1
|
Rivlin M, Navon G. Effect of reducing isoflurane level on glucosamine uptake in the mouse brain during magnetic resonance imaging studies. Neuroimage 2024; 297:120691. [PMID: 38901773 DOI: 10.1016/j.neuroimage.2024.120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Anesthesia is often required during magnetic resonance imaging (MRI) examinations in animal studies. Anesthetic drugs differ in their capacity to interfere with homeostatic mechanisms responsible for glucose metabolism in the brain, which may create a constraint in the study design. Recent studies suggest that the chemical exchange saturation transfer (CEST) MRI scanning technique can detect localized metabolic changes in rodent brains induced by the uptake of glucose or its analogs; however, most of these studies do not account for the impact of anesthesia type on the brain metabolism. Herein, we aimed to evaluate the effect of reduced isoflurane levels on the preclinical imaging of glucosamine (GlcN) uptake in healthy mouse brains to establish optimal conditions for future brain imaging studies using the CEST MRI technique. The commonly used anesthesia protocol for longitudinal MRI examinations using 1.5% isoflurane level was compared to that using a mixture of low isoflurane (0.8%) level combined with midazolam (2 mg/kg, SC). Magnetization transfer ratio asymmetry (MTRasym) and area under the curve (AUC) analyses were used to characterize GlcN signals in the brain. The results indicated that mice injected with GlcN and anesthetized with 1.5% isoflurane exhibited low and insignificant changes in the MTRasym and AUC signals in the frontal cortex, whereas mice administered with 0.8% isoflurane combined with midazolam demonstrated a significant increase in these signals in the frontal cortex. This study highlights the diverse GlcN metabolic changes observed in mouse brains under variable levels of isoflurane anesthesia using the CEST MRI method. The results suggest that it is feasible to maintain anesthesia with low-dose isoflurane by integrating midazolam, which may enable the investigation of GlcN uptake in the brain. Thus, reducing isoflurane levels may support studies into mouse brain metabolism using the CEST MRI method and should be considered in future studies.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Rivlin M, Perlman O, Navon G. Metabolic brain imaging with glucosamine CEST MRI: in vivo characterization and first insights. Sci Rep 2023; 13:22030. [PMID: 38086821 PMCID: PMC10716494 DOI: 10.1038/s41598-023-48515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The utility of chemical exchange saturation transfer (CEST) MRI for monitoring the uptake of glucosamine (GlcN), a safe dietary supplement, has been previously demonstrated in detecting breast cancer in both murine and human subjects. Here, we studied and characterized the detectability of GlcN uptake and metabolism in the brain. Following intravenous GlcN administration in mice, CEST brain signals calculated by magnetization transfer ratio asymmetry (MTRasym) analysis, were significantly elevated, mainly in the cortex, hippocampus, and thalamus. The in vivo contrast remained stable during 40 min of examination, which can be attributed to GlcN uptake and its metabolic products accumulation as confirmed using 13C NMR spectroscopic studies of brain extracts. A Lorentzian multi-pool fitting analysis revealed an increase in the hydroxyl, amide, and relayed nuclear Overhauser effect (rNOE) signal components after GlcN treatment. With its ability to cross the blood-brain barrier (BBB), the GlcN CEST technique has the potential to serve as a metabolic biomarker for the diagnosis and monitoring various brain disorders.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
3
|
Schulze-Krebs A, Canneva F, Stemick J, Plank AC, Harrer J, Bates GP, Aeschlimann D, Steffan JS, von Hörsten S. Transglutaminase 6 Is Colocalized and Interacts with Mutant Huntingtin in Huntington Disease Rodent Animal Models. Int J Mol Sci 2021; 22:8914. [PMID: 34445621 PMCID: PMC8396294 DOI: 10.3390/ijms22168914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Mammalian transglutaminases (TGs) catalyze calcium-dependent irreversible posttranslational modifications of proteins and their enzymatic activities contribute to the pathogenesis of several human neurodegenerative diseases. Although different transglutaminases are found in many different tissues, the TG6 isoform is mostly expressed in the CNS. The present study was embarked on/undertaken to investigate expression, distribution and activity of transglutaminases in Huntington disease transgenic rodent models, with a focus on analyzing the involvement of TG6 in the age- and genotype-specific pathological features relating to disease progression in HD transgenic mice and a tgHD transgenic rat model using biochemical, histological and functional assays. Our results demonstrate the physical interaction between TG6 and (mutant) huntingtin by co-immunoprecipitation analysis and the contribution of its enzymatic activity for the total aggregate load in SH-SY5Y cells. In addition, we identify that TG6 expression and activity are especially abundant in the olfactory tubercle and piriform cortex, the regions displaying the highest amount of mHTT aggregates in transgenic rodent models of HD. Furthermore, mHTT aggregates were colocalized within TG6-positive cells. These findings point towards a role of TG6 in disease pathogenesis via mHTT aggregate formation.
