1
|
Artabe AE, Cunha-Silva H, Barranco A. Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review. Food Chem Toxicol 2020; 145:111677. [PMID: 32810589 DOI: 10.1016/j.fct.2020.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/05/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
Collapse
Affiliation(s)
- Amaia Ereño Artabe
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Hugo Cunha-Silva
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Alejandro Barranco
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
2
|
Castaño A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomaa B, Kawahara K, Lee LEJ, Mothersill C, Pärt P, Repetto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H. The use of Fish Cells in Ecotoxicology: The Report and Recommendations of ECVAM Workshop 47,. Altern Lab Anim 2019; 31:317-51. [PMID: 15612875 DOI: 10.1177/026119290303100314] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Argelia Castaño
- Animal Health Research Centre, Spanish National Institute for Food and Agrarian Research and Technology (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bols NC, Pham PH, Dayeh VR, Lee LEJ. Invitromatics, invitrome, and invitroomics: introduction of three new terms for in vitro biology and illustration of their use with the cell lines from rainbow trout. In Vitro Cell Dev Biol Anim 2017; 53:383-405. [DOI: 10.1007/s11626-017-0142-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
4
|
Zeng F, Sherry JP, Bols NC. Use of the rainbow trout cell lines, RTgill-W1 and RTL-W1 to evaluate the toxic potential of benzotriazoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:315-323. [PMID: 26584462 DOI: 10.1016/j.ecoenv.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Epithelial cell lines, RTgill-W1 and RTL-W1 from respectively gill and liver of rainbow trout, Onchorhynchus mykiss (Walbaum), were used to evaluate the toxic potential of six benzotriazoles (BTRs) and tolytriazole (TT), which is a commercial mixture of 4-methyl-1H-benzotriazole (4MBTR) and 5-methyl-1H-benzotriazole (5MBTR). The other BTRs were 1H-benzotriazole (1H-BTR), 5-chlorobenzotriazole (5CBTR), 1-hydroxybenzotriazole (1OHBTR) and 5,6-dimethyl-1H-benzotriazole monohydrate (DM). Except for DM, all BTRs were cytotoxic at concentrations above 15mg/L and transitorily elevated reactive oxygen species (ROS) levels. Neither N-acetyl cysteine (NAC) nor IM-54 inhibited cytotoxicity, suggesting that ROS were not the major cause of the cell death. Cell death was not blocked by Necrostatin nor accompanied by DNA laddering, suggesting that the cell death mechanism was neither necroptosis nor apoptosis. As judged by the comet assay, DNA strand breaks were detected with three BTRs: 4MBTR, 5MBTR and 5CBTR. In RTL-W1, the BTRs weakly induced cytochrome P4501A, suggesting that they have the potential to alter xenobiotic metabolism and activate the aryl hydrocarbon receptor. In summary, the toxic potential of BTRs appears to be limited to only high concentrations, which are higher than have been measured in the environment to date.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, Canada L7R 4A6
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
5
|
Development and characterization of an endothelial cell line from the bulbus arteriosus of walleye, Sander vitreus. Comp Biochem Physiol A Mol Integr Physiol 2015; 180:57-67. [DOI: 10.1016/j.cbpa.2014.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 11/15/2022]
|
6
|
Rigaud C, Couillard CM, Pellerin J, Légaré B, Gonzalez P, Hodson PV. Relative potency of PCB126 to TCDD for sublethal embryotoxicity in the mummichog (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:203-214. [PMID: 23314333 DOI: 10.1016/j.aquatox.2012.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 06/01/2023]
Abstract
The relative potency (ReP) of 3,3',4,4',5-pentachlorobiphenyl (PCB126) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for sublethal responses was assessed in Fundulus heteroclitus embryos. Eggs were treated with intravitelline injections of graded sublethal doses of PCB126 (312-5000 pg g(-1) wet weight, ww) or TCDD (5-1280 pg g(-1) ww). At 16 days post-fertilization (DPF), craniofacial deformities were observed in larvae hatched from eggs treated with the two highest doses of PCB126 (2500-5000 pg g(-1) ww). Both compounds caused a dose-responsive reduction of larval growth and prey capture ability (at ≥1250 pg g(-1) ww), and induction of ethoxyresorufin-O-deethylase (EROD) activity (at ≥80 pg g(-1) ww). The dose-response relationships for EROD activity for PCB126 and TCDD had similar slopes and the ReP of PCB126 to TCDD for EROD activity was estimated at 0.71. This is 140-fold higher than the World Health Organization (WHO) TCDD equivalency factor (TEF) of PCB126 for fish (0.005), which is based on rainbow trout (Oncorhynchus mykiss) embryolethality data. The slope of the dose-response