1
|
Choi JC. Perinuclear organelle trauma at the nexus of cardiomyopathy pathogenesis arising from loss of function LMNA mutation. Nucleus 2025; 16:2449500. [PMID: 39789731 PMCID: PMC11730615 DOI: 10.1080/19491034.2024.2449500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Over the past 25 years, nuclear envelope (NE) perturbations have been reported in various experimental models with mutations in the LMNA gene. Although the hypothesis that NE perturbations from LMNA mutations are a fundamental feature of striated muscle damage has garnered wide acceptance, the molecular sequalae provoked by the NE damage and how they underlie disease pathogenesis such as cardiomyopathy (LMNA cardiomyopathy) remain poorly understood. We recently shed light on one such consequence, by employing a cardiomyocyte-specific Lmna deletion in vivo in the adult heart. We observed extensive NE perturbations prior to cardiac function deterioration with collateral damage in the perinuclear space. The Golgi is particularly affected, leading to cytoprotective stress responses that are likely disrupted by the progressive deterioration of the Golgi itself. In this review, we discuss the etiology of LMNA cardiomyopathy with perinuclear 'organelle trauma' as the nexus between NE damage and disease pathogenesis.
Collapse
Affiliation(s)
- Jason C. Choi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Chen F, Chen R, Yang L, Shen B, Wang Y, Gao Y, Tan R, Zhao X. Magnesium-assisted hydrogen improves isoproterenol-induced heart failure. Med Gas Res 2025; 15:459-470. [PMID: 40300881 PMCID: PMC12124708 DOI: 10.4103/mgr.medgasres-d-24-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 03/19/2025] [Indexed: 05/01/2025] Open
Abstract
Heart failure (HF) is a leading cause of mortality among patients with cardiovascular disease and is often associated with myocardial apoptosis and endoplasmic reticulum stress (ERS). While hydrogen has demonstrated potential in reducing oxidative stress and ERS, recent evidence suggests that magnesium may aid in hydrogen release within the body, further enhancing these protective effects. This study aimed to investigate the cardioprotective effects of magnesium in reducing apoptosis and ERS through hydrogen release in a rat model of isoproterenol (ISO)-induced HF. Magnesium was administered orally to ISO-induced HF rats, which improved cardiac function, reduced myocardial fibrosis and cardiac hypertrophy, and lowered the plasma levels of creatine kinase-MB, cardiac troponin-I, and N-terminal B-type natriuretic peptide precursor in ISO-induced HF rats. It also inhibited cardiomyocyte apoptosis by upregulating B-cell lymphoma-2, downregulating Bcl-2-associated X protein, and suppressing ERS markers (glucose-related protein 78, activating transcription factor 4, and C/EBP-homologous protein). Magnesium also elevated hydrogen levels in blood, plasma, and cardiac tissue, as well as in artificial gastric juice and pure water, where hydrogen release lasted for at least four hours. Additionally, complementary in vitro experiments were conducted using H9C2 cardiomyocyte injury models, with hydrogen-rich culture medium as the intervention. Hydrogen-rich culture medium improved the survival and proliferation of ISO-treated H9C2 cells, reduced the cell surface area, inhibited apoptosis, and downregulated ERS pathway proteins. However, the protective effects of hydrogen were negated by tunicamycin (an inducer of ERS) in H9C2 cells. In conclusion, magnesium exerts significant cardioprotection by mitigating ERS and apoptosis through hydrogen release effects in ISO-induced HF.
Collapse
Affiliation(s)
- Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, Ji’nan, Shandong Province, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yunting Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| |
Collapse
|
3
|
Kong Y, Chen Z, Nie Z, Chen W. Targeting endoplasmic reticulum proteostasis in liver fibrosis: From signaling mechanisms to therapeutic opportunities. Pharmacol Res 2025; 217:107823. [PMID: 40513972 DOI: 10.1016/j.phrs.2025.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 06/09/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Liver fibrosis, a progressive consequence of chronic liver disease, is characterized by excessive extracellular matrix (ECM) deposition and persistent inflammation. It poses a substantial global health burden, particularly among individuals with obesity, excessive alcohol intake, or chronic viral hepatitis. Increasing evidence suggests that endoplasmic reticulum (ER) stress plays a critical role in fibrogenesis by disrupting cellular homeostasis and activating pathological signaling pathways. This review offers a comprehensive overview of the mechanisms driving liver fibrosis, with a particular emphasis on ER stress-associated pathways, including ER-associated degradation (ERAD), the unfolded protein response (UPR), and autophagy. We further discuss the impact of chronic ER stress on hepatocytes, hepatic stellate cells (HSCs), and Kupffer cells (KCs), emphasizing their roles in fibrosis progression. Finally, we explore therapeutic strategies targeting ER stress as potential antifibrotic interventions, providing novel insights into the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yawei Kong
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| | - Zhengyang Chen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| | - Zhentian Nie
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Yang L, Xue R, Yang C, Lv Y, Li S, Xiang W, Guo X, Zhou J. Endoplasmic reticulum stress on glioblastoma: Tumor growth promotion and immunosuppression. Int Immunopharmacol 2025; 157:114806. [PMID: 40339490 DOI: 10.1016/j.intimp.2025.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/10/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Exogenous or endogenous factors such as hypoxia, nutritional deficiencies, acidic microenvironments and their own high metabolic demands usually lead to tumor endoplasmic reticulum dysfunction and trigger endoplasmic reticulum stress (ERS). ERS sensors intercept such stress signals, which subsequently initiate the unfolded protein response (UPR), enabling tumor cells to adapt robustly in the hostile environment. Many studies have found that the ERS response affects a variety of tumor-infiltrating immune cells and suppresses their anti-tumor responses through different mechanisms. Given that glioblastoma (GBM) are immunosuppressive "cold tumors" with a poor prognosis. This paper not only discusses the promotion of GBM growth by ERS response, but also reviews the mechanisms by which ERS response promotes an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Luxia Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ruifeng Xue
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Yancheng Lv
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China; Division of Clinical Chemistry, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Aksu M, Kaschke K, Podojil JR, Chiang M, Steckler I, Bruce K, Cogswell AC, Schulz G, Kelly J, Wiseman RL, Miller S, Popko B, Chen Y. AA147 Alleviates Symptoms in a Mouse Model of Multiple Sclerosis by Reducing Oligodendrocyte Loss. Glia 2025; 73:1241-1257. [PMID: 39928347 PMCID: PMC12014361 DOI: 10.1002/glia.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Inflammation-induced oligodendrocyte death and CNS demyelination are key features of multiple sclerosis (MS). Inflammation-triggered endoplasmic reticulum (ER) stress and oxidative stress promote tissue damage in MS and in its preclinical animal model, experimental autoimmune encephalitis (EAE). Compound AA147 is a potent activator of the ATF6 signaling arm of the unfolded protein response (UPR) that can also induce antioxidant signaling through activation of the NRF2 pathway in neuronal cells. Previous work showed that AA147 protects multiple tissues against ischemia/reperfusion damage through ATF6 and/or NRF2 activation; however, its therapeutic potential in neuroinflammatory disorders remains unexplored. Here, we demonstrate that AA147 ameliorated the clinical symptoms of EAE and reduced ER stress, oligodendrocyte loss, and demyelination. Additionally, AA147 suppressed T cells in the CNS without altering the peripheral immune response. Importantly, AA147 significantly increased the expressions of Grp78, an ATF6 target gene, in oligodendrocytes, while enhancing levels of Grp78 as well as Ho-1, an NRF2 target gene, in microglia. In cultured oligodendrocytes, AA147 promoted nuclear translocation of ATF6, but not NRF2. Intriguingly, AA147 altered the microglia activation profile, possibly by triggering the NRF2 pathway. AA147 was not therapeutically beneficial during the acute EAE stage in mice lacking ATF6 in oligodendrocytes, indicating that protection primarily involves ATF6 activation in these cells. Overall, our results suggest AA147 as a potential therapeutic opportunity for MS by promoting oligodendrocyte survival and regulating microglia status through distinct mechanisms.
Collapse
Affiliation(s)
- Metin Aksu
- Loyola University Chicago, Department of Biology, Chicago, IL 60660, USA
| | - Kevin Kaschke
- Loyola University Chicago, Department of Biology, Chicago, IL 60660, USA
| | - Joseph R. Podojil
- Northwestern University, Department of Microbiology-Immunology, Chicago, IL 60611, USA
| | - MingYi Chiang
- Northwestern University, Department of Microbiology-Immunology, Chicago, IL 60611, USA
| | - Ian Steckler
- Loyola University Chicago, Department of Biology, Chicago, IL 60660, USA
| | - Kody Bruce
- Loyola University Chicago, Department of Biology, Chicago, IL 60660, USA
| | - Andrew C. Cogswell
- Northwestern University, Department of Microbiology-Immunology, Chicago, IL 60611, USA
| | - Gwen Schulz
- Loyola University Chicago, Department of Biology, Chicago, IL 60660, USA
| | - Jeffery Kelly
- The Scripps Research Institute, Department of Chemistry, La Jolla, CA 92037, USA
| | - R. Luke Wiseman
- The Scripps Research Institute, Department of Molecular and Cellular Biology, La Jolla, CA 92037, USA
| | - Stephen Miller
- Northwestern University, Department of Microbiology-Immunology, Chicago, IL 60611, USA
| | - Brian Popko
- Northwestern University, Department of Neurology, Chicago, IL 60611, USA
| | - Yanan Chen
- Loyola University Chicago, Department of Biology, Chicago, IL 60660, USA
| |
Collapse
|
6
|
Gross CA. Peering into the Bacterial Cell: From Transcription to Functional Genomics. J Mol Biol 2025; 437:169087. [PMID: 40081792 DOI: 10.1016/j.jmb.2025.169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
I started my faculty career in 1981 at the UW-Madison in the Department of Bacteriology and moved to the University of California, San Francisco in 1993, where I am a Professor in the Departments of Microbiology and Immunology and Cell and Tissue Biology. In this article, I first review my contributions to understanding the molecular biology of the bacterial transcriptional apparatus and the global role of alternative sigmas (σs), a major pillar of bacterial transcriptional control. I then discuss my role in spearheading the development of bacterial systems biology, specifically to the genome-wide phenotyping approaches necessary for rapid understanding of gene function and the molecular basis of pathway connections across the bacterial universe.
