1
|
Chen Z, He J, Guo Y, Hao Y, Lv W, Chen Z, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Adherent junctions: Physiology, role in hydrocephalus and potential therapeutic targets. IBRO Neurosci Rep 2025; 18:283-292. [PMID: 39995568 PMCID: PMC11849119 DOI: 10.1016/j.ibneur.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
In all epithelial cells, the adherent junctions (AJs) with cadherin as the core play an important role in the maintenance of the connection and the formation of apical-basal polarity. The ependymal cells close to the ventricular system rely on AJs with N-cadherin at the core to maintain their normal morphology and function. Therefore, it has an important impact on the function and disease of the central nervous system. Hydrocephalus is a pathological phenomenon of excessive cerebrospinal fluid accumulating in the ventricular system accompanied by continuous ventricular dilatation, which can be divided into obstructive hydrocephalus and communicating hydrocephalus according to the pathogenesis. Obstructive hydrocephalus is often associated with excessive ependymal cells produced by differentiation of radial glial cells. The etiology of communicating hydrocephalus is mainly related to the dyskinesia of cerebrospinal fluid. In addition, the damage of the brain barrier can lead to brain edema and aggravate the symptoms. At present, the researches on the pathogenesis of hydrocephalus are mainly focused on the development of ependymal cells and cilia, while less attention has been paid to molecules such as AJs, which play an important role in maintaining the polarity of ependymal cells. This paper discusses the formation and function of AJs and their role in preventing hydrocephalus by preserving the polarity of ependymal cilia, regulating the number of ependymal cells, and upholding the brain barrier integrity to impede hydrocephalus exacerbation, which provides a new direction for the study of hydrocephalus.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yating Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Hao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wentao Lv
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zexin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan 412000, PR China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB21 2QQ, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
2
|
Ivaldo C, Passalacqua M, Furfaro AL, d’Abramo C, Ruiz S, Chatterjee PK, Metz CN, Nitti M, Marambaud P. Oxidative stress-induced MMP- and γ-secretase-dependent VE-cadherin processing is modulated by the proteasome and BMP9/10. Sci Rep 2023; 13:597. [PMID: 36631513 PMCID: PMC9834263 DOI: 10.1038/s41598-022-27308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Classical cadherins, including vascular endothelial (VE)-cadherin, are targeted by matrix metalloproteinases (MMPs) and γ-secretase during adherens junction (AJ) disassembly, a mechanism that might have relevance for endothelial cell (EC) integrity and vascular homeostasis. Here, we show that oxidative stress triggered by H2O2 exposure induced efficient VE-cadherin proteolysis by MMPs and γ-secretase in human umbilical endothelial cells (HUVECs). The cytoplasmic domain of VE-cadherin produced by γ-secretase, VE-Cad/CTF2-a fragment that has eluded identification so far-could readily be detected after H2O2 treatment. VE-Cad/CTF2, released into the cytosol, was tightly regulated by proteasomal degradation and was sequentially produced from an ADAM10/17-generated C-terminal fragment, VE-Cad/CTF1. Interestingly, BMP9 and BMP10, two circulating ligands critically involved in vascular maintenance, significantly reduced VE-Cad/CTF2 levels during H2O2 challenge, as well as mitigated H2O2-mediated actin cytoskeleton disassembly during VE-cadherin processing. Notably, BMP9/10 pretreatments efficiently reduced apoptosis induced by H2O2, favoring endothelial cell recovery. Thus, oxidative stress is a trigger of MMP- and γ-secretase-mediated endoproteolysis of VE-cadherin and AJ disassembly from the cytoskeleton in ECs, a mechanism that is negatively controlled by the EC quiescence factors, BMP9 and BMP10.
Collapse
Affiliation(s)
- Caterina Ivaldo
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy ,grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Mario Passalacqua
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Anna Lisa Furfaro
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Cristina d’Abramo
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Santiago Ruiz
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Prodyot K. Chatterjee
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Christine N. Metz
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132, Genova, Italy.