Collapse
Affiliation(s)
- Anja Schulze-Krebs
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Judith Stemick
- Department of Molecular Neurology, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Anne-Christine Plank
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Julia Harrer
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| | - Gillian P. Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair Research Unit, College of Biomedical and Life Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Joan S. Steffan
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, University Hospital Erlangen (UKEr), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.C.); (A.-C.P.); (J.H.); (S.v.H.)
| |
Collapse
|
4
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Schmid NS, Clauss M, Hetzel U, Riond B, Bochmann M, Hatt JM. Development, diagnosis and therapy of ketosis in non-gravid and non-lactating Guinea pigs. BMC Vet Res 2020; 16:41. [PMID: 32013972 PMCID: PMC6998326 DOI: 10.1186/s12917-020-2257-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 11/30/2022] Open
Abstract
Background Ketosis is a metabolic disorder often triggered by anorexia in animals fed on high energy diets. Although mostly described in pregnant female guinea pigs, under the name of pregnancy toxicosis; there is limited information on ketosis in males and non-pregnant females, often presented to clinics with anorexia or inappetence. The objective of this study was to observe progression of ketosis in guinea pigs, document the changes and evaluate diagnostic methods and a therapeutic approach. Results Twenty eight adult guinea pigs (Cavia porcellus), castrated males and intact females of obese and slim body condition were fasted for 3 days and refed afterwards. The slim animals served as control group for body condition. Either slim and fat animals were divided into two treatment groups: half of them received fluid replacements with glucose subcutaneously, the other half did not receive any injection and served as treatment control. Serum beta-hydroxybutyrate, and urine acetoacetate and acetone were measured during and after fasting. Serum ALT, bile acids and liver histology were also analyzed after 7 days of refeeding (and therapy). Females and obese guinea pigs showed a significantly higher increase in ketone bodies in serum and urine. Obese, female, or animals not receiving therapy needed more time to regulate ketone bodies to normal levels than slim animals, males or animals receiving therapy. Liver histology revealed increased hepatocyte degeneration and higher glycogen content in obese animals and animals receiving therapy, and additionally more glycogen content in males. Only minor hepatic fat accumulation was documented. Bile acids showed good correlation to histological liver changes whereas ALT did not. Conclusions Female and obese animals react more intensively to fasting. As preventive management, animals should be kept in adequate body condition, fasting should be avoided, and anorexia should be treated immediately. In such a case, urinary dip sticks to detect ketone bodies are a useful diagnostic tool. Glucose therapy leads to faster cessation of ketogenesis and should be recommended in cases of ketosis. However, it needs to be adjusted to avoid hepatocyte glycogen overload and degeneration. Measuring bile acids presents a valuable indicator of liver damage.