Collapse
Affiliation(s)
- Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Hendershot LM. A BiP-centric View of Endoplasmic Reticulum Functions and of My Career. J Mol Biol 2025; 437:169052. [PMID: 40024435 DOI: 10.1016/j.jmb.2025.169052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
After completing my post-doctoral training at the University of Alabama, Birmingham and a brief period on the faculty there, I joined the Department of Tumor Cell Biology at St. Jude Children's Research Hospital in 1987 as an Assistant Member and started my independent research program. For the following 37 years, I led a relatively small basic research group comprised at various times of post-doctoral fellows, graduate students, undergraduate students, and research technicians; many of whom I am still in contact. Last year I closed the lab and transitioned to an emeritus position at St. Jude. I continue to maintain several research collaborations covering areas of research that have long been dear to my heart. My post-doctoral studies on BiP revealed that it controlled immunoglobulin assembly and transport, and as such, played a critical role in the fidelity of the immune response. My lab continued to define BiP's functions in protein folding and subunit assembly, as well as, in degradation of proteins that failed to mature properly using biochemical, cell-based, and biophysical analyses. Several ER localized co-factors that regulate the activity of BiP and allow it to contribute to its multiple ER functions were identified by our group. These include DnaJ family members and nucleotide change factors. Through a variety of collaborative studies, we pursued BiP's functions in maintaining the permeability barrier of the translocon, contributing to ER calcium stores, and regulating the up-stream transducers of the UPR, a stress response that is activated by the accumulation of unfolded proteins in the ER.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
8
|
Liu Y, Li S, Wang K, Wang Y, Wang Y, Zhang C, Wu H, Wang G, Qin F, Song Z, Tao Y. Unveiling the HSP90 inhibitor mediated effects on endoplasmic reticulum stress and redox signaling:from a cancer inhibitor to retinal degeneration catalyst. Free Radic Biol Med 2025:S0891-5849(25)00697-5. [PMID: 40414464 DOI: 10.1016/j.freeradbiomed.2025.05.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Retinal degeneration (RD) is a class of polygenic blind eye disease characterized by photoreceptors loss and dysfunction of retinal pigment epithelium. Thus far, there is no effective treatment to save the declining vision in RD patients. Animal models are highly precious tools for studying the pathological mechanisms of RD, and for screening potential therapeutics. AUY922 is a heat shock protein 90 inhibitor that exhibits potent anti-cancer effects. However, it causes adverse ocular reactions such as reduced visual acuity and night blindness. This study intends to explore the pathological mechanism underlying the AUY922 induced RD. In vitro study, AUY922 induced cytotoxic effects on the 661W cells, which are ascribed to endoplasmic reticulum (ER) stress and oxidative damages. ER stress inhibitor 4-PBA alleviated 661W cells apoptosis and oxidative stress. Subsequently, AUY922 was delivered into the vitreous cavity of mouse and induced selective photoreceptor death and visual impairments. Overactivation of neuroglial and retinal remodeling occurred during the degenerative process. Moreover, enhanced CHOP expression was tied to profound disturbances in redox homeostasis, which readied photoreceptors for apoptosis. The underlying mechanism should be attributed to the activation of the PERK-eIF2α-ATF4-CHOP pathway. AUY922 can compensate for the high toxicity and instability of traditional inducers in RD modeling. These results not only enrich our understanding of the toxicology of AUY922 but also provide clues for establishing reliable RD models.
Collapse
Affiliation(s)
- Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yiwen Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yange Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Chenxu Zhang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Hao Wu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Gang Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
9
|
Fink EE, Zhang Y, Santo B, Siddavatam A, Ou R, Nanavaty V, Lee BH, Ting AH. Heat shock induces alternative polyadenylation through dynamic DNA methylation and chromatin looping. Cell Stress Chaperones 2025; 30:100084. [PMID: 40412548 PMCID: PMC12162027 DOI: 10.1016/j.cstres.2025.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/18/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
Alternative cleavage and polyadenylation (APA) is a gene regulatory mechanism used by cells under stress to upregulate proteostasis-promoting transcripts, but how cells achieve this remains poorly understood. Previously, we elucidated a DNA methylation-regulated APA mechanism, in which gene body DNA methylation enhances distal poly(A) isoform expression by blocking CCCTC-binding factor (CTCF) binding and chromatin loop formation at APA control regions. We hypothesized that DNA methylation-regulated APA is one mechanism cells employ to induce proteostasis-promoting poly(A) isoforms. At the DNAJB6 cochaperone locus, acute heat shock resulted in binding of stress response transcription factors heat shock factor 1, ATF6, and YY1 at the APA control region and an increase in the expression of the proximal poly(A) isoform known to prevent protein aggregation. Furthermore, TET1 was recruited to rapidly demethylate DNA, facilitating CTCF binding and chromatin loop formation, thereby reinforcing preferential proximal poly(A) isoform expression. As cells recovered, the transcription factors vacated the APA control region, and DNMT1 was recruited to remethylate the region. This process resolved chromatin looping and reset the poly(A) isoform expression pattern. Our findings unveil an epigenetic mechanism enabling cells to dynamically modulate poly(A) isoforms in response to stress while shedding light on the interplay between DNA methylation, transcription factor binding, and chromatin looping.
Collapse
Affiliation(s)
- Emily E Fink
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yi Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Briana Santo
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anwita Siddavatam
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosie Ou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vishal Nanavaty
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Life Science, Food and Nutrition Science, Gujarat University, Ahmedabad, Gujarat, India; Neuberg Center for Genomic Medicine, Neuberg Supratec Reference Laboratory, Ahmedabad, Gujarat, India; Department of Biological Sciences, Sandip Bhavini Research Institute, Ahmedabad, Gujarat, India
| | - Byron H Lee
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angela H Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Boyack I, Berlied A, Peterson C. A Potential Role for c-MYC in the Regulation of Meibocyte Cell Stress. Cells 2025; 14:709. [PMID: 40422212 PMCID: PMC12109776 DOI: 10.3390/cells14100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
The integrated stress response (ISR) is a key regulator of cell survival, promoting apoptosis through the effector protein CHOP in instances of prolonged or severe stress. The ISR's role in the initiation and progression of epithelial malignancies has been investigated; however, the ISR has not been evaluated in ocular adnexal sebaceous carcinoma (SebCA). Though uncommon, mortality rates of up to 40% have been reported, and the mechanisms underlying SebCA tumorigenesis remain unresolved; however, c-MYC upregulation has been documented. Our objective was to determine the role of MYC in modulating the ISR in the Meibomian gland. Human Meibomian gland epithelial cells (HMGECs) were subject to both pharmacologic and genetic manipulations of MYC expression. Cytotoxicity, proliferation, and changes in protein and gene expression were assessed. Conditionally MYC-overexpressing mice were subject to topical 4-hydroxytamoxifen (4-OHT) induction of the eyelids prior to tissue harvest for histology, immunohistochemistry, immunoblotting, and qPCR. MYC-inhibited HMGECs exhibited dose-dependent decreased proliferation, increased CHOP expression, and increased apoptosis. Conversely, MYC-overexpressing HMGECs and Meibomian glands from 4-OHT-induced mice demonstrated suppressed CHOP expression, reduced apoptosis, and upregulated fatty acid synthase expression. These results suggest that MYC inhibition induces the ISR and promotes apoptosis, while MYC induction suppresses CHOP expression. High MYC expression may, therefore, serve as a mechanism for SebCA to elude cell death by promoting lipogenesis.
Collapse
Affiliation(s)
| | | | - Cornelia Peterson
- Department of Comparative Pathobiology, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
11
|
Chen YF, Teng YC, Yang JH, Kao CH, Tsai TF. Cisd1 synergizes with Cisd2 to modulate protein processing by maintaining mitochondrial and ER homeostasis. Aging (Albany NY) 2025; 17:206249. [PMID: 40349253 DOI: 10.18632/aging.206249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025]
Abstract
Connection and crosstalk among the organelles critically contribute to cellular functions. Destruction of any kind of organelle is likely to induce a series of intracellular disorders and finally lead to cell death. Because of its subcellular locations, CDGSH iron-sulfur domain-containing protein 1 (Cisd1) and Cisd2 have functions that are related to maintaining mitochondria and ER homeostasis. As previous reports have shown, Cisd2 knockout mice have a decreased body weight and poor survival rate, and the primary defects were conducted in skeletal muscle. Our previous findings indicated that Cisd1 deletion causes a range of skeletal muscle defects in mice with Cisd2 deficiency, including mitochondrial degeneration, endoplasmic reticulum (ER) stress, and alteration of protein process, as well as programmed cell death. In Cisd1 and Cisd2 deficient condition, the whole of the protein biosynthesis was damaged, including translation, modification, transport, and degradation. Changes in the immune response, redox regulation, and metabolism were also present in Cisd1 and Cisd2 double knockout mice. Overall, we have demonstrated that Cisd1 and Cisd2 knockout have a synergistic effect on skeletal muscles, and that Cisd2 plays a more critical role than Cisd1. These synergistic effects impact signaling regulation and interrupt the crosstalk and homeostasis of organelles. This creates severe disorders in various tissues and organs.
Collapse
Affiliation(s)
- Yi-Fan Chen
- International Master Program for Translation Science, College of Medical Science and Technology, Taipei Medical University, New Taipei City 23564, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11529, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Chi Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Jian-Hsin Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan
| |
Collapse
|
12
|
Bullington AV, Micallo I, Bajaj B, Kumar P, Schlamowitz N, Silva A, Hendrix S, Zelcer N, Kober DL. Structural basis for substrate selectivity by site-one protease revealed by studies with a small-molecule inhibitor. Proc Natl Acad Sci U S A 2025; 122:e2426931122. [PMID: 40299693 PMCID: PMC12067269 DOI: 10.1073/pnas.2426931122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/31/2025] [Indexed: 05/01/2025] Open
Abstract
Site-one protease (S1P) carries out the first proteolytic step to activate membrane-bound effector proteins in the Golgi. S1P matures through an autocatalytic process that begins in the endoplasmic reticulum (ER) and culminates with the displacement of its inhibitory pro-domain by its cofactor, sterol regulatory element binding protein-regulating gene (SPRING). Spatial control of S1P activity and substrate localization underpins signaling pathways governing, among others, lipogenesis, ER stress, and lysosome biogenesis. The factors governing these pathways are activated by S1P-mediated proteolysis upon their regulated transport from the ER to the Golgi. S1P cleaves substrates with the recognition sequence RX(L/I/V)Z, where X is any residue other than Cys or Pro and Z is preferably Leu or Lys. However, the structural basis for substrate recognition by S1P has remained unknown. Here, we used the small molecule PF-429242, a competitive inhibitor of S1P, to investigate substrate recognition by the S1P/SPRING complex. We determined the structure of S1P/SPRING bound to PF-429242 and found that PF-429242 binds S1P in the same pocket that recognizes the substrate's conserved P4 Arg. Further structural analysis suggests that S1P requires a conformation change to accommodate the substrate's P2 (L/I/V) residue. We designed an S1P mutation (I308A) to reduce the steric clash at the P2 position and generated an S1P that was resistant to PF-429242 in biochemical and cell culture assays. Our findings reveal selectivity in the recognition of substrates by S1P and provide a roadmap for the rational design of improved S1P inhibitors.
