Sundström G, Larsson TA, Larhammar D. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters.
BMC Evol Biol 2008;
8:254. [PMID:
18803835 PMCID:
PMC2566581 DOI:
10.1186/1471-2148-8-254]
[Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 09/19/2008] [Indexed: 12/15/2022] Open
Abstract
Background
Ever since the theory about two rounds of genome duplication (2R) in the
vertebrate lineage was proposed, the Hox gene clusters have served as the
prime example of quadruplicate paralogy in mammalian genomes. In teleost
fishes, the observation of additional Hox clusters absent in other
vertebrate lineages suggested a third tetraploidization (3R). Because the
Hox clusters occupy a quite limited part of each chromosome, and are special
in having position-dependent regulation within the multi-gene cluster,
studies of syntenic gene families are needed to determine the extent of the
duplicated chromosome segments. We have analyzed in detail 14 gene families
that are syntenic with the Hox clusters to see if their phylogenies are
compatible with the Hox duplications and the 2R/3R scenario. Our starting
point was the gene family for the NPY family of peptides located near the
Hox clusters in the pufferfish Takifugu rubripes, the zebrafish
Danio rerio, and human.
Results
Seven of the gene families have members on at least three of the human Hox
chromosomes and two families are present on all four. Using both
neighbor-joining and quartet-puzzling maximum likelihood methods we found
that 13 families have a phylogeny that supports duplications coinciding with
the Hox cluster duplications. One additional family also has a topology
consistent with 2R but due to lack of urochordate or cephalocordate
sequences the time window when these duplications could have occurred is
wider. All but two gene families also show teleost-specific duplicates.
Conclusion
Based on this analysis we conclude that the Hox cluster duplications involved
a large number of adjacent gene families, supporting expansion of these
families in the 2R, as well as in the teleost 3R tetraploidization. The gene
duplicates presumably provided raw material in early vertebrate evolution
for neofunctionalization and subfunctionalization.
Collapse