relationship for prey capture ability for PCB126 was steeper than for TCDD, suggesting different mechanisms of action. Expression levels of several genes were also studied by quantitative real-time polymerase chain reaction (qPCR) following exposure to single doses of TCDD or PCB126 (1280 and 1250 pg g(-1) ww, respectively) causing similar EROD induction. A different pattern of responses was observed between PCB126 and TCDD: PCB126 appeared to induce antioxidant responses by inducing sod2 expression, while TCDD did not. These results suggest that relative potencies are species-specific and that the current ReP for PCB126 underestimates its toxicity for some fish species. It is recommended to develop species-specific RePs for a variety of sublethal endpoints and at environmentally relevant doses.
Collapse
Affiliation(s)
- Cyril Rigaud
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Barnes DW, Parton A, Tomana M, Hwang JH, Czechanski A, Fan L, Collodi P. Stem cells from cartilaginous and bony fish. Methods Cell Biol 2008; 86:343-67. [PMID: 18442656 DOI: 10.1016/s0091-679x(08)00016-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David W Barnes
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Schirmer K. Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 2006; 224:163-83. [PMID: 16765501 DOI: 10.1016/j.tox.2006.04.042] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/05/2006] [Accepted: 04/05/2006] [Indexed: 11/18/2022]
Abstract
Cultures of vertebrate cells are widely applied in mechanistic studies in human toxicology as well as in toxicity identification in ecotoxicology. As in vitro models, they display many advantages over whole animal experimentation, pertaining to such characteristics as availability, reproducibility and costs. As well, they satisfy the societal desire to reduce the number of animals in toxicology. For these reasons vertebrate cell models also appear to be a desirable replacement for animals in regulatory tests. Several vertebrate cell models are now accepted for regulatory purposes in human health sciences, with the test for photocytotoxicity using the 3T3 mouse cell line being one example. However, an in vitro alternative to whole animal tests has not yet been established for regulatory risk assessment in ecotoxicology. This review sets out to outline why such a replacement has not yet been possible and explores avenues to improve vertebrate cell cultures so that a replacement of whole animal tests could more likely be achieved. Inasmuch as fish is the most widely used non-mammalian vertebrate in risk assessment and regulation, focus will be on the replacement, by in vitro vertebrate models, of fish.
Collapse
Affiliation(s)
- Kristin Schirmer
- Department of Cell Toxicology (CellTox), UFZ-Centre for Environmental Research Leipzig-Halle in the Helmholtz Association, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
9
|
Garrick RA, Woodin BR, Wilson JY, Middlebrooks BL, Stegeman JJ. Cytochrome P4501A is induced in endothelial cell lines from the kidney and lung of the bottlenose dolphin, Tursiops truncatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 76:295-305. [PMID: 16290286 DOI: 10.1016/j.aquatox.2005.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/14/2005] [Accepted: 10/15/2005] [Indexed: 05/05/2023]
Abstract
Marine mammals respond to the presence of polycyclic and planar halogenated aromatic hydrocarbons (PAH or PHAH) with the induced expression in endothelium of cytochrome P4501A1, regulated through the aryl hydrocarbon receptor (AHR) transcription factor. Physiological responses in other animals, such as edema and inflammation indicate that the endothelium may be compromised by exposure to AHR agonists, which are ubiquitous in the marine environment. In other mammals and fish the cellular and molecular consequences of exposure to AHR agonists have been elucidated in cultured endothelial cells. We have cultured and characterized cetacean endothelial cells (EC) and used them in induction studies. Endothelial cells were cultured from the lung and kidney of the bottlenose dolphin, Tursiops truncates, and exposed to the AHR agonists beta-naphthoflavone (betaNF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). betaNF (1-3 microM) induced significant increases in CYP1A1 (O-deethylation of 7-ethoxyresorufin to resorufin; EROD) activity to 3.6 and 0.92 pmol/mg/min in lung and kidney EC, respectively. TCDD was more potent than betaNF, and more efficacious, with maximum induction of CYP1A1 activity of 10.1 and 15.2 pmol/mg/min in lung and kidney EC at 3-10 nM TCDD. The differential response indicates that the lung and kidney endothelial cells in culture retain the ability to respond in a selective manner to specific stimuli. Both the molecular mechanisms of induction and the physiological consequences, especially in the vasculature, of toxicant exposure can be studied in this system.
