1
|
Cirino L, Tsai S, Wang LH, Chen CS, Hsieh WC, Huang CL, Wen ZH, Lin C. Supplementation of exogenous lipids via liposomes improves coral larvae settlement post-cryopreservation and nano-laser warming. Cryobiology 2020; 98:80-86. [PMID: 33386123 DOI: 10.1016/j.cryobiol.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 11/19/2022]
Abstract
Coral reefs worldwide are receding because of detrimental human activities, and cryopreservation of coral larvae would ensure that their genetic biodiversity is not irremediably lost. In recent years, the vitrification and laser warming of coral propagules has demonstrated promising results. During cryopreservation, cellular membranes undergo substantial reconfigurations that may affect survival. Fat enrichment may alter the physical proprieties of cell membranes and improve resistance to low temperatures. Therefore, the aim of this study was to determine whether supplementation of exogenous lipids using liposomes would improve cryosurvival and further development of the vitrified and laser-warmed coral larvae of Seriatopora caliendrum and Pocillopora verrucosa. A vitrification solution (VS) composed of 2 M ethylene glycol (EG), 1 M propylene glycol (PG), 40% (w/v) Ficoll, and 10% gold nanoparticles (at a final concentration of 1.2 × 1018 particles/m3 and an optimised emission wavelength of 535 nm) was chosen. Coral larvae were subjected to vitrification with VS incorporating one of four lipid classes: phosphatidylcholine (PC), phosphatidylethanolamine (PE), erucic acid (EA), and linoleic acid (LA). Warming was achieved using a single laser pulse (300 V, 10 ms pulse width, 2 mm laser beam diameter). A significantly higher vitality rate was observed in S. caliendrum larvae subjected to vitrification and laser warming with EA-incorporated VS, and P. verrucosa larvae vitrified and laser warmed using PE-incorporated VS achieved a significantly higher settlement rate. Our study demonstrated that supplementation of exogenous lipids with liposomes enhances coral larvae cryotolerance and improves cryopreservation outcomes. Lipid enrichment may play a key role in cryobanking coral propagules, and in propagule development after thawing.
Collapse
Affiliation(s)
- Luca Cirino
- Department of Marine Biotechnology and Resources, National Sun Yai-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan
| | - Sujune Tsai
- Department of Post Modern Agriculture, Mingdao University, 369 Wen-Hua Road, Peetow, ChangHua, 52345, Taiwan.
| | - Li-Hsueh Wang
- National Museum of Marine Biology & Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan
| | - Chii-Shiarng Chen
- Department of Marine Biotechnology and Resources, National Sun Yai-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan
| | | | - Cheng-Liang Huang
- Department of Applied Chemistry, National Chiayi University, No.300 Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yai-sen University, Kaohsiung, Taiwan.
| | - Chiahsin Lin
- National Museum of Marine Biology & Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan; Institute of Marine Biology, National Dong Hwa University, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan.
| |
Collapse
|
2
|
Boroda AV, Kipryushina YO, Yakovlev KV, Odintsova NA. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells. Cryobiology 2016; 73:7-14. [PMID: 27364314 DOI: 10.1016/j.cryobiol.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/25/2016] [Indexed: 11/26/2022]
Abstract
Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination.
Collapse
Affiliation(s)
- Andrey V Boroda
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Yulia O Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Nelly A Odintsova
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia.