| | - Philippe Marambaud
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| |
Collapse
|
3
|
Kwak M, Southard KM, Kim WR, Lin A, Kim NH, Gopalappa R, Lee HJ, An M, Choi SH, Jung Y, Noh K, Farlow J, Georgakopoulos A, Robakis NK, Kang MK, Kutys ML, Seo D, Kim HH, Kim YH, Cheon J, Gartner ZJ, Jun YW. Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling. Nat Cell Biol 2022; 24:1739-1753. [PMID: 36456828 PMCID: PMC10665132 DOI: 10.1038/s41556-022-01031-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand-receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme-substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kaden M Southard
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Woon Ryoung Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Annie Lin
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Nam Hyeong Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Ramu Gopalappa
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Minji An
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Seo Hyun Choi
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yunmin Jung
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Kunwoo Noh
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Justin Farlow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Anastasios Georgakopoulos
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min K Kang
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew L Kutys
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Hyongbum Henry Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Young-Wook Jun
- Department of Otolaryngology, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Qin YJ, Xiao K, Zhong Z, Zhao Y, Yu T, Sun XF. LECT2 Ameliorates Blood-Retinal Barrier Impairment Secondary to Diabetes Via Activation of the Tie2/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35262733 PMCID: PMC8934553 DOI: 10.1167/iovs.63.3.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Current treatments for diabetic retinopathy (DR) have considerable limitations, emphasizing the need for new therapeutic options. The effect of leukocyte cell-derived chemotaxin 2 (LECT2) on diabetes-induced blood–retinal barrier impairment and the possible underlying mechanism were investigated both in vivo and in vitro. Methods Twenty diabetic and 22 nondiabetic eyes were included in this study. Additionally, we established a streptozotocin-induced diabetic mouse model and observed vascular leakage in mice treated with or without recombinant LECT2 (rLECT2) intravitreal injection (40 µg/mL, 1 µL). The levels of LECT2 and interendothelial junction proteins (ZO1, VE-cadherin, and occludin) were analyzed by western blot and/or immunofluorescence. Endothelial junctions in mouse retinas were observed by transmission electron microscopy (TEM). Moreover, confluent human retinal microvascular endothelial cells (HRMECs) and human umbilical vein endothelial cells (HUVECs) were treated (0–72 hours) with glucose (0 or 30 mM) in the presence or absence of rLECT2 (40–360 ng/mL). After treatment, intact cell monolayers were monitored for permeability to 40-kD FITC-dextran. Interendothelial junction targets and Tie2/Akt/mTOR signaling pathway components were investigated by western blot. Results In diabetic human and mouse retinas and high-glucose (30 mM)–treated HRMECs and HUVECs, the levels of LECT2 and interendothelial junction proteins were decreased. rLECT2 treatment (80 ng/mL) significantly attenuated the hyperglycemia-induced reduction in endothelial cell barrier function and inhibited the migration and tube formation of HRMECs and HUVECs. In addition, rLECT2 increased the levels of interendothelial junction proteins via activation of the Tie2/Akt/mTOR signaling pathway. Furthermore, intravitreal rLECT2 injections increased the levels of interendothelial junction proteins and reversed diabetes-induced junction disruption. Conclusions rLECT2 can increase the levels of interendothelial tight junction proteins through activation of the Tie2/Akt/mTOR signaling pathway and can ameliorate inner blood–retinal barrier impairment secondary to diabetes. LECT2 might be a potential target to prevent the progression of DR.
Collapse
Affiliation(s)
- Yuan-Jun Qin
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ke Xiao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Zheng Zhong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Tian Yu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xu-Fang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
7