Collapse
Affiliation(s)
- Ashley V. Bullington
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ilaria Micallo
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam1105AZ, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
| | - Bilkish Bajaj
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Pankaj Kumar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Netanya Schlamowitz
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Aurora Silva
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam1105AZ, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam1105AZ, the Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam University Medical Centers, Amsterdam1105AZ, the Netherlands
| | - Daniel L. Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
13
|
Zhou H, Zhang J, Wang R, Huang J, Xin C, Song Z. The unfolded protein response is a potential therapeutic target in pathogenic fungi. FEBS J 2025. [PMID: 40227882 DOI: 10.1111/febs.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pathogenic fungal infections cause significant morbidity and mortality, particularly in immunocompromised patients. The frequent emergence of multidrug-resistant strains challenges existing antifungal therapies, driving the need to investigate novel antifungal agents that target new molecular moieties. Pathogenic fungi are subjected to various environmental stressors, including pH, temperature, and pharmacological agents, both in natural habitats and the host body. These stressors elevate the risk of misfolded or unfolded protein production within the endoplasmic reticulum (ER) which, if not promptly mitigated, can lead to the accumulation of these proteins in the ER lumen. This accumulation triggers an ER stress response, potentially jeopardizing fungal survival. The unfolded protein response (UPR) is a critical cellular defense mechanism activated by ER stress to restore the homeostasis of protein folding. In recent years, the regulatory role of the UPR in pathogenic fungi has garnered significant attention, particularly for its involvement in fungal adaptation, regulation of virulence, and drug resistance. In this review, we comparatively analyze the UPRs of fungi and mammals and examine the potential utility of the UPR as a molecular antifungal target in pathogenic fungi. By clarifying the specificity and regulatory functions of the UPR in pathogenic fungi, we highlight new avenues for identifying potential therapeutic targets for antifungal treatments.
Collapse
Affiliation(s)
- Hao Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ju Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, China
| |
Collapse
|
14
|
Choi HJ, Kim BR, Kim OH, Kim SJ. CRISPR-Cas9-Mediated ATF6B Gene Editing Enhances Membrane Protein Production in HEK293T Cells. Bioengineering (Basel) 2025; 12:409. [PMID: 40281769 PMCID: PMC12025008 DOI: 10.3390/bioengineering12040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
This study aims to enhance membrane protein production in HEK293T cells through genetic modification. HEK293T cells are used for recombinant protein and viral vector production due to their human origin and post-translational modification capabilities. This study explores enhancing membrane protein production in these cells by deleting the C-terminal of the ATF6B gene using CRISPR-Cas9 technology. The objective of this research is to investigate the effect of C-terminal deletion of the ATF6B gene on membrane protein production in HEK293T cells using CRISPR-Cas9 technology. To identify effective gene targets, sgRNAs were initially designed against multiple UPR-related genes, including ATF6A, IRE1A, IRE1B, PERK, and ATF6B. Among them, ATF6B was selected as the primary target for further investigation due to its superior editing efficiency. The efficiency of sgRNAs was evaluated using the T7E1 assay, and sequencing was performed to verify gene editing patterns. Membrane proteins were extracted from both ATF6B C-terminally deleted (ATF6B-ΔC) and wild-type (WT) cell lines for comparison. Flow cytometry was employed to assess membrane protein production by analyzing GFP expression in Membrane-GFP-expressing cells. HEK293T cells with C-terminally deleted ATF6B (ATF6B-ΔC) significantly increased membrane protein production by approximately 40 ± 17.6% compared to WT cells (p < 0.05). Sequencing revealed 11, 14, 1, and 10 bp deletions in the ATF6B-ΔC edited cells, which disrupted exon sequences, induced exon skipping, and introduced premature stop codons, suppressing normal protein expression. Flow cytometry confirmed a 23.9 ± 4.2% increase in GFP intensity in ATF6B-ΔC cells, corroborating the enhanced membrane protein production. These findings suggest that CRISPR-Cas9-mediated C-terminal deletion of the ATF6B gene can effectively enhance membrane protein production in HEK293T cells by activating the unfolded protein response pathway and improving the cell's capacity to manage misfolded proteins. This strategy presents significant potential for the biotechnology and pharmaceutical industries, where efficient membrane protein production is essential for drug development and various applications.
Collapse
Affiliation(s)
- Ho Joong Choi
- Department of Surgery, Division of Hepatobiliary Pancreatic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea;
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ba Reum Kim
- Translational Research Team, Surginex Co., Ltd., Seoul 06591, Republic of Korea;
| | - Ok-Hee Kim
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Translational Research Team, Surginex Co., Ltd., Seoul 06591, Republic of Korea;
| | - Say-June Kim
- Department of Surgery, Division of Hepatobiliary Pancreatic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea;
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
15
|
Trouvé P, Férec C. p.Phe508del-CFTR Trafficking: A Protein Quality Control Perspective Through UPR, UPS, and Autophagy. Int J Mol Sci 2025; 26:3623. [PMID: 40332143 PMCID: PMC12026709 DOI: 10.3390/ijms26083623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.Phe508del-CFTR) with an altered transport to the membrane of the cells via the conventional protein secretion (CPS) pathway. Nevertheless, it can use unconventional protein secretion (UPS). Indeed, p.Phe508del-CFTR forms a complex with GRASP55 to assist its direct trafficking from the endoplasmic reticulum to the plasma membrane. While GRASP55 is a key player of UPS, it is also a key player of stress-induced autophagy. In parallel, the unfolded protein response (UPR), which is activated in the presence of misfolded proteins, is tightly linked to UPS and autophagy through the key effectors IRE1, PERK, and ATF6. A better understanding of how UPS, UPR, and stress-induced autophagy interact to manage protein trafficking in CF and other conditions could lead to novel therapeutic strategies. By enhancing or modulating these pathways, it may be possible to increase p.Phe508del-CFTR surface expression. In summary, this review highlights the critical roles of UPS- and UPR-induced autophagy in managing protein transport, offering new perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France;
| | | |
Collapse
|
16
|
Kong X, Liu T, Wei J. Parkinson's Disease: The Neurodegenerative Enigma Under the "Undercurrent" of Endoplasmic Reticulum Stress. Int J Mol Sci 2025; 26:3367. [PMID: 40244210 PMCID: PMC11989508 DOI: 10.3390/ijms26073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder, demonstrates the critical involvement of endoplasmic reticulum stress (ERS) in its pathogenesis. This review comprehensively examines the role and molecular mechanisms of ERS in PD. ERS represents a cellular stress response triggered by imbalances in endoplasmic reticulum (ER) homeostasis, induced by factors such as hypoxia and misfolded protein aggregation, which activate the unfolded protein response (UPR) through the inositol-requiring enzyme 1 (IRE1), protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) pathways. Clinical, animal model, and cellular studies have consistently demonstrated a strong association between PD and ERS. Abnormal expression of ERS-related molecules in PD patients' brains and cerebrospinal fluid (CSF) correlates with disease progression. In animal models (e.g., Drosophila and mice), ERS inhibition alleviates dopaminergic neuronal damage. Cellular experiments reveal that PD-mimicking pathological conditions induce ERS, while interactions between ERS and mitochondrial dysfunction promote neuronal apoptosis. Mechanistically, (1) pathological aggregation of α-synuclein (α-syn) and ERS mutually reinforce dopaminergic neuron damage; (2) leucine-rich repeat kinase 2 (LRRK2) gene mutations induce ERS through thrombospondin-1 (THBS1)/transforming growth factor beta 1 (TGF-β1) interactions; (3) molecules such as Parkin and PTEN-induced kinase 1 (PINK1) regulate ERS in PD. Furthermore, ERS interacts with mitochondrial dysfunction, oxidative stress, and neuroinflammation to exacerbate neuronal injury. Emerging therapeutic strategies show significant potential, including artificial intelligence (AI)-assisted drug design targeting ERS pathways and precision medicine approaches exploring non-pharmacological interventions such as personalized electroacupuncture. Future research should focus on elucidating ERS-related mechanisms and identifying novel therapeutic targets to develop more effective treatments for PD patients, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Xiangrui Kong
- Wushu College, Henan University, Kaifeng 475004, China;
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Jianshe Wei
- Wushu College, Henan University, Kaifeng 475004, China;
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China;
| |
Collapse
|
17
|
Shishova A, Ivin Y, Gladneva E, Fominykh K, Dyugay I, Gmyl A. Modulation of Ire1-Xbp1 Defense Pathway in Encephalomyocarditis Virus-Infected HeLa Cells. Viruses 2025; 17:360. [PMID: 40143290 PMCID: PMC11946305 DOI: 10.3390/v17030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
A key contributor to the pathogenicity of viruses is their interaction with cellular defense mechanisms, including UPR (unfolded protein response) that counteracts the accumulation of misfolded proteins in the endoplasmic reticulum (known as ER stress). One of the UPR branches is mediated by the IRE1 (inositol-requiring enzyme 1) protein, which possesses protein kinase and RNase activities that facilitate the unconventional cytoplasmic splicing of XBP1 mRNA, leading to the upregulation of the XBP1 transcription factor. In this study, we demonstrate that Encephalomyocarditis Virus (Cardiovirus rueckerti) is able to suppress IRE1-dependent XBP1 activation. HeLa cells infection with EMCV resulted in the modulation of phosphorylated IRE1 levels throughout the infection cycle. Viral infection did not result in the accumulation of spliced XBP1 mRNA. Moreover, the addition of a chemical inducer of ER stress (dithiothreitol) to infected cells led to a markedly lower accumulation of spliced XBP1 mRNA as compared to the level of this mRNA in inducer-treated mock-infected cells. Thus, our results demonstrate the ability of picornaviruses to modulate another defensive activity of the host cell.