Collapse
Affiliation(s)
- Nicole S Schmid
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Udo Hetzel
- Institute of Veterinary Pathology, Winterthurerstrasse 268, CH-8057, Zurich, Switzerland
| | - Barbara Riond
- Veterinary Clinical Laboratory, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Monika Bochmann
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.,Walter Zoo, CH-9200, Gossau, SG, Switzerland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| |
Collapse
|
6
|
Golub Y, Schildbach EM, Touma C, Kratz O, Moll GH, von Hörsten S, Canneva F. Role of hypothalamus-pituitary-adrenal axis modulation in the stress-resilient phenotype of DPP4-deficient rats. Behav Brain Res 2019; 356:243-249. [DOI: 10.1016/j.bbr.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/30/2023]
|
7
|
Fitzgerald BC, Dias S, Martorell J. Cardiovascular Drugs in Avian, Small Mammal, and Reptile Medicine. Vet Clin North Am Exot Anim Pract 2018; 21:399-442. [PMID: 29655477 DOI: 10.1016/j.cvex.2018.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease, including congestive heart failure, pericardial disease, and atherosclerosis, is becoming increasingly better recognized in companion birds, small mammals, and reptiles. A wide range of medications is available to treat these conditions, including diuretics, vasodilators, positive and negative inotropes, antiarrhythmic agents, and pentoxifylline. This review systematically discusses each of these drug classes and their potential applications in exotic species. Although treatment approaches remain largely empirical and extrapolated from small animal and human medicine, the management strategies presented here have the potential to both maintain quality of life and extend survival time for the exotic cardiac patient.
Collapse
Affiliation(s)
| | - Sara Dias
- Exotic Animals Department, Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Carrer de l'Hospital, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona 08193, Spain
| | - Jaume Martorell
- Facultat de Veterinaria, Universitat Autònoma de Barcelona, Hospital Clinic Veterinari, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
8
|
Kondert L, Mayer J. Reproductive Medicine in Guinea Pigs, Chinchillas and Degus. Vet Clin North Am Exot Anim Pract 2017; 20:609-628. [PMID: 28340891 DOI: 10.1016/j.cvex.2016.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Guinea pigs, chinchillas, and degus are hystricomorph rodents originating from South America. They are commonly presented as exotic pets in veterinary practice. Reviewing the anatomy and physiology of their reproductive tract helps to offer better client education about preventive medicine and helps to act faster in emergency situations. Choosing the right anesthetic protocol helps to prevent complications. This article should aid as a guideline on the most common reproductive problems of these 3 species and help in making decisions regarding the best treatment options.
Collapse
Affiliation(s)
- Leonie Kondert
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30602, USA
| | - Jörg Mayer
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Schulze-Krebs A, Canneva F, Schnepf R, Dobner J, Dieterich W, von Hörsten S. In situ enzymatic activity of transglutaminase isoforms on brain tissue sections of rodents: A new approach to monitor differences in post-translational protein modifications during neurodegeneration. Brain Res 2015; 1631:22-33. [PMID: 26616340 DOI: 10.1016/j.brainres.2015.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 11/04/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Mammalian transglutaminases (TGs) catalyze the irreversible post-translational modifications of proteins, the most prominent of which is the calcium-dependent formation of covalent acyl transfers between the γ-carboxamide group of glutamine and the ε-amino-group of lysine (GGEL-linkage). In the central nervous system, at least four TG isoforms are present and some of them are differentially expressed under pathological conditions in human patients. However, the precise TG-isoform-dependent enzymatic activities in the brain as well as their anatomical distribution are unknown. Specificity of the used biotinylated peptides was analyzed using an in vitro assay. Isoform-specific TG activity was evaluated in in vitro and in situ studies, using brain extracts and native brain tissue obtained from rodents. Our method allowed us to reveal in vitro and in situ TG-isoform-dependent enzymatic activity in brain extracts and tissue of rats and mice, with a specific focus on TG6. In situ activity of this isoform varied between BACHD mice in comparison to their wt controls. TG isozyme-specific activity can be detected by isoform-specific biotinylated peptides in brain tissue sections of rodents to reveal differences in the anatomical and/or subcellular distribution of TG activity. Our findings yield the basis for a broader application of this method for the screening of pathological expression and activity of TGs in a variety of animal models of human diseases, as in the case of neurodegenerative conditions such as Huntington׳s, Parkinson׳s and Alzheimer׳s, where protein modification is involved as a key mechanism of disease progression.