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Yang W, Xiang Y, Liao MJ, Wu PF, Yang L, Huang GH, Shi BZ, Yi L, Lv SQ. Presenilin1 inhibits glioblastoma cell invasiveness via promoting Sortilin cleavage. Cell Commun Signal 2021; 19:112. [PMID: 34781973 PMCID: PMC8594175 DOI: 10.1186/s12964-021-00780-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and glioblastoma are the most common and devastating diseases in the neurology and neurosurgery departments, respectively. Our previous research reports that the AD-related protein Presenilin1 represses cell proliferation by inhibiting the Wnt/β-catenin pathway in glioblastoma. However, the function of Presenilin1 and the underlying mechanism need to be further investigated. METHODS The correlations of two genes were conducted on the R2 microarray platform and CGGA. Wound healing, Transwell assays and glioblastoma transplantation were performed to detect invasion ability. Phalloidin staining was employed to show cell morphology. Proximity ligation assays and protein docking assays were employed to detect two protein locations. We also employed western blotting to detect protein expression. RESULTS We found that Presenilin1 clearly repressed the migration, invasion and mesenchymal transition of glioblastoma cells. Intriguingly, we observed that the expression of Presenilin1 was positively correlated with Sortilin, which is identified as a pro-invasion molecule in glioma. Furthermore, Presenilin1 interacted with Sortilin at the transmembrane domain and repressed Sortilin expression by cleaving it in glioblastoma cells. First, we found that Sortilin introduced the function of Presenilin1 in phosphorylating β-catenin and repressing invasion in glioblastoma cells. Last, Presenilin1 stimulation sharply suppressed the invasion and mesenchymal transition of glioblastoma in mouse subcutaneous and intracranial transplantation models. CONCLUSIONS Our study reveals that Sortilin mediates the regulation of β-catenin by Presenilin1 and transduces the anti-invasive function of Presenilin1, which may provide novel therapeutic targets for glioblastoma treatment. Video Abstract.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Mao-Jun Liao
- Department of Neurosurgery, Daping Hospital, Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042 China
| | - Peng-Fei Wu
- Department of Neurosurgery, Daping Hospital, Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042 China
| | - Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| | - Bao-Zhong Shi
- Department of Critical Care Medicine & Department of Neurosurgery, The First Affiliated Hospital & College of Clinical Medical, Henan University of Science and Technology, Luoyang, 471003 Henan China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Army Medical University, 10# Changjiangzhi Road, Daping, Yuzhong District, Chongqing, 400042 China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 183# Xinqiao street, Shapingba District, Chongqing, 400037 China
| |
Collapse
|
9
|
Al Rahim M, Yoon Y, Dimovasili C, Shao Z, Huang Q, Zhang E, Kezunovic N, Chen L, Schaffner A, Huntley GW, Ubarretxena-Belandia I, Georgakopoulos A, Robakis NK. Presenilin1 familial Alzheimer disease mutants inactivate EFNB1- and BDNF-dependent neuroprotection against excitotoxicity by affecting neuroprotective complexes of N-methyl-d-aspartate receptor. Brain Commun 2020; 2:fcaa100. [PMID: 33005890 PMCID: PMC7520050 DOI: 10.1093/braincomms/fcaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Excitotoxicity is thought to play key roles in brain neurodegeneration and stroke. Here we show that neuroprotection against excitotoxicity by trophic factors EFNB1 and brain-derived neurotrophic factor (called here factors) requires de novo formation of 'survival complexes' which are factor-stimulated complexes of N-methyl-d-aspartate receptor with factor receptor and presenilin 1. Absence of presenilin 1 reduces the formation of survival complexes and abolishes neuroprotection. EPH receptor B2- and N-methyl-d-aspartate receptor-derived peptides designed to disrupt formation of survival complexes also decrease the factor-stimulated neuroprotection. Strikingly, factor-dependent neuroprotection and levels of the de novo factor-stimulated survival complexes decrease dramatically in neurons expressing presenilin 1 familial Alzheimer disease mutants. Mouse neurons and brains expressing presenilin 1 familial Alzheimer disease mutants contain increased amounts of constitutive presenilin 1-N-methyl-d-aspartate receptor complexes unresponsive to factors. Interestingly, the stability of the familial Alzheimer disease presenilin 1-N-methyl-d-aspartate receptor complexes differs from that of wild type complexes and neurons of mutant-expressing brains are more vulnerable to cerebral ischaemia than neurons of wild type brains. Furthermore, N-methyl-d-aspartate receptor-mediated excitatory post-synaptic currents at CA1 synapses are altered by presenilin 1 familial Alzheimer disease mutants. Importantly, high levels of presenilin 1-N-methyl-d-aspartate receptor complexes are also found in post-mortem brains of Alzheimer disease patients expressing presenilin 1 familial Alzheimer disease mutants. Together, our data identify a novel presenilin 1-dependent neuroprotective mechanism against excitotoxicity and indicate a pathway by which presenilin 1 familial Alzheimer disease mutants decrease factor-depended neuroprotection against excitotoxicity and ischaemia in the absence of Alzheimer disease neuropathological hallmarks which may form downstream of neuronal damage. These findings have implications for the pathogenic effects of familial Alzheimer disease mutants and therapeutic strategies.