Collapse
Affiliation(s)
- Anna Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 117418 Moscow, Russia
| | - Yury Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ekaterina Gladneva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ksenia Fominykh
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ilya Dyugay
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Anatoly Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| |
Collapse
|
18
|
Minjares M, Thepsuwan P, Zhang K, Wang JM. Unfolded protein responses: Dynamic machinery in wound healing. Pharmacol Ther 2025; 267:108798. [PMID: 39826569 PMCID: PMC11881203 DOI: 10.1016/j.pharmthera.2025.108798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Skin wound healing is a dynamic process consisting of multiple cellular and molecular events that must be tightly coordinated to repair the injured tissue efficiently. The healing pace is decided by the type of injuries, the depth and size of the wounds, and whether wound infections occur. However, aging, comorbidities, genetic factors, hormones, and nutrition also impact healing outcomes. During wound healing, cells undergo robust processes of synthesizing new proteins and degrading multifunctional proteins. This imposes an increasing burden on the endoplasmic reticulum (ER), causing ER stress. Unfolded protein response (UPR) represents a collection of highly conserved stress signaling pathways originated from the ER to maintain protein homeostasis and modulate cell physiology. UPR is known to be beneficial for tissue healing. However, when excessive ER stress exceeds ER's folding potential, UPR pathways trigger cell apoptosis, interrupting tissue regeneration. Understanding how UPR pathways modulate the skin's response to injuries is critical for new interventions toward the control of acute and chronic wounds. Herein, in this review, we focus on the participation of the canonical and noncanonical UPR pathways during different stages of wound healing, summarize the available evidence demonstrating UPR's unique position in balancing homeostasis and pathophysiology of healing tissues, and highlight the understudied areas where therapeutic opportunities may arise.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA
| | | | - Kezhong Zhang
- Centers for Molecular Medicine and Genetics, Wayne State University, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA.
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, USA; Centers for Molecular Medicine and Genetics, Wayne State University, USA; Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
19
|
Karaboğa İ, Okuyan HM, Doğan S, Ayçiçek ŞÖ, Çakıroğlu H. Ebselen Alleviates Sepsis-Induced Acute Kidney Injury by Regulating Endoplasmic Reticulum Stress, Apoptosis, and Oxidative Stress. Vet Med Sci 2025; 11:e70318. [PMID: 40116632 PMCID: PMC11927017 DOI: 10.1002/vms3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
Acute kidney injury (AKI) is one of the most serious complications of sepsis, with substantial morbidity and mortality, and no effective treatment exists. Ebselen is of pharmacological significance in the treatment and prevention of a variety of human diseases, such as cancer and cardiovascular disorders. Nevertheless, the role of Ebselen in the pathogenesis of sepsis-induced AKI remains unknown. Therefore, we aimed to elucidate the impact of Ebselen, an active seleno-organic compound, on AKI induced by lipopolysaccharide (LPS) and the associated molecular mechanisms, including endoplasmic reticulum (ER) stress, apoptosis, and oxidative stress. We established the sepsis-induced AKI rat model by injecting 5 mg/kg of LPS intraperitoneally. The rats were given Ebselen (5 and 10 mg/kg, orally) before receiving the LPS injection. Ebselen treatment alleviated renal tubular injury and reduced the levels of blood urea nitrogen (BUN) and creatinine (CREA) in LPS-induced sepsis model. Immunohistochemical and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) analyses revealed that Ebselen reduced caspase-3 expressions and apoptotic cells triggered by LPS in kidney tissues. LPS-induced sepsis caused ER stress, and Ebselen treatment alleviated the ER stress by regulating eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) and GRP78 in kidney tissue, as well as activating transcription factor 4 (ATF4) and activating transcription factor 6 (ATF6) in serum. Ebselen decreased malondialdehyde (MDA) levels induced by LPS. Ebselen alleviated LPS-induced oxidative stress by modulating MDA and superoxide dismutase (SOD) levels in kidney tissues and SOD, glutathione peroxidase (GPx) and serum total antioxidant status (TAS) levels in serum. In conclusion, we report for the time that Ebselen might alleviate sepsis-induced AKI through the regulation of ER stress apoptosis and oxidative stress.
Collapse
Affiliation(s)
- İhsan Karaboğa
- Department of Histology and Embryology, Faculty of MedicineKırklareli UniversityKırklareliTürkiye
| | - Hamza Malik Okuyan
- Department of Physiotherapy and Rehabilitation—Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research CenterSakarya University of Applied SciencesSakaryaTürkiye
| | - Serdar Doğan
- Department of Biochemistry, Faculty of MedicineHatay Mustafa Kemal UniversityHatayTürkiye
| | - Şeyda Öznur Ayçiçek
- Department of Physiotherapy and Rehabilitation—Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research CenterSakarya University of Applied SciencesSakaryaTürkiye
| | - Hüseyin Çakıroğlu
- Experimental Medicine Application and Research CenterSakarya UniversitySakaryaTürkiye
| |
Collapse
|
20
|
An Q, Zhu Y, Shi W, Li W, Yang X, Huang M, Li Y, Zhao Y. Serine protease inhibitor AEBSF(4-(2-aminoethyl)-benzenesulfonyl fluoride) decreased ischemic brain injury through inhibiting endoplasmic reticulum stress, oxidative stress, and autophagy in rats. Brain Res 2025; 1850:149382. [PMID: 39643106 DOI: 10.1016/j.brainres.2024.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
4-(2-Aminoethyl)-benzenesulfonyl fluoride (AEBSF) is a serine protease inhibitor that may alleviate endoplasmic reticulum (ER) stress, a significant contributing factor to cerebral ischemia/reperfusion injury. The molecular crosstalk between ER stress, oxidative stress and autophagy represents a vicious cycle that can be pharmacologically targeted to minimize neuronal death after acute injuries to the central nervous system. However, the neuroprotective effects of AEBSF in the context of cerebral ischemia/reperfusion injury remain unknown. In this study,we reported the neuroprotective effect of AEBSF against cerebral ischemia/reperfusion injury and explored the mechanisms involved, particularly its role in reducing ER stress, oxidative stress and autophagy. Rats were pretreated with AEBSF or a vehicle before a 90 min middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Our results demonstrate that AEBSF treatment reduced infarct volume and improved neurological function compared to vehicle treated rats after 24 h of reperfusion. Furthermore,AEBSF treatment decreased the expression of caspase-3, suggesting a decrease in neuronal apoptosis. Additionally, AEBSF treatment lowered levels of key ER stress biomarkers, including glucose-regulated protein 78 (GRP78), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), and CCAAT-enhancer-binding protein homologous protein (CHOP), while the levels of inositol-requiring enzyme 1α (IRE1α) remained unchanged. AEBSF also decreased the oxidative stress biomarker neuronal nitric oxide synthase (nNOS) and its related molecule pro-MMP-9. Importantly, treatment with AEBSF reversed the trends of autophagy biomarker LC3B II/α-tubulin, Beclin1, and SQSTM1 at 24 h after reperfusion. In conclusion, AEBSF significantly mitigates ischemic brain damage and promotes neurological recovery by inhibiting ER stress, oxidative stress, and autophagy, highlighting its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Qi An
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuequan Zhu
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Wei Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Xueqi Yang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Minqi Huang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yakun Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China
| | - Yongmei Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
21
|
Wang L, Duan W, Ruan C, Liu J, Miyagishi M, Kasim V, Wu S. YY2-CYP51A1 signaling suppresses hepatocellular carcinoma progression by restraining de novo cholesterol biosynthesis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167658. [PMID: 39761760 DOI: 10.1016/j.bbadis.2025.167658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Lipid accumulation is a frequently observed characteristic of cancer. Lipid accumulation is closely related to tumor progression, metastasis, and drug resistance; however, the mechanism underlying lipid metabolic reprogramming in tumor cells is not fully understood. Yin yang 2 (YY2) is a C2H2‑zinc finger transcription factor that exerts tumor-suppressive effects. However, its involvement in tumor cell lipid metabolic reprogramming remains unclear. In the present study, we identified YY2 as a novel regulator of cholesterol metabolism. We showed that YY2 suppressed cholesterol accumulation in hepatocellular carcinoma (HCC) cells by downregulating the transcriptional activity of cytochrome P450 family 51 subfamily A member 1 (CYP51A1), a key enzyme in de novo cholesterol biosynthesis. Subsequently, through in vitro and in vivo experiments, we demonstrated that this downregulation is crucial for the YY2 tumor suppressive effect. Together, our findings unraveled a previously unprecedented regulation of HCC cells cholesterol metabolism, and eventually, their tumorigenic potential, through YY2 negative regulation on CYP51A1 expression. This study revealed a novel regulatory mechanism of lipid metabolic reprogramming in tumor cells and provided insights into the molecular mechanism underlying the YY2 the suppressive effect. Furthermore, our findings suggest a potential antitumor therapeutic strategy targeting cholesterol metabolic reprogramming using YY2.
Collapse
Affiliation(s)
- Lingxian Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wei Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cao Ruan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingyi Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
22
|
Mayhew WC, Kaipa BR, Li L, Maddineni P, Sundaresan Y, Clark AF, Zode GS. C/EBP Homologous Protein Expression in Retinal Ganglion Cells Induces Neurodegeneration in Mice. Int J Mol Sci 2025; 26:1858. [PMID: 40076484 PMCID: PMC11899906 DOI: 10.3390/ijms26051858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The progressive loss of retinal ganglion cell (RGC) axons leading to irreversible loss of vision is the pathological hallmark of glaucoma. However, the pathological mechanisms of RGC degeneration are not completely understood. Here, we investigated the role of chronic endoplasmic reticulum (ER) stress in glaucomatous neurodegeneration. To evaluate whether chronic ER stress-induced transcriptional factors, activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) are induced in RGCs; we utilized human donor tissue and the microbead occlusion model of glaucoma. Additionally, we performed the intravitreal injection of adeno-associated virus (AAV) 2 to express CHOP selectively in RGCs in C57BL/6 mice and evaluated its effect on RGC function and structure by pattern electroretinogram (PERG) and whole-mount retina staining with the RBPMS antibody. Here, we report that the ATF4-CHOP pathway is activated in the retinas of human glaucoma donor eyes and a mouse model of ocular hypertension. Further, the expression of CHOP in RGCs led to a significant loss of function, as evidenced by reduced PERG. Notably, the expression of CHOP in the retina induced a significant structural loss of RGCs within 15 weeks of injection. Altogether, our studies indicate that the expression of CHOP in RGCs leads to neurodegeneration in mice.
