1
|
Wu X, Senanayake R, Goodchild E, Bashari WA, Salsbury J, Cabrera CP, Argentesi G, O’Toole SM, Matson M, Koo B, Parvanta L, Hilliard N, Kosmoliaptsis V, Marker A, Berney DM, Tan W, Foo R, Mein CA, Wozniak E, Savage E, Sahdev A, Bird N, Laycock K, Boros I, Hader S, Warnes V, Gillett D, Dawnay A, Adeyeye E, Prete A, Taylor AE, Arlt W, Bhuva AN, Aigbirhio F, Manisty C, McIntosh A, McConnachie A, Cruickshank JK, Cheow H, Gurnell M, Drake WM, Brown MJ. [ 11C]metomidate PET-CT versus adrenal vein sampling for diagnosing surgically curable primary aldosteronism: a prospective, within-patient trial. Nat Med 2023; 29:190-202. [PMID: 36646800 PMCID: PMC9873572 DOI: 10.1038/s41591-022-02114-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/31/2022] [Indexed: 01/18/2023]
Abstract
Primary aldosteronism (PA) due to a unilateral aldosterone-producing adenoma is a common cause of hypertension. This can be cured, or greatly improved, by adrenal surgery. However, the invasive nature of the standard pre-surgical investigation contributes to fewer than 1% of patients with PA being offered the chance of a cure. The primary objective of our prospective study of 143 patients with PA ( NCT02945904 ) was to compare the accuracy of a non-invasive test, [11C]metomidate positron emission tomography computed tomography (MTO) scanning, with adrenal vein sampling (AVS) in predicting the biochemical remission of PA and the resolution of hypertension after surgery. A total of 128 patients reached 6- to 9-month follow-up, with 78 (61%) treated surgically and 50 (39%) managed medically. Of the 78 patients receiving surgery, 77 achieved one or more PA surgical outcome criterion for success. The accuracies of MTO at predicting biochemical and clinical success following adrenalectomy were, respectively, 72.7 and 65.4%. For AVS, the accuracies were 63.6 and 61.5%. MTO was not significantly superior, but the differences of 9.1% (95% confidence interval = -6.5 to 24.1%) and 3.8% (95% confidence interval = -11.9 to 9.4) lay within the pre-specified -17% margin for non-inferiority (P = 0.00055 and P = 0.0077, respectively). Of 24 serious adverse events, none was considered related to either investigation and 22 were fully resolved. MTO enables non-invasive diagnosis of unilateral PA.
Collapse
Affiliation(s)
- Xilin Wu
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Russell Senanayake
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386Department of Diabetes and Endocrinology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Emily Goodchild
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Waiel A. Bashari
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386Department of Diabetes and Endocrinology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jackie Salsbury
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claudia P. Cabrera
- grid.4868.20000 0001 2171 1133Centre for Translational Bioinformatics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giulia Argentesi
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Samuel M. O’Toole
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom ,grid.416126.60000 0004 0641 6031Department of Endocrinology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Matthew Matson
- grid.139534.90000 0001 0372 5777Department of Radiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Brendan Koo
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Laila Parvanta
- grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Nick Hilliard
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Vasilis Kosmoliaptsis
- grid.24029.3d0000 0004 0383 8386Department of Surgery, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Alison Marker
- grid.24029.3d0000 0004 0383 8386Department of Histopathology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel M. Berney
- grid.139534.90000 0001 0372 5777Department of Histopathology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Wilson Tan
- grid.4280.e0000 0001 2180 6431Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- grid.4280.e0000 0001 2180 6431Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Charles A. Mein
- grid.4868.20000 0001 2171 1133Barts and the London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Eva Wozniak
- grid.4868.20000 0001 2171 1133Barts and the London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Emmanuel Savage
- grid.4868.20000 0001 2171 1133Barts and the London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Anju Sahdev
- grid.139534.90000 0001 0372 5777Department of Radiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Nicholas Bird
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Kate Laycock
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Istvan Boros
- grid.5335.00000000121885934Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Hader
- grid.5335.00000000121885934Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Warnes
- grid.24029.3d0000 0004 0383 8386Department of Nuclear Medicine, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel Gillett
- grid.24029.3d0000 0004 0383 8386Department of Nuclear Medicine, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Anne Dawnay
- grid.139534.90000 0001 0372 5777Department of Clinical Biochemistry, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Elizabeth Adeyeye