Collapse
Affiliation(s)
- Md Al Rahim
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonejung Yoon
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christina Dimovasili
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Huang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Zhang
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nebojsa Kezunovic
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Chen
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Schaffner
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George W Huntley
- Nash Family Department of Neuroscience, and the Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Anastasios Georgakopoulos
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Fleming I. New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Front Pharmacol 2019; 10:739. [PMID: 31333461 PMCID: PMC6624440 DOI: 10.3389/fphar.2019.00739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Retinal diseases associated with vascular destabilization and the inappropriate proliferation of retinal endothelial cells have major consequences on the retinal vascular network. In extreme cases, the development of hypoxia, the upregulation of growth factors, and the hyper-proliferation of unstable capillaries can result in bleeding and vision loss. While anti-vascular endothelial growth factor therapy and laser retinal photocoagulation can be used to treat the symptoms of late stage disease, there is currently no treatment available that can prevent disease progression. Cytochrome P450 enzymes metabolize endogenous substrates (polyunsaturated fatty acids) to bioactive fatty acid epoxides that demonstrate biological activity with generally protective/anti-inflammatory and insulin-sensitizing effects. These epoxides are further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols, high concentrations of which have vascular destabilizing effects. Recent studies have identified increased sEH expression and activity and the subsequent generation of the docosahexaenoic acid-derived diol; 19,20-dihydroxydocosapentaenoic acid, as playing a major role in the development of diabetic retinopathy. This review summarizes current understanding of the roles of cytochrome P450 enzyme and sEH–derived PUFA mediators in retinal disease.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Centre for Cardiovascular Research (DZHK) partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
11
|
Banerjee R, Rudloff Z, Naylor C, Yu MC, Gunawardena S. The presenilin loop region is essential for glycogen synthase kinase 3 β (GSK3β) mediated functions on motor proteins during axonal transport. Hum Mol Genet 2019; 27:2986-3001. [PMID: 29790963 DOI: 10.1093/hmg/ddy190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023] Open
Abstract
Neurons require intracellular transport of essential components for function and viability and defects in transport has been implicated in many neurodegenerative diseases including Alzheimer's disease (AD). One possible mechanism by which transport defects could occur is by improper regulation of molecular motors. Previous work showed that reduction of presenilin (PS) or glycogen synthase kinase 3 beta (GSK3β) stimulated amyloid precursor protein vesicle motility. Excess GSK3β caused transport defects and increased motor binding to membranes, while reduction of PS decreased active GSK3β and motor binding to membranes. Here, we report that functional PS and the catalytic loop region of PS is essential for the rescue of GSK3β-mediated axonal transport defects. Disruption of PS loop (PSΔE9) or expression of the non-functional PS variant, PSD447A, failed to rescue axonal blockages in vivo. Further, active GSK3β associated with and phosphorylated kinesin-1 in vitro. Our observations together with previous work that showed that the loop region of PS interacts with GSK3β propose a scaffolding mechanism for PS in which the loop region sequesters GSK3β away from motors for the proper regulation of motor function. These findings are important to uncouple the complex regulatory mechanisms that likely exist for motor activity during axonal transport in vivo.
Collapse
Affiliation(s)
- Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Zoe Rudloff
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Crystal Naylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Michael C Yu
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Liu Z, Thakar A, Santoro SW, Pratt KG. Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing. Dev Neurobiol 2018; 78:1171-1190. [PMID: 30246932 DOI: 10.1002/dneu.22638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
As the catalytic component of γ-secretase, presenilin (PS) has long been studied in the context of Alzheimer's disease through cleaving the amyloid precursor protein. PS/γ-secretase, however, also cleaves a multitude of single-pass transmembrane proteins that are important during development, including Notch, the netrin receptor DCC, cadherins, drebrin-A, and the EphB2 receptor. Because transgenic PS-KO mice do not survive to birth, studies of this molecule during later embryonic or early postnatal stages of development have been carried out using cell cultures or conditional knock-out mice, respectively. As a result, the function of PS in synapse formation had not been well-addressed. Here, we study the role of PS in the developing Xenopus tadpole retinotectal circuit, an in-vivo model that allows for protein expression to be manipulated specifically during the peak of synapse formation between retinal ganglion cells and tectal neurons. We found that inhibiting PS in the postsynaptic tectal neurons impaired tadpole visual avoidance behavior. Whole cell recordings indicated weaker retinotectal synaptic transmission which was characterized by significant reductions in both NMDA receptor (NMDAR)- and AMPA receptor (AMPAR)-mediated currents. We also found that expression of the C-tail fragment of the EphB2 receptor, which is normally cleaved by PS/γ-secretase and which has been shown to upregulate NMDARs at the synapse, rescued the reduced NMDAR-mediated responses. Our data determine that normal PS function is important for proper formation and strengthening of retinotectal synapses through cleaving the EphB2 receptor.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Amit Thakar