Collapse
Affiliation(s)
- William C. Mayhew
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (W.C.M.); (A.F.C.)
| | - Balasankara Reddy Kaipa
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Linya Li
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Prabhavathi Maddineni
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Yogapriya Sundaresan
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| | - Abbot F. Clark
- North Texas Eye Research Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (W.C.M.); (A.F.C.)
| | - Gulab S. Zode
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California Irvine School of Medicine, Irvine, CA 92697, USA; (B.R.K.); (L.L.); (Y.S.)
| |
Collapse
|
23
|
Ma HH, Zheng JY, Qiu YH, Su S, Lu FM, Wu GL, Zhang SJ, Cai YF. Dengzhan Shengmai capsule ameliorates cognitive impairment via inhibiting ER stress in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119016. [PMID: 39505222 DOI: 10.1016/j.jep.2024.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a common type of neurodegenerative disease with the β-amyloid plaques (Aβ) deposition. Previously, Dengzhan Shengmai capsule (DZSM) has been shown to reduce the pathology associated with AD, but the underlying mechanism is unclear. AIM OF STUDY This study investigated the potential mechanisms of DZSM against AD. MATERIALS AND METHODS The six-month-old wild-type male mice and APP/PS1 double transgenic male mice were administered 0.9 % saline or DZSM for 8 weeks by gavage. Open field test, new object recognition test, and Morris Water maze test were used to assess spatial learning and memory. Aβ plaques in brains were visualized using ThT staining. Nissl staining, TUNEL staining, and Western blot analyses were used to detect the neuronal function and apoptosis level. The superoxide dismutase (SOD), glutathione peroxidase assay kit (GSH-Px), and malondialdehyde (MDA) kits were performed to assess oxidative stress levels. Then, immunofluorescence and Western blot analysis were applied to evaluate ER stress pathway protein levels. Finally, HT22 cells were treated by Aβ1-42 with or without DZSM medicated serum. Cell viability was assessed using the CCK-8 assay, and Western blot analysis was applied to evaluate ER stress pathway protein levels. RESULTS Open filed test, new object recognition test and Morris Water maze test showed that DZSM restored cognitive disorders in APP/PS1 mice. Immunohistochemistry and Thioflavin T staining results indicated that DZSM reduced Aβ plaques in the brain. Deeper and denser Nissl bodies were found in APP/PS1 mice after DZSM administration. Besides, APP/PS1 mice treated with DZSM showed a lower level of TUNEL and Bax/Bcl-2 ratio. DZSM improved the acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity while reducing acetylcholinesterase (AChE) and malondialdehyde (MDA) activity. In addition, the levels of ER stress pathway containing Phospho-PKR-like ER kinase (P-PERK), phosphorylate eukaryotic initiation factor 2 (P-eIF2α), activating transcription factor 4 (ATF4), glutamine-rich protein 1 (QRICH1), phosphorylate inositol-requiring protein 1α (P-IRE1α), the spliced form of X-box binding protein 1 (XBP1s), activating transcription factor-6 (ATF6) and C/EBP homologous binding protein (CHOP) were decreased by DZSM. CCK-8 results indicated that DZSM medicated serum played cytoprotective effects on Aβ1-42-induced HT22 cells. Western blot results suggested DZSM possibly inhibited ER stress pathways in Aβ1-42-induced HT22 cells. CONCLUSION The potential protective mechanism of DZSM on cognitive impairment in AD might be related to ER stress pathways.
Collapse
Affiliation(s)
- Hui-Han Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
24
|
Liu Z, Liu Q, Zeng A, Song L. Regulatory function of endoplasmic reticulum stress in colorectal cancer: Mechanism, facts, and perspectives. Int Immunopharmacol 2025; 147:114024. [PMID: 39764998 DOI: 10.1016/j.intimp.2025.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/29/2025]
Abstract
Colorectal cancer (CRC) is an exceedingly common and profoundly impactful malignancy of the digestive system, posing a grave threat to human health. Endoplasmic reticulum stress (ERS) is an intracellular biological reaction that mobilizes the unfolded protein response (UPR) to tackling dysregulation in protein homeostasis. This process subtly modulates the cell to either restore normal cellular function or steer it towards apoptosis. The high metabolic demands of CRC cells sculpt a rigorous tumor microenvironment (TME), compelling CRC cells to experience ERS. Adaptive responses induced by mild ERS furnish the necessary conditions for the survival of CRC cells, whereas the cell death mechanisms triggered by sustained ERS could be considered a prospective strategy for cancer therapy. Considering the complex regulation of ERS in cancer development, this article offers a comprehensive review of the molecular mechanisms through which ERS influences CRC fate. It provides crucial insights for exploring the role of ERS in the occurrence and progression of CRC, laying a new theoretical foundation for devising precise therapeutic strategies targeting ERS. Furthermore, by synthesizing extensive clinical and preclinical studies, we delve into therapeutic strategies targeting ERS, including the potential of targeting ERS in immunotherapy, the utilization of native compounds, advancements in proteasome inhibitors, and the potential synergies of these strategies with traditional chemotherapy agents and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Zihan Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
Lee EJ, Kim K, Diaz-Aguilar MS, Min H, Chavez E, Steinbergs KJ, Safarta LA, Zhang G, Ryan AF, Lin JH. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J Clin Invest 2025; 135:e175562. [PMID: 39570676 PMCID: PMC11785932 DOI: 10.1172/jci175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR) and is important for ER function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder achromatopsia. The effect of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we report that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both sexes. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomics analysis of Atf6-/- cochleae revealed a marked induction of the UPR, especially through the protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they support the idea that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Last, our genetic findings indicate that ER stress is an important pathomechanism underlying cochlear damage and hearing loss, with clinical implications for patient lifestyle modifications that minimize environmental and physiological sources of ER stress to the ear.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Kyle Kim
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Monica Sophia Diaz-Aguilar
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
- Rush University Medical College, Chicago, Illinois, USA
| | - Hyejung Min
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Eduardo Chavez
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Korina J. Steinbergs
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Lance A. Safarta
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Guirong Zhang
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Allen F. Ryan
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Jonathan H. Lin
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
26
|
Gao P, Ren J, Zhou Q, Chen P, Zhang A, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. Pseudorabies virus inhibits the unfolded protein response for viral replication during the late stages of infection. Vet Microbiol 2025; 301:110360. [PMID: 39756331 DOI: 10.1016/j.vetmic.2024.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Pseudorabies virus (PRV) poses a significant threat to the global swine breeding industry and public health, but how the virus transverses the host defense systems for efficient viral replication and pathogenesis remains unclear. Here, we report that PRV could inhibit the unfolded protein response (UPR), a critical component of host innate immunity against viral infection, to promote virus replication during the late infection stages. PERK was shown phosphorylated and active in PRV-infected cells, but the subsequent events were suppressed post virus infection, such as eIF2α phosphorylation, ATF4 expression, and the formation of stress granules (SGs). In the meantime, although IRE1α was also active, its activated effector XBP1s was suppressed through downregulation of XBP1 mRNA levels and cleavage of XBP1s protein. Our findings also indicate that the Golgi apparatus, where ATF6 activation occur, was severely damaged in PRV-infected cells. Meanwhile, the downstream regulatory genes associated with the three UPR sensors, such as ERp60, CHOP, and EDEM1, remained silent in PRV-infected cells. Enhanced viral replication was observed post knockdown of UPR effectors ATF4 or XBP1, while stimulation with UPR activators inhibits virus replication. In conclusion, our findings address the critical question of how PRV regulates cellular UPR in favor of viral replication, and expand understanding of viruses mediated UPR suppression in general.
Collapse
Affiliation(s)
- Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianle Ren
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Peng Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ailin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
27
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
28
|
Yin X, Yang W, Xin M, Han Q, Guan S, He J. Unveiling the molecular mechanisms of recurrent miscarriage through endoplasmic reticulum stress related gene expression. Sci Rep 2025; 15:1452. [PMID: 39789034 PMCID: PMC11717954 DOI: 10.1038/s41598-024-77642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025] Open
Abstract
Recurrent miscarriage (RM) is a reproductive disorder affecting couples worldwide. The underlying molecular mechanisms remain elusive, even though emerging evidence has implicated endoplasmic reticulum stress (ERS). We investigated RM- and ERS-related genes to develop a diagnostic model that can enhance predictive ability. We utilized the R package GEO query to extract and process Gene Expression Omnibus data, applying batch correction, normalization, and differential gene expression analysis with limma. ERS-related differentially expressed genes (ERSRGs) were identified through Gene Ontology and Kyoto Encyclopedia of genes and genomes analyses, and their diagnostic potential was assessed. Diagnostic models were developed using logistic regression, support vector machines, and least absolute shrinkage and selection operators, complemented by immune infiltration analysis and regulatory network construction. Integrated analysis revealed 1395 differentially expressed genes (DEGs), including 626 upregulated and 769 downregulated genes. Seventeen ERSRGs were identified. KEAP1 and YIPF5 displayed high diagnostic accuracy (area under the curve [AUC] > 0.9). Gene Ontology and Kyoto Encyclopedia of genes and genomes analyses highlighted the role of ESRDEGs in cellular responses to ERS, protein processing, and apoptosis. Diagnostic models demonstrated robust predictive performance (AUC > 0.9). A molecular interaction was found between RM and the ERS response, and the identified ESRDEGs could serve as potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Xiaodan Yin
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Wei Yang
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Mingwei Xin
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Qian Han
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Siqi Guan
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Junqin He
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
29
|
Zhang W, Cao X. Unfolded protein responses in T cell immunity. Front Immunol 2025; 15:1515715. [PMID: 39845962 PMCID: PMC11750696 DOI: 10.3389/fimmu.2024.1515715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are integral to T cell biology, influencing immune responses and associated diseases. This review explores the interplay between the UPR and T cell immunity, highlighting the role of these cellular processes in T cell activation, differentiation, and function. The UPR, mediated by IRE1, PERK, and ATF6, is crucial for maintaining ER homeostasis and supporting T cell survival under stress. However, the precise mechanisms by which ER stress and the UPR regulate T cell-mediated immunity remain incompletely understood. Emerging evidence suggests that the UPR may be a potential therapeutic target for diseases characterized by T cell dysfunction, such as autoimmune disorders and cancer. Further research is needed to elucidate the complex interactions between ER stress, the UPR, and T cell immunity to develop novel therapeutic strategies for T cell-associated diseases.