Collapse
Affiliation(s)
- Rita Anne Garrick
- Department of Natural Sciences, Fordham University, New York, NY 10023, USA.
| | | | | | | | | |
Collapse
|
10
|
Garrick RA, Woodin BR, Stegeman JJ. CYTOCHROME P4501A INDUCED DIFFERENTIALLY IN ENDOTHELIAL CELLS CULTURED FROM DIFFERENT ORGANS OF ANGUILLA ROSTRATA. ACTA ACUST UNITED AC 2005; 41:57-63. [PMID: 15926861 DOI: 10.1290/0409063.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells are a structural barrier and an active regulator of many bodily processes. Cytochrome P4501A (CYP1A) activity is induced in the endothelium of teleosts and mammals exposed to lipophilic xenobiotics, such as polycyclic aromatic hydrocarbons, and can have significant consequences for endothelial functions. We exposed cultures of characterized endothelial cells from the heart, kidney, and rete mirabile of the eel, Anguilla rostrata, to aryl hydrocarbon receptor (AhR) agonists. In heart endothelial cells, the maximum response (based on O-deethylation of 7-ethoxyresorufin to resorufin [EROD] activity) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 113 pmol/mg/min, was at 1 nM TCDD and the peak response to beta-napthoflavone (betaNF), 135 pmol/mg/min, was at 3 microM betaNF. The maximum response to TCDD in the kidney endothelial cells is 12 pmol/mg/min at 0.3 nM TCDD. The rete mirabile capillary endothelial cells responded minimally or not at all to exposure to TCDD and betaNF. Both the heart and kidney endothelial cells (but not the rete mirabile capillary cells) have a low level of EROD activity (12.7 and 5.2 pmol/mg/min, respectively) in untreated or dimethylsulfoxide-treated cells. The robust response of the heart endothelial cells to induction and the lack of response in the rete mirabile capillary endothelial cells indicate that these cells are a good resource to use to investigate the physiological consequences of AhR agonist exposure and CYP1A induction in different areas of the vasculature.
Collapse
Affiliation(s)
- Rita Anne Garrick
- Department of Natural Sciences, Fordham University, 113 W. 60th Street, New York, New York 10023, USA.
| | | | | |
Collapse
|
11
|
Billiard SM, Bols NC, Hodson PV. In vitro and in vivo comparisons of fish-specific CYP1A induction relative potency factors for selected polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2004; 59:292-299. [PMID: 15388268 DOI: 10.1016/j.ecoenv.2004.06.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 06/14/2004] [Accepted: 06/17/2004] [Indexed: 05/24/2023]
Abstract
Induction of cytochrome P450 (CYP1A), as measured by liver ethoxyresorufin-O-deethylase (EROD) activity in juvenile rainbow trout (Oncorhynchus mykiss), was used to derive relative potency factors (RPFs) for several polycyclic aromatic hydrocarbons (PAHs), chosen for their induction potency in a rainbow trout liver cell line (RTL-W1). Potency for causing induction was estimated as the median effective concentration (EC50) from exposure-response curves. With the exception of phenanthrene, all PAHs tested induced EROD activity in juvenile trout, ranked as: benzo[k]fluoranthene>benzo[b]fluoranthene>benzo[b]fluorene>beta-napthoflavone>retene (7-isopropyl-1-methylphenanthrene). When induction potency was expressed relative to benzo[k]fluoranthene, RPFs ranged from 0.02 to 1, and the rank order in vivo was identical to the rank order with RTL-W1-derived values. The additivity of PAHs in mixtures in RTL-W1 cells was compared to whole-fish results from a previous study. EROD induction showed additive interactions for PAHs with exposure-response curves of similar slopes. This study demonstrates that assays of CYP1A induction using rainbow trout liver cells in culture would be a convenient substitute for assays with whole fish as part of testing programs for risk assessment of PAHs.