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Stephen W Santoro
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology and Program in Neuroscience, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
13
|
Azimi M, Le TT, Brown NL. Presenilin gene function and Notch signaling feedback regulation in the developing mouse lens. Differentiation 2018; 102:40-52. [PMID: 30059908 DOI: 10.1016/j.diff.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Presenilins (Psen1 and Psen2 in mice) are polytopic transmembrane proteins that act in the γ-secretase complex to make intra-membrane cleavages of their substrates, including the well-studied Notch receptors. Such processing releases the Notch intracellular domain, allowing it to physically relocate from the cell membrane to the nucleus where it acts in a transcriptional activating complex to regulate downstream genes in the signal-receiving cell. Previous studies of Notch pathway mutants for Jagged1, Notch2, and Rbpj demonstrated that canonical signaling is a necessary component of normal mouse lens development. However, the central role of Psens within the γ-secretase complex has never been explored in any developing eye tissue or cell type. By directly comparing Psen single and double mutant phenotypes during mouse lens development, we found a stronger requirement for Psen1, although both genes are needed for progenitor cell growth and to prevent apoptosis. We also uncovered a novel genetic interaction between Psen1 and Jagged1. By quantifying protein and mRNA levels of key Notch pathway genes in Psen1/2 or Jagged1 mutant lenses, we identified multiple points in the overall signaling cascade where feedback regulation can occur. Our data are consistent with the loss of particular genes indirectly influencing the transcription level of another. However, we conclude that regulating Notch2 protein levels is particularly important during normal signaling, supporting the importance of post-translational regulatory mechanisms in this tissue.
Collapse
Affiliation(s)
- Mina Azimi
- Department of Cell Biology & Human Anatomy; University of California, Davis One Shields Avenue, Davis, CA 95616, USA
| | - Tien T Le
- Division of Developmental Biology, Cincinnati Childrens Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy; University of California, Davis One Shields Avenue, Davis, CA 95616, USA; Division of Developmental Biology, Cincinnati Childrens Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature 2017; 552:248-252. [PMID: 29211719 PMCID: PMC5828869 DOI: 10.1038/nature25013] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
Abstract
Diabetic retinopathy is an important cause of blindness in adults, and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema. Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization. Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte-endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.
Collapse
|
15
|
Das B, Yan R. Role of BACE1 in Alzheimer's synaptic function. Transl Neurodegener 2017; 6:23. [PMID: 28855981 PMCID: PMC5575945 DOI: 10.1186/s40035-017-0093-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-dependent disease of dementia, and there is currently no cure available. This hallmark pathologies of AD are the presence of amyloid plaques and neurofibrillary tangles. Although the exact etiology of AD remains a mystery, studies over the past 30 have shown that abnormal generation or accumulation of β-amyloid peptides (Aβ) is likely to be a predominant early event in AD pathological development. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1). Chemical inhibition of BACE1 has been shown to reduce Aβ in animal studies and in human trials. While BACE1 inhibitors are currently being tested in clinical trials to treat AD patients, it is highly important to understand whether BACE1 inhibition will significantly impact cognitive functions in AD patients. This review summarizes the recent studies on BACE1 synaptic functions. This knowledge will help to guide the proper use of BACE1 inhibitors in AD therapy.
Collapse
Affiliation(s)
- Brati Das
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue/NC30, Cleveland, OH 44195 USA
| |
Collapse
|
16
|
Abstract
IMPORTANCE To provide a comprehensive review of knowledge of the genomics of Alzheimer disease (AD) and DNA amyloid β 42 (Aβ42) vaccination as a potential therapy. OBSERVATIONS Genotype-phenotype correlations of AD are presented to provide a comprehensive appreciation of the spectrum of disease causation. Alzheimer disease is caused in part by the overproduction and lack of clearance of Aβ protein. Oligomer Aβ, the most toxic species of Aβ, causes direct injury to neurons, accompanied by enhanced neuroinflammation, astrocytosis and gliosis, and eventually neuronal loss. The strongest genetic evidence supporting this hypothesis derives from mutations in the amyloid precursor protein (APP) gene. A detrimental APP mutation at the β-secretase cleavage site linked to early-onset AD found in a Swedish pedigree enhances Aβ production, in contrast to a beneficial mutation 2 residues away in APP that reduces Aβ production and protects against the onset of sporadic AD. A number of common variants associated with late-onset AD have been identified including apolipoprotein E, BIN1