Collapse
Affiliation(s)
- Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Wilson A, McCormick C. Reticulophagy and viral infection. Autophagy 2025; 21:3-20. [PMID: 39394962 DOI: 10.1080/15548627.2024.2414424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
All viruses are obligate intracellular parasites that use host machinery to synthesize viral proteins. In infected eukaryotes, viral secreted and transmembrane proteins are synthesized at the endoplasmic reticulum (ER). Many viruses refashion ER membranes into bespoke factories where viral products accumulate while evading host pattern recognition receptors. ER processes are tightly regulated to maintain cellular homeostasis, so viruses must either conform to ER regulatory mechanisms or subvert them to ensure efficient viral replication. Reticulophagy is a catabolic process that directs lysosomal degradation of ER components. There is accumulating evidence that reticulophagy serves as a form of antiviral defense; we call this defense "xERophagy" to acknowledge its relationship to xenophagy, the catabolic degradation of microorganisms by macroautophagy/autophagy. In turn, viruses can subvert reticulophagy to suppress host antiviral responses and support efficient viral replication. Here, we review the evidence for functional interplay between viruses and the host reticulophagy machinery.Abbreviations: AMFR: autocrine motility factor receptor; ARF4: ADP-ribosylation factor 4; ARL6IP1: ADP-ribosylation factor-like 6 interacting protein 1; ATL3: atlastin GTPase 3; ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; BPIFB3: BPI fold containing family B, member 3; CALCOCO1: calcium binding and coiled coil domain 1; CAMK2B: calcium/calmodulin-dependent protein kinase II, beta; CANX: calnexin; CDV: canine distemper virus; CCPG1: cell cycle progression 1; CDK5RAP3/C53: CDK5 regulatory subunit associated protein 3; CIR: cargo-interacting region; CoV: coronavirus; CSNK2/CK2: casein kinase 2; CVB3: coxsackievirus B3; DAPK1: death associated protein kinase 1; DENV: dengue virus; DMV: double-membrane vesicles; EBOV: Ebola virus; EBV: Epstein-Barr Virus; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMCV: encephalomyocarditis virus; EMV: extracellular microvesicle; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signalling 1; EV: extracellular vesicle; EV71: enterovirus 71; FIR: RB1CC1/FIP200-interacting region; FMDV: foot-and-mouth disease virus; HCMV: human cytomegalovirus; HCV: hepatitis C virus; HMGB1: high mobility group box 1; HSPA5/BiP: heat shock protein 5; IFN: interferon; IFNG/IFN-γ: interferon gamma; KSHV: Kaposi's sarcoma-associated herpesvirus; LIR: MAP1LC3/LC3-interacting region; LNP: lunapark, ER junction formation factor; MAP1LC3: microtubule-associated protein 1 light chain 3; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAPK/JNK: mitogen-activated protein kinase; MeV: measles virus; MHV: murine hepatitis virus; NS: non-structural; PDIA3: protein disulfide isomerase associated 3; PRR: pattern recognition receptor; PRRSV: porcine reproductive and respiratory syndrome virus; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHD: reticulon homology domain; RTN3: reticulon 3; RTN3L: reticulon 3 long; sAIMs: shuffled Atg8-interacting motifs; SARS-CoV: severe acute respiratory syndrome coronavirus; SINV: Sindbis virus; STING1: stimulator of interferon response cGAMP interactor 1; SVV: Seneca Valley virus; SV40: simian virus 40; TEX264: testis expressed gene 264 ER-phagy receptor; TFEB: transcription factor EB; TRAF2: TNF receptor-associated factor 2; UIM: ubiquitin-interacting motif; UFM1: ubiquitin-fold modifier 1; UPR: unfolded protein response; VAPA: vesicle-associated membrane protein, associated protein A; VAPB: vesicle-associated membrane protein, associated protein B and C; VZV: varicella zoster virus; WNV: West Nile virus; XBP1: X-box binding protein 1; XBP1s: XBP1 spliced; xERophagy: xenophagy involving reticulophagy; ZIKV: Zika virus.
Collapse
Affiliation(s)
- Alexa Wilson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
31
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
32
|
Chowdhury D, Jang CE, Lajoie P, Renaud SJ. A stress paradox: the dual role of the unfolded protein response in the placenta. Front Endocrinol (Lausanne) 2024; 15:1525189. [PMID: 39758342 PMCID: PMC11695235 DOI: 10.3389/fendo.2024.1525189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
The placenta is a temporary organ that forms during pregnancy and is essential for fetal development and maternal health. As an endocrine organ, proper placental function requires continual production, folding, and transport of proteins and lipids. Central to these processes is the endoplasmic reticulum (ER), a dynamic organelle responsible for maintaining cellular protein and lipid synthesis and processing. ER stress occurs when there is an accumulation of unfolded or misfolded proteins, which triggers the activation of cellular pathways collectively called the unfolded protein response. Unfolded protein response pathways act to alleviate the misfolded protein burden and restore ER homeostasis, or if unresolved, initiate cell death. While prolonged ER stress has been linked to deficient placental function and adverse pregnancy outcomes, basal activation of unfolded protein response pathways is required for placental development and function. This review explores the importance of ER homeostasis in placental development and function, examining how disruptions in ER stress responses may contribute to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Diba Chowdhury
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Chloe E. Jang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
33
|
Yan T, Heckman MG, Craver EC, Liu CC, Rawlinson BD, Wang X, Murray ME, Dickson DW, Ertekin-Taner N, Lou Z, Bu G, Springer W, Fiesel FC. The UFMylation pathway is impaired in Alzheimer's disease. Mol Neurodegener 2024; 19:97. [PMID: 39696466 DOI: 10.1186/s13024-024-00784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. METHODS Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. RESULTS Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. CONCLUSIONS There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily C Craver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Present Address: Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA.
| |
Collapse
|
34
|
Liu J, Song XY, Li XT, Yang M, Wang F, Han Y, Jiang Y, Lei YX, Jiang M, Zhang W, Tang DQ. β-Arrestin-2 enhances endoplasmic reticulum stress-induced glomerular endothelial cell injury by activating transcription factor 6 in diabetic nephropathy. World J Diabetes 2024; 15:2322-2337. [PMID: 39676815 PMCID: PMC11580586 DOI: 10.4239/wjd.v15.i12.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Glomerular endothelial cell (GENC) injury is a characteristic of early-stage diabetic nephropathy (DN), and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importance. AIM To investigate the role of β-arrestin-2 in GENCs under DN conditions. METHODS Eight-week-old C57BL/6J mice were intraperitoneally injected with streptozotocin to induce DN. GENCs were transfected with plasmids containing siRNA-β-arrestin-2, shRNA-activating transcription factor 6 (ATF6), pCDNA-β-arrestin-2, or pCDNA-ATF6. Additionally, adeno-associated virus (AAV) containing shRNA-β-arrestin-2 was administered via a tail vein injection in DN mice. RESULTS The upregulation of β-arrestin-2 was observed in patients with DN as well as in GENCs from DN mice. Knockdown of β-arrestin-2 reduced apoptosis in high glucose-treated GENCs, which was reversed by the overexpression of ATF6. Moreover, overexpression of β-arrestin-2 Led to the activation of endoplasmic reticulum (ER) stress and the apoptosis of GENCs which could be mitigated by silencing of ATF6. Furthermore, knockdown of β-arrestin-2 by the administration of AAV-shRNA-β-arrestin-2 alleviated renal injury in DN mice. CONCLUSION Knockdown of β-arrestin-2 prevents GENC apoptosis by inhibiting ATF6-mediated ER stress in vivo and in vitro. Consequently, β-arrestin-2 may represent a promising therapeutic target for the clinical management of patients with DN.
Collapse
Affiliation(s)
- Jiang Liu
- Center for Gene and Immunotherapy, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Xiao-Yun Song
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Xiu-Ting Li
- Medical Device and Pharmaceutical Packaging Inspection, Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan 250101, Shandong Province, China
| | - Mu Yang
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Fang Wang
- Center of Animal, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ying Han
- Center of Animal, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ying Jiang
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Yu-Xin Lei
- Center for Gene and Immunotherapy, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Miao Jiang
- Clinical Skill Training Centre, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Wen Zhang
- Center for Gene and Immunotherapy, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Dong-Qi Tang
- Center for Gene and Immunotherapy, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| |
Collapse
|
35
|
Sun Z, He W, Meng H, Li P, Qu J. Endoplasmic reticulum stress in acute lung injury and pulmonary fibrosis. FASEB J 2024; 38:e70232. [PMID: 39651914 DOI: 10.1096/fj.202401849rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive and irreversible lung disease that leads to diminished lung function, respiratory failure, and ultimately death and typically has a poor prognosis, with an average survival time of 2 to 5 years. Related articles suggested that endoplasmic reticulum (ER) stress played a critical role in the occurrence and progression of PF. The ER is responsible for maintaining protein homeostasis. However, factors such as aging, hypoxia, oxidative stress, or inflammation can disrupt this balance, promoting the accumulation of misfolded proteins in the ER and triggering ER stress. To cope with this situation, cells activate the unfolded protein response (UPR). Since acute lung injury (ALI) is one of the key onset events of PF, in this review, we will discuss the role of ER stress in ALI and PF by activating multiple signaling pathways and molecular mechanisms that affect the function and behavior of different cell types, with a focus on epithelial cells, fibroblasts, and macrophages. Linking ER stress to these cell types may broaden our understanding of the mechanisms underlying lung fibrosis and help us target these cells through these mechanisms. The relationship between ER stress and PF is still evolving, and future research will explore new strategies to regulate UPR pathways, providing novel therapeutic targets.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Peizhi Li
- Department of Anesthesiology, Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China
| |
Collapse
|
36
|
Dan W, Fan Y, Wang Y, Hou T, Wei Y, Liu B, Li M, Chen J, Fang Q, Que T, Lei Y, Guo C, Wang C, Gao Y, Zeng J, Li L. The Tumor Suppressor TPD52-Governed Endoplasmic Reticulum Stress is Modulated by APC Cdc20. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405441. [PMID: 39401430 PMCID: PMC11615746 DOI: 10.1002/advs.202405441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Indexed: 12/06/2024]
Abstract
Aberrant regulation of unfolded protein response (UPR)/endoplasmic reticulum (ER) stress pathway is associated with cancer development, metastasis, and relapse, and the UPR signal transducer ATF6 has been proposed as a diagnostic and prognostic marker for many cancers. However, a causal molecular link between ATF6 activation and carcinogenesis is not established. Here, it is found that tumor protein D52 (TPD52) integrates ER stress and UPR signaling with the chaperone machinery by promoting S2P-mediated cleavage of ATF6. Although TPD52 has been generally considered as an oncogene, TPD52 is identified as a novel tumor suppressor in bladder cancer. Significantly, attenuation of the ER stress via depletion of TPD52 facilitated tumorigenesis in a subset of human carcinomas. Furthermore, the APCCdc20 E3 ligase is validated as the upstream regulator marking TPD52 for polyubiquitination-mediated proteolysis. In addition, inactivation of Cdc20 sensitized cancer cells to treatment with the ER stress inducer in a TPD52-dependent manner. Thus, the study suggests that TPD52 is a novel Cdc20 substrate that may modulate ER stress to prevent tumorigenesis.
