal protein into a larger sheet at neutral pH. This finding suggests a critical role of the tail for triggering the topological change.
Collapse
Affiliation(s)
- Sébastien Santini
- Information Génétique et Structurale, CNRS-UMR 1889, Marseille, France
| | | | | | | |
Collapse
|
43
|
Abstract
The Monte Carlo technique is used to simulate the energy landscape and the folding kinetics of a minimal prion-like protein model. We show that the competition between hydrogen-bonding and hydrophobic interactions yields two energetically favored secondary structures, an alpha-helix and a beta-hairpin. Folding simulations indicate that the probability of reaching the alpha-helix form from a denatured random conformation is much higher than the probability of reaching the beta-sheet form, even though the beta-sheet has a lower energy. The existence of a lower energy beta-sheet state gives the possibility for the normal alpha-helix structure to take a structural transformation into the beta-sheet structure under external influences.
Collapse
Affiliation(s)
- Jeff Z Y Chen
- Department of Physics, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
44
|
Levy Y, Becker OM. Conformational polymorphism of wild-type and mutant prion proteins: Energy landscape analysis. Proteins 2002; 47:458-68. [PMID: 12001224 DOI: 10.1002/prot.10095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational transitions are thought to be the prime mechanism of prion diseases. In this study, the energy landscapes of a wild-type prion protein (PrP) and the D178N and E200K mutant proteins were mapped, enabling the characterization of the normal isoforms (PrP(C)) and partially unfolded isoforms (PrP(PU)) of the three prion protein analogs. It was found that the three energy landscapes differ in three respects: (i) the relative stability of the PrP(C) and the PrP(PU) states, (ii) the transition pathways from PrP(C) to PrP(PU), and (iii) the relative stability of the three helices in the PrP(C) state. In particular, it was found that although helix 1 (residues 144-156) is the most stable helix in wild-type PrP, its stability is dramatically reduced by both mutations. This destabilization is due to changes in the charge distribution that affects the internal salt bridges responsible for the greater stability of this helix in wild-type PrP. Although both mutations result in similar destabilization of helix 1, they a have different effect on the overall stability of PrP(C) and of PrP(PU) isoforms and on structural properties. The destabilization of helix 1 by mutations provides additional evidences to the role of this helix in the pathogenic transition from the PrP(C) to the pathogenic isoform PrP(SC).
Collapse
Affiliation(s)
- Yaakov Levy
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|