Collapse
Affiliation(s)
- S M Billiard
- School of Environmental Studies, Queen's University, Kingston, Ont., Canada K7L 3N6.
| | | | | |
Collapse
|
12
|
Barron MG, Heintz R, Rice SD. Relative potency of PAHs and heterocycles as aryl hydrocarbon receptor agonists in fish. MARINE ENVIRONMENTAL RESEARCH 2004; 58:95-100. [PMID: 15178019 DOI: 10.1016/j.marenvres.2004.03.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The relative potency of polycyclic aromatic compounds as aryl hydrocarbon receptor (AhR) agonists in fish was determined using data on CYP1A induction or AhR binding for 74 polycyclic aromatic hydrocarbons (PAHs) and heterocycles in teleost, avian, or mammalian systems from 18 published papers. Each PAH was assigned a fish potency factor relative to the potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin as an AhR agonist. Two and three ring unsubstituted PAHs were generally inactive in fish, avian, and mammalian systems. Benzo[k]fluoranthene and indeno[1,2,3-cd]pyrene were consistently the most potent PAHs, with fish potency factors of 0.001-0.002. Common structural features associated with higher potency PAHs included 4-6 rings containing fluoranthene or phenanthrene structures with an exposed bay region. These results show that PAHs can have similar potency as many dioxin-like PCBs, and AhR mediated toxicity should be considered in assessing the risks of PAHs in fish.
Collapse
|
13
|
Perry G, McDonald G, Ferguson M, Ganassin R, Bols N. Characterization of rainbow trout cell lines using microsatellite DNA profiling. Cytotechnology 2001; 37:143-51. [PMID: 19002917 PMCID: PMC3449788 DOI: 10.1023/a:1020516804173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ten microsatellite loci (Omy27DU,Omy325(A3)UoG, OmyFGT5TUF,OmyFGT14TUF, OmyFGT15TUF,OmyFGT23TUF, Omy77DU,Ssa20.19NUIG, Ots1BML, andOne18ASC) were amplified using the polymerase chain reaction to create genetic profiles for nine cell lines (RTG-2, RTH-149,RTL-W1,RTgill-W1, RTS-11, RTS-34st, RTP-2, RTP-91E and RTP-91F) from rainbow trout(Oncorhynchus mykiss) and one cell line (CHSE-214) from Chinook salmon (O. tschawytscha). A cell line (PHL) from anon-salmonid, the Pacific herring (Clupea harengus pallasi), was included as a control. The ten loci clearly revealed the uniqueness of each cell line, except for two cell lines (RTP-91E andRTP-91F) from the same fish. RTP-91E and RTP-91F were identical at all loci except Ssa20.19NUIG. The most useful locus for demonstrating uniqueness was Ots1BML. The information was used to demonstrate that an uncharacterized rainbow trout cell line (Clone 1A)was in fact CHSE-214, illustrating the usefulness of multiplexed microsatellites for the creation of genetic profiles for salmonid cell lines and for the testing of cell line cross-contamination.
Collapse
Affiliation(s)
- G.M.L. Perry
- Department of Zoology, University of Guelph, Guelph, N1G 2W1 Canada
| | - G.J. McDonald
- Department of Zoology, University of Guelph, Guelph, N1G 2W1 Canada
| | - M.M. Ferguson
- Department of Zoology, University of Guelph, Guelph, N1G 2W1 Canada
| | - R.C. Ganassin
- Department of Biology, Malaspina University College, V9R 5S5 Nanaimo, Canada
| | - N.C. Bols
- Department of Biology, University of Waterloo, N2L 3G1 (N.C.B.) Waterloo, Canada
| |
Collapse
|