Collapse
|
37
|
Wang S, Liu R, Zhou Y, Xu J, Su A, Zheng D. TUDCA inhibits EV71 replication by regulating ER stress signaling pathway and suppressing autophagy. Diagn Microbiol Infect Dis 2024; 110:116500. [PMID: 39213902 DOI: 10.1016/j.diagmicrobio.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Tauroursodeoxycholic acid (TUDCA) is a naturally occurring hydrophilic bile acid that alleviates endoplasmic reticulum (ER) stress and inhibits apoptosis, thereby protecting cells. Previous studies have shown that enterovirus 71 (EV71) infection modulates ER stress and induces autophagy to assist viral replication. This study observed the effects of TUDCA pretreatment on HeLa and Vero cells infected with EV71, finding that TUDCA inhibits EV71 replication in TUDCA pretreated HeLa and Vero cells in a dose-dependent manner. We found that TUDCA pretreatment inhibited EV71 replication by regulating three branches of UPR, that is up-regulated ATF6, down-regulated both PERK and IRE1. The results also indicated that autophagy which is downstream of UPR, was inhibited either. The results indicate that TUDCA inhibits EV71 replication by regulating UPR sensor proteins and autophagy following ER stress.
Collapse
Affiliation(s)
- Siwen Wang
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China
| | - Rui Liu
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China
| | - Yuting Zhou
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China
| | - Jinjin Xu
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China
| | - Airong Su
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China.
| | - Datong Zheng
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, PR China; The Second Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210011, PR China.
| |
Collapse
|
38
|
Garcia BM, Melchinger P, Medeiros T, Hendrix S, Prabhu K, Corrado M, Kingma J, Gorbatenko A, Deshwal S, Veronese M, Scorrano L, Pearce E, Giavalisco P, Zelcer N, Pernas L. Glutamine sensing licenses cholesterol synthesis. EMBO J 2024; 43:5837-5856. [PMID: 39433901 PMCID: PMC11612431 DOI: 10.1038/s44318-024-00269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The mevalonate pathway produces essential lipid metabolites such as cholesterol. Although this pathway is negatively regulated by metabolic intermediates, little is known of the metabolites that positively regulate its activity. We found that the amino acid glutamine is required to activate the mevalonate pathway. Glutamine starvation inhibited cholesterol synthesis and blocked transcription of the mevalonate pathway-even in the presence of glutamine derivatives such as ammonia and α-ketoglutarate. We pinpointed this glutamine-dependent effect to a loss in the ER-to-Golgi trafficking of SCAP that licenses the activation of SREBP2, the major transcriptional regulator of cholesterol synthesis. Both enforced Golgi-to-ER retro-translocation and the expression of a nuclear SREBP2 rescued mevalonate pathway activity during glutamine starvation. In a cell model of impaired mitochondrial respiration in which glutamine uptake is enhanced, SREBP2 activation and cellular cholesterol were increased. Thus, the mevalonate pathway senses and is activated by glutamine at a previously uncharacterized step, and the modulation of glutamine synthesis may be a strategy to regulate cholesterol levels in pathophysiological conditions.
Collapse
Affiliation(s)
| | | | - Tania Medeiros
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Hendrix
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Kavan Prabhu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jenina Kingma
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrej Gorbatenko
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Soni Deshwal
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Matteo Veronese
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Erika Pearce
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Institutes of Cardiovascular Sciences, and Gastroenterology Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Lena Pernas
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
39
|
Li R, Sun K. Regulation of chondrocyte apoptosis in osteoarthritis by endoplasmic reticulum stress. Cell Stress Chaperones 2024; 29:750-763. [PMID: 39515603 PMCID: PMC11626768 DOI: 10.1016/j.cstres.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the apoptosis of chondrocytes as a primary pathophysiological change, with endoplasmic reticulum stress (ERS) playing a crucial role. It has been demonstrated that an imbalance in endoplasmic reticulum (ER) homeostasis can lead to ERS, activating three cellular adaptive response pathways through the unfolded protein response to restore ER homeostasis. Mild ERS exerts a protective effect on cells, while prolonged ERS that disrupts the self-regulatory balance of the ER activates apoptotic signaling pathways, leading to chondrocyte apoptosis and hastening OA progression. Hence, controlling the ERS signaling pathway and its apoptotic factors has become a critical focus for preventing and treating OA. This review aims to elucidate the key mechanisms of ERS pathway-induced apoptosis, associated targets, and regulatory pathways, offering valuable insights to enhance the mechanistic understanding of OA. It also reviews the mechanisms studied for ERS-related drugs or compounds for the treatment of OA.
Collapse
Affiliation(s)
- Renzhong Li
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu Province, China; The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China
| | - Kui Sun
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui Province, China; Anhui Acupuncture Hospital, Hefei, Anhui Province, China.
| |
Collapse
|
40
|
Meng H, Ai H, Li D, Jiang X, Zhang H, Xu J, Huang S. Bombyx mori UFBP1 regulates apoptosis and promotes BmNPV proliferation by affecting the expression of ER chaperone BmBIP. Int J Biol Macromol 2024; 283:137681. [PMID: 39551318 DOI: 10.1016/j.ijbiomac.2024.137681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is attached to protein substrates through the sequential activity of an E1 (UBA5) - E2 (UFC1) - E3 (UFL1) cascade. UFBP1 is a conserved UFL1-interacting protein in mammals. However, to date, no study has been conducted on UFBP1 in silkworm. In this study, we identified a UFBP1 ortholog in the B. mori genome. Spatiotemporal expression profiles showed that BmUFBP1 expression was high in the midgut and fatbody, and at the moth stage. BmUFBP1 knockdown inhibited ER chaperone BmBIP expression and BmNPV proliferation, while BmUFBP1 overexpression increased BmNPV proliferation, and BmBIP rescued BmUFBP1-regulated BmNPV proliferation. Mechanistically, Apoptosis and ATF6 signaling are involved in BmUFBP1-regulated BmBIP expression and BmNPV proliferation. These results suggest that BmUFBP1 facilitates BmNPV proliferation via ATF6-BIP signaling, and provide a potential molecular target for BmNPV prevention and silkworm breeding.
Collapse
Affiliation(s)
- Haonan Meng
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Heng Ai
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Danting Li
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Jiang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Hualing Zhang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Jiaping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shoujun Huang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
41
|
Fakir S, Barabutis N. Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement. Pharmaceuticals (Basel) 2024; 17:1604. [PMID: 39770448 PMCID: PMC11677134 DOI: 10.3390/ph17121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression. Preclinical investigations suggest that Octreotide (OCT) alleviates Lipopolysaccharide (LPS)-induced injury. The aim of the study is to investigate the involvement of activating transcription factor 6 (ATF6) in the protective effects of OCT in endothelial dysfunction. To the best of our knowledge, the available information on that topic is limited. Methods: Human lung microvascular endothelial cells (HULEC-5a) and bovine pulmonary artery endothelial cells (BPAEC) which expressed elevated levels of ATF6 due to AA147 were exposed to OCT or vehicle. Protein expression, endothelial permeability, and reactive oxygen species (ROS) generation were assessed utilizing Western blot analysis, Fluorescein isothiocyanate (FITC)-Dextran assay, and Dichlorofluorescein diacetate measurements, respectively. Results: Our observations suggest that ATF6 activation significantly improves OCT-induced endothelial barrier enhancement. This combination led to increased expression of binding immunoglobulin protein (BiP) and glucose-regulated protein 94 (Grp94), which are downstream unfolded protein response (UPR) targets. Moreover, ATF6 activation prior to OCT treatment resulted in decreased activation of myosin light chain 2 (MLC2) and cofilin; and reduced reactive oxygen species (ROS) generation. ATF6 activation enhanced the anti-inflammatory effects of OCT, as reflected in the suppression of transducer and activator of transcription (STAT) 1, STAT3, and P38 phosphorylation. Conclusions: Our findings suggest that ATF6 activation prior to OCT treatment enhances the beneficial effects of OCT in the endothelium.