Collapse
Affiliation(s)
- Anja Schulze-Krebs
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Fabio Canneva
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Rebecca Schnepf
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Julia Dobner
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Walburga Dieterich
- Department of Medicine 1, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Canneva F, Golub Y, Distler J, Dobner J, Meyer S, von Hörsten S. DPP4-deficient congenic rats display blunted stress, improved fear extinction and increased central NPY. Psychoneuroendocrinology 2015; 53:195-206. [PMID: 25635612 DOI: 10.1016/j.psyneuen.2015.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Inhibitors of dipeptidyl peptidase 4 (DPP4, CD26) are used for the treatment of type 2 diabetic patients and better glucose tolerance has been confirmed in functionally DPP4-deficient congenic rats (DPP4mut), along with immunological alterations and, interestingly, a stress-resilient phenotype. All these findings are in agreement with the "moonlighting" properties of DPP4, whose proteolytic action is responsible for the inactivation of a number of regulatory peptides including, but not limited to, neuropeptide Y (NPY). Among all candidate substrates, DPP4 displays highest affinity for NPY, an endogenous anxiolytic neurotransmitter that is suggested as a candidate biomarker in post-traumatic stress disorder (PTSD) and depression. METHODS AND RESULTS Central and peripheral NPY levels were measured by ELISA in DPP4mut and DAwt rats revealing a significantly higher concentration of the peptide in the CSF of DPP4mut animals. This finding positively correlated with the blunted stress phenotype measured on an analgesia-meter. Additionally, when a classical fear-conditioning paradigm was investigated, short-term fear extinction was significantly potentiated in DPP4mut rats as compared to wt controls. CONCLUSIONS Our findings indicate a positive correlation between reduced stress-responsiveness and increased central NPY, in DPP4mut rats. Most interestingly, the behavioral phenotype extends to facilitation of fear extinction. These observations raise further interest in DPP4-modulating drugs for the potential effect on NPY metabolism, as a therapeutic tool for psychiatric conditions such as anxiety disorders and PTSD.
Collapse
Affiliation(s)
- Fabio Canneva
- Department of Experimental Therapy, Präklinisches Experimentelles Tierzentrum, Univerisitätsklinikum Erlangen, 91054 Erlangen, Germany.
| | - Yulia Golub
- Department of Child and Adolescent Mental Health, University Clinic of Erlangen, 91054 Erlangen, Germany
| | - Joerg Distler
- Department of Experimental Therapy, Präklinisches Experimentelles Tierzentrum, Univerisitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Julia Dobner
- Department of Experimental Therapy, Präklinisches Experimentelles Tierzentrum, Univerisitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Sandra Meyer
- Department of Experimental Therapy, Präklinisches Experimentelles Tierzentrum, Univerisitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Präklinisches Experimentelles Tierzentrum, Univerisitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
11
|
|
12
|
Rungsung S, Rampal S. Ameliorative Effect of Selenium on Enrofloxacin-Induced Lipid Peroxidation and Antioxidant Imbalance. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40011-014-0304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Khan AM, Rampal S. Effect of meloxicam and its combination with levofloxacin, pazufloxacin, and enrofloxacin on the plasma antioxidative activity and the body weight of rabbits. Vet World 2013. [DOI: 10.14202/vetworld.2013.950-954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Buccal absorption of propofol when dosed in 1-perfluorobutylpentane to anaesthetised and conscious Wistar rats and Göttingen mini-pigs. Eur J Pharm Biopharm 2013; 85:1310-6. [DOI: 10.1016/j.ejpb.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 03/14/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
|
15
|