- grid.420545.20000 0004 0489 3985Department of Cardiovascular Medicine/Diabetes, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Alessandro Prete
- grid.6572.60000 0004 1936 7486Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Angela E. Taylor
- grid.6572.60000 0004 1936 7486Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wiebke Arlt
- grid.6572.60000 0004 1936 7486Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom ,grid.412563.70000 0004 0376 6589NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Anish N. Bhuva
- grid.139534.90000 0001 0372 5777Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Franklin Aigbirhio
- grid.5335.00000000121885934Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Manisty
- grid.139534.90000 0001 0372 5777Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Alasdair McIntosh
- grid.8756.c0000 0001 2193 314XRobertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Alexander McConnachie
- grid.8756.c0000 0001 2193 314XRobertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - J. Kennedy Cruickshank
- grid.420545.20000 0004 0489 3985Department of Cardiovascular Medicine/Diabetes, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom ,grid.13097.3c0000 0001 2322 6764School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - Heok Cheow
- grid.24029.3d0000 0004 0383 8386Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Mark Gurnell
- grid.5335.00000000121885934Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom ,grid.24029.3d0000 0004 0383 8386Department of Diabetes and Endocrinology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - William M. Drake
- grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Morris J. Brown
- grid.4868.20000 0001 2171 1133Endocrine Hypertension, Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom ,grid.4868.20000 0001 2171 1133NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom ,grid.139534.90000 0001 0372 5777Department of Endocrinology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Bongarzone S, Basagni F, Sementa T, Singh N, Gakpetor C, Faugeras V, Bordoloi J, Gee AD. Development of [ 18F]FAMTO: A novel fluorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands. Nucl Med Biol 2019; 68-69:14-21. [PMID: 30578137 PMCID: PMC6859501 DOI: 10.1016/j.nucmedbio.2018.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Primary aldosteronism accounts for 6-15% of hypertension cases, the single biggest contributor to global morbidity and mortality. Whilst ~50% of these patients have unilateral aldosterone-producing adenomas, only a minority of these have curative surgery as the current diagnosis of unilateral disease is poor. Carbon-11 radiolabelled metomidate ([11C]MTO) is a positron emission tomography (PET) radiotracer able to selectively identify CYP11B1/2 expressing adrenocortical lesions of the adrenal gland. However, the use of [11C]MTO is limited to PET centres equipped with on-site cyclotrons due to its short half-life of 20.4 min. Radiolabelling a fluorometomidate derivative with fluorine-18 (radioactive half life 109.8 min) in the para-aromatic position ([18F]FAMTO) has the potential to overcome this disadvantage and allow it to be transported to non-cyclotron-based imaging centres. METHODS Two strategies for the one-step radio-synthesis of [18F]FAMTO were developed. [18F]FAMTO was obtained via radiofluorination via use of sulfonium salt (1) and boronic ester (2) precursors. [18F]FAMTO was evaluated in vitro by autoradiography of pig adrenal tissues and in vivo by determining its biodistribution in rodents. Rat plasma and urine were analysed to determine [18F]FAMTO metabolites. RESULTS [18F]FAMTO is obtained from sulfonium salt (1) and boronic ester (2) precursors in 7% and 32% non-isolated radiochemical yield (RCY), respectively. Formulated [18F]FAMTO was obtained with >99% radiochemical and enantiomeric purity with a synthesis time of 140 min from the trapping of [18F]fluoride ion on an anion-exchange resin (QMA cartridge). In vitro autoradiography of [18F]FAMTO demonstrated exquisite specific binding in CYP11B-rich pig adrenal glands. In vivo [18F]FAMTO rapidly accumulates in adrenal glands. Liver uptake was about 34% of that in the adrenals and all other organs were <12% of the adrenal uptake at 60 min post-injection. Metabolite analysis showed 13% unchanged [18F]FAMTO in blood at 10 min post-administration and rapid urinary excretion. In vitro assays in human blood showed a free fraction of 37.5%. CONCLUSIONS [18F]FAMTO, a new 18F-labelled analogue of metomidate, was successfully synthesised. In vitro and in vivo characterization demonstrated high selectivity towards aldosterone-producing enzymes (CYP11B1 and CYP11B2), supporting the potential of this radiotracer for human investigation.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Filippo Basagni
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Teresa Sementa
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Nisha Singh
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | - Caleb Gakpetor
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Vincent Faugeras
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Jayanta Bordoloi
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Antony D Gee
- School of Imaging Sciences & Biomedical Engineering, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|