Collapse
Affiliation(s)
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
42
|
Li Q, Zhao X, Yang H, Zhu X, Sui X, Feng J. Modulating Endoplasmic Reticulum Stress in Gastrointestinal Cancers: Insights from Traditional Chinese Medicine. Pharmaceuticals (Basel) 2024; 17:1599. [PMID: 39770441 PMCID: PMC11676909 DOI: 10.3390/ph17121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) play critical roles in tumorigenesis, cancer progression, and drug resistance. Persistent activation of the ER stress system enhances the survival capacities of malignant tumor cells, including increased proliferation, invasion, and resistance to treatment. Dysregulation of ER function and the resultant stress is a common cellular response to cancer therapies and may lead to cancer cell death. Currently, growing evidence suggests that Traditional Chinese medicine (TCM), either as a monotherapy or in combination with other treatments, offers significant advantages in preventing cancer, inhibiting tumor growth, reducing surgical complications, improving drug sensitivity, and mitigating drug-induced damage. Some of these natural products have even entered clinical trials as primary or complementary anticancer agents. In this review, we summarize the anticancer effects of TCM monomers/natural products on the gastrointestinal (GI) tumors and explore their mechanisms through ER stress modulation. We believe that ongoing laboratory research and the clinical development of TCM-based cancer therapies hold considerable potential for advancing future cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (Q.L.); (X.Z.); (H.Y.); (X.Z.); (X.S.)
| |
Collapse
|
43
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Zheng B, Zhang X, Kong X, Li J, Huang B, Li H, Ji Z, Wei X, Tao S, Shan Z, Ling Z, Liu J, Chen J, Zhao F. S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis. JCI Insight 2024; 9:e177789. [PMID: 39316443 PMCID: PMC11601718 DOI: 10.1172/jci.insight.177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Ishida-Ishihara S, Yaguchi K, Miura S, Nomura R, Wang Q, Yoshizawa K, Sato K, Yang G, Veszelyi K, Banhegyi G, Margittai E, Uehara R. Fragility of ER homeostatic regulation underlies haploid instability in human somatic cells. J Biol Chem 2024; 300:107909. [PMID: 39433129 PMCID: PMC11609373 DOI: 10.1016/j.jbc.2024.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Mammalian somatic cells are generally unstable in the haploid state, resulting in haploid-to-diploid conversion within a short time frame. However, cellular and molecular principles that limit the sustainability of somatic haploidy remain unknown. In this study, we found the haploidy-linked vulnerability to endoplasmic reticulum (ER) stress as a critical cause of haploid intolerance in human somatic cells. Pharmacological induction of ER stress selectively induced apoptosis in haploid cells, facilitating the replacement of haploids by coexisting diploidized cells in a caspase-dependent manner. Biochemical analyses revealed that unfolded protein response (UPR) was activated with similar dynamics between haploids and diploids upon ER stress induction. However, haploids were less efficient in solving proteotoxic stress, resulting in a bias toward a proapoptotic mode of UPR signaling. Artificial replenishment of chaperone function substantially alleviated the haploidy-linked upregulation of proapoptotic signaling and improved haploid cell retention under tunicamycin-induced ER stress. These data demonstrate that the ER stress-driven haploid instability stems from inefficient proteostatic control that alters the functionality of UPR to cause apoptosis selectively in haploids. Interestingly, haploids suffered a higher level of protein aggregation even in unperturbed conditions, and the long-term stability of the haploid state was significantly improved by alleviating their natural proteotoxicity. Based on these results, we propose that the haploidy-specific vulnerability to ER stress creates a fundamental cause of haploid intolerance in mammalian somatic cells. Our findings provide new insight into the principle that places a stringent restriction on the evolution of animal life cycles.
Collapse
Affiliation(s)
- Sumire Ishida-Ishihara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kan Yaguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Sena Miura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ryoto Nomura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - QiJiao Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Koya Yoshizawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Kimino Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Guang Yang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Krisztina Veszelyi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Banhegyi
- Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Eva Margittai
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
46
|
Liu T, Ji X, Zang H, Li Z, Yao W, Wan L, Zhang C, Zhang Y. Endoplasmic reticulum stress: The underlying mechanism of chronic pain. Neurobiol Dis 2024; 202:106697. [PMID: 39389155 DOI: 10.1016/j.nbd.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic pain (CP) affects over 30 % of the global population, imposing significant financial burdens on individuals and society. However, existing treatments for CP offer limited efficacy and troublesome side effects, primarily owing to a lack of knowledge of its precise underlying mechanism. Pathological stimuli disrupt the intricate process of protein folding and endoplasmic reticulum (ER) homeostasis. This disruption leads to the accumulation of misfolded or unfolded proteins in the ER, generating a condition termed ER stress. Emerging data have indicated that ER stress, occurring in the peripheral and central nervous systems, contributes to the development and maintenance of CP. This review aimed to comprehensively explore the intersection of ER stress and CP within the lower and upper nervous systems and highlight the cell-specific contributions of the unfolded protein response in different CP types. We provide a comprehensive synthesis of evidence from animal models, examining neuronal and non-neuronal mechanisms and discuss the damaging ER stress-linked inflammation, autophagy, oxidative stress, and apoptosis, which collectively drive disease progression and contribute to a neurotoxic environment. However, the mechanisms through which ER stress influences the most advanced centre-of-pain projections in the brain remain unclear. Further investigation in this area is crucial to elucidate the relationship between ER stress and CP and facilitate the development of novel therapeutic drugs for this intractable dilemma.
Collapse
Affiliation(s)
- Tongtong Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuofan Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
47
|
Yang K, Zhang P, Li J, Zhang G, Chang X. Potential of natural drug modulation of endoplasmic reticulum stress in the treatment of myocardial injury. J Pharm Anal 2024; 14:101034. [PMID: 39720623 PMCID: PMC11667710 DOI: 10.1016/j.jpha.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 12/26/2024] Open
Abstract
Myocardial injury (MI) is a common occurrence in clinical practice caused by various factors such as ischemia, hypoxia, infection, metabolic abnormalities, and inflammation. Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias. An endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) is triggered by several stressors, and its intricate signaling networks are instrumental in both cell survival and death. Cardiac damage frequently triggers ERS in response to different types of injuries and stress. High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis. To target ERS in MI prevention and treatment, current medical research is focused on identifying effective therapy approaches. Traditional Chinese medicine (TCM) is frequently used because of its vast range of applications and low risk of adverse effects. Various studies have demonstrated that active components of Chinese medicines, including polyphenols, saponins, and alkaloids, can reduce myocardial cell death, inflammation, and modify the ERS pathway, thus preventing and mitigating cardiac injury. Thus, this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment. We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
Collapse
Affiliation(s)
- Kai Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jixin Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Genming Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
48
|
Zhi YS, Chen T, Liang BF, Jiang S, Yao DH, He ZD, Li CY, He L, Pan ZY. Endoplasmic reticulum-targeted iridium(III) photosensitizer induces pyroptosis for augmented tumor immunotherapy. J Inorg Biochem 2024; 260:112695. [PMID: 39153452 DOI: 10.1016/j.jinorgbio.2024.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
An ideal tumor treatment strategy involves therapeutic approaches that can enhance the immunogenicity of the tumor microenvironment while simultaneously eliminating the primary tumor. A cholic acid-modified iridium(III) (Ir3) photosensitizer, targeted to the endoplasmic reticulum (ER), has been reported to exhibit potent type I and type II photodynamic therapeutic effects against triple-negative breast cancer (MDA-MB-231). This photosensitizer induces pyroptotic cell death mediated by gasdermin E (GSDME) through photodynamic means and enhances tumor immunotherapy. Mechanistic studies have revealed that complex Ir3 induces characteristics of damage-related molecular patterns (DAMPs) in MDA-MB-231 breast cancer cells under light conditions. These include cell-surface calreticulin (CRT) eversion, extracellular high mobility group box 1 (HMGB1) and ATP release, accompanied by ER stress and increased reactive oxygen species (ROS). Consequently, complex Ir3 promotes dendritic cell maturation and antigen presentation under light conditions, fully activates T cell-dependent immune response in vivo, and ultimately eliminates distant tumors while destroying primary tumors. In conclusion, immune regulation and targeted intervention mediated by metal complexes represent a new and promising approach to tumor therapy. This provides an effective strategy for the development of combined targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Yun-Shi Zhi
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Tie Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bin-Fa Liang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shan Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Da-Hong Yao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhen-Dan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Chen-Yang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zheng-Yin Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China..
| |
Collapse
|
49
|
Seale B, Slotabec L, Nguyen JD, Wang H, Patterson C, Filho F, Rouhi N, Adenawoola MI, Li J. Sestrin2 serves as a scaffold protein to maintain cardiac energy and metabolic homeostasis during pathological stress. FASEB J 2024; 38:e70106. [PMID: 39404019 PMCID: PMC11698584 DOI: 10.1096/fj.202401404r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of morbidity and mortality worldwide. Metabolic imbalances and pathological stress often contribute to increased mortality. Sestrin2 (Sesn2) is a stress-inducible protein crucial in maintaining cardiac energy and metabolic homeostasis under pathological conditions. Sesn2 is upregulated in response to various stressors, including oxidative stress, hypoxia, and energy depletion, and mediates multiple cellular pathways to enhance antioxidant defenses, promote autophagy, and inhibit inflammation. This review explores the mechanisms through which Sesn2 regulates these pathways, focusing on the AMPK-mTORC1, Sesn2-Nrf2, and HIF1α-Sesn2 pathways, among others. We can identify the potential therapeutic targets for treating CVDs and related metabolic disorders by comprehending these complex mechanisms. Sesn2's unique ability to respond thoroughly to metabolic challenges, oxidative stress, and inflammation makes it a promising prospect for enhancing cardiac health and resilience against pathological stress.
Collapse
Affiliation(s)
- Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Jennie D. Nguyen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Cory Patterson
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Research, G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
50
|
Fang M, Wang X, Chen L, Li F, Wang S, Shen L, Yang H, Sun L, Wang X, Yang J, Qiu M, Xu X. Hyperactivation of Hedgehog signaling impedes myelin development and repair via cholesterol dysregulation in oligodendrocytes. iScience 2024; 27:111016. [PMID: 39635117 PMCID: PMC11615242 DOI: 10.1016/j.isci.2024.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024] Open
Abstract
The failure to remyelinate demyelinated axons poses a significant challenge in the treatment of multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system. Here, we investigated the role of Hedgehog (Hh) signaling in myelin formation during development and under pathological conditions. Using conditional gain-of-function analyses, we found that hyperactivation of Hh signaling in oligodendrocyte precursor cells (OPCs) inhibits oligodendrocyte (OL) differentiation and myelination. Notably, sustained activation of Hh signaling in adult OPCs hinders myelin repair following LPC-induced focal demyelination. Through RNA sequencing, we discovered that genes associated with cholesterol synthesis were upregulated, and observed intracellular cholesterol accumulation in Hh-activated OPCs. Importantly, pharmacological stimulation of cholesterol transport was able to rescue the OL differentiation and myelination defects in mice. These findings establish a functional connection between Hh signaling, cholesterol homeostasis, and remyelination, providing insights for the strategic design of employing Hh signaling modulators in treating demyelinating neurodegenerative diseases.
Collapse
Affiliation(s)
- Minxi Fang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixia Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Fang Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Sitong Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Leyi Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huanyi Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lifen Sun
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junlin Yang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaofeng Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|