| |
Collapse
|
3
|
Lin C, Kuo FW, Chavanich S, Viyakarn V. Membrane lipid phase transition behavior of oocytes from three gorgonian corals in relation to chilling injury. PLoS One 2014; 9:e92812. [PMID: 24671092 PMCID: PMC3966827 DOI: 10.1371/journal.pone.0092812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/26/2014] [Indexed: 11/19/2022] Open
Abstract
The lipid phase transition (LPT) from the fluid liquid crystalline phase to the more rigid gel structure phase that occurs upon exposure to low temperatures can affect physical structure and function of cellular membranes. This study set out to investigate the membrane phase behavior of oocytes of three gorgonian corals; Junceela fragilis, J. juncea and Ellisella robusta,at different developmental stages after exposure to reduced temperatures. Oocytes were chilled to 5°C for 48, 96 or 144 h, and the LPT temperature (LPTT) was determined with Fourier Transform Infrared (FTIR) spectroscopy. The J. fragilis oocytes had a higher LPTT (∼23.0–23.7°C) than those of J. juncea and E. robusta oocytes (approximately 18.3–20.3°C). Upon chilling for 96 h at 5°C, the LPTTs of J. juncea and E. robusta oocytes in the early (18.0±1.0 and 18.3±0.6°C, respectively) and late (17.3±0.6 and 17.7±1.2°C, respectively) stages were significantly lower than those of J. fragilis oocytes (20.3±2.1 and 19.3±1.5°C for the early and late stages, respectively). The LPTTs of early stage gorgonian oocytes was significantly lower than those of late stage oocytes. These results suggest that the LPT of three gorgonian oocytes at different developmental stages may have been influenced by the phospholipid composition of their plasma membranes, which could have implications for their low temperature resistance.
Collapse
Affiliation(s)
- Chiahsin Lin
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
- Institute of Marine Biotechnology, National Dong Hwa University, Checheng, Pingtung, Taiwan
- * E-mail:
| | - Fu-Wen Kuo
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| | - Suchana Chavanich
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Voranop Viyakarn
- Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Dagorn F, Dumay J, Wielgosz-Collin G, Rabesaotra V, Viau M, Monniot C, Biard JF, Barnathan G. Phospholipid Distribution and Phospholipid Fatty Acids of the Tropical Tunicates Eudistoma sp. and Leptoclinides uniorbis. Lipids 2010; 45:253-61. [DOI: 10.1007/s11745-010-3389-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/19/2010] [Indexed: 01/07/2023]
|
6
|
Sanina NM, Goncharova SN, Kostetsky EY. Seasonal changes of fatty acid composition and thermotropic behavior of polar lipids from marine macrophytes. PHYTOCHEMISTRY 2008; 69:1517-1527. [PMID: 18329677 DOI: 10.1016/j.phytochem.2008.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/18/2008] [Accepted: 01/23/2008] [Indexed: 05/26/2023]
Abstract
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.
Collapse
Affiliation(s)
- Nina M Sanina
- Department of Biochemistry and Biotechnology, Far Eastern National University, Vladivostok, Russia.
| | | | | |
Collapse
|
7
|
Sanina NM, Kostetsky EY. Thermotropic behavior of major phospholipids from marine invertebrates: changes with warm-acclimation and seasonal acclimatization. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:143-53. [PMID: 12381376 DOI: 10.1016/s1096-4959(02)00092-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The crystal-liquid crystal-isotropic melt phase transitions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) from muscle tissue of five species (actinia Metridium senile fimbriatum, mussel Crenomytilus grayanus, sea-urchin Strongylocentrotus intermedius, starfish Distolasterias nipon and the ascidian Halocynthia aurantium) of marine invertebrates, collected in winter at 0 degrees C and then acclimated to 18.5 degrees C for 5 days, were studied by differential scanning calorimetry and polarising microscopy. To elevate temperature from 0 to 18.5 degrees C, we used the rate of 4.5 degrees C/h. Although phase transitions of both phospholipids from animals collected in summer occurred already at temperatures below -1.7 oC (minimal temperature of seawater in winter), compensatory mechanisms resulted in a decrease by 29-43 oC in the phase transition temperature of PE in winter. Thermotropic behavior of PCs changed in various trends. However, the total heat of their phase transitions always decreased in winter compared with summer. For all species, except the mussel, the time of warm-acclimation was insufficient to adjust the thermotropic behavior of either phospholipid. Nevertheless, the unsaturation index decreased to achieve summer values, due primarily to decreased proportions of eicosapentaenate and docosahexaenate. The accumulation of arachidonate, during warm-acclimation, might be connected to the signalling properties of n-6 eicosanoids. Absence of effective homeoviscous mechanisms suggests that most of the studied marine invertebrates have very limited capacity to survive an acute temperature elevation, e.g. at the appearance of thermal currents.
Collapse
Affiliation(s)
- Nina M Sanina
- Department of Biochemistry and Biotechnology, Far Eastern National University, Sukhanov st. 8, 690600, Vladivostok, Russia.
| | | |
Collapse
|