Petritz OA, Guzman DSM, Wiebe VJ, Papich MG. Stability of three commonly compounded extemporaneous enrofloxacin suspensions for oral administration to exotic animals. J Am Vet Med Assoc 2013; 243:85-90. [PMID: 23786194 DOI: 10.2460/javma.243.1.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the stability of 3 extemporaneous oral suspensions of enrofloxacin mixed with readily available flavoring vehicles when stored at room temperature (approx 22°C). DESIGN Evaluation study. SAMPLES 3 commonly compounded oral suspensions of enrofloxacin. PROCEDURES On day 0, commercially available enrofloxacin tablets were compounded with a mixture of distilled water and corn syrup (formulation A) or cherry syrup (formulation B) flavoring vehicles to create suspensions with a nominal enrofloxacin concentration of 22.95 mg/mL, and 2.27% enrofloxacin injectable solution was compounded with a liquid sweetener (formulation C) to create a suspension with a nominal enrofloxacin concentration of 11.35 mg/mL. Preparations were stored in amber-colored vials at room temperature for 56 days. For each preparation, the enrofloxacin concentration was evaluated with high-performance liquid chromatography at prespecified intervals during the study. The pH, odor, and consistency for all suspensions were recorded at the start and completion of the study. RESULTS Relative to the nominal enrofloxacin concentration, the enrofloxacin concentration strength ranged from 95.80% to 100.69% for formulation A, 108.44% to 111.06% for formulation B, and 100.99% to 103.28% for formulation C. A mild pH increase was detected in all 3 suspensions during the study. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that, when stored in amber-colored vials at room temperature for 56 days, the enrofloxacin concentration strength in all 3 formulations was retained within acceptance criteria of 90% to 110%. Subjectively, cherry syrup flavoring was better at masking the smell and taste of enrofloxacin than were the other mixing vehicles.
Collapse
Affiliation(s)
- Olivia A Petritz
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
16
|
Rainwater KA, Hawkins MG, Crabbs T, Malka S. An Anaplastic Sarcoma of Probable Salivary Origin in a Teddy-bear Hamster (Mesocricetus auratus). J Exot Pet Med 2011. [DOI: 10.1053/j.jepm.2011.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Abstract
Rodent species are routinely presented to veterinary hospitals for wellness checks and different illnesses. When rodents are presented to the veterinarian for diagnosis and treatment, they deserve the same thorough approach that any other domestic species receives. The purpose of this article is to provide readers a review of the current information regarding examination, diagnosis, and treatment of some of the most common conditions for which rodent patients are presented. This article will cover 5 of the most common rodent species presented to veterinarians: guinea pigs, chinchillas, rats, mice, and hamsters.
Collapse
|
18
|
Abstract
The past decade has seen an increase in the number of rodents being kept as pets and subsequently in the number of rodent owners seeking veterinary services. The common rat, (Rattus norvegicus) has become increasingly popular, particularly as novel varieties have been introduced to the pet market. The average laboratory or domestic pet rat has a life expectancy of approximately 2.5 to 3 years although 4 years and longer have been reported. As an increasing pet rat population ages, more owners are seeking veterinary consultation on various geriatric rat diseases. This article is an introduction to common rat geriatric diseases.
Collapse
Affiliation(s)
- Vicky L Haines
- Texas A&M Institute for Preclinical Studies, Texas A&M University, Mail Stop 44748, College Station, TX 77843-44748, USA.
| |
Collapse
|
19
|
|
20
|
Kessler DS, Hope K, Maslanka M. Behavior, nutrition, and veterinary care of patagonian cavies (Dolichotis patagonum). Vet Clin North Am Exot Anim Pract 2009; 12:267-78, ix. [PMID: 19341953 DOI: 10.1016/j.cvex.2009.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patagonian cavies (Dolichotis patagonum) are large South American rodents well adapted for cursorial life (well adapted for running). They are monogamous but can live in groups of up to 70 individuals who maintain communal burrows. They are primarily herbivorous and may be maintained on commercially produced rodent or primate diets. Their long, thin legs and skittish nature make them difficult to restrain. Common medical problems include malocclusion of cheek teeth, gastrointestinal parasites, hypertrophic cardiomyopathy, and traumatic leg fractures.
Collapse
Affiliation(s)
- David S Kessler
- Small Mammal Unit, Smithsonian's National Zoological Park, PO Box 37012 MRC 5507, Washington, DC 20013-7012, USA.
| | | | | |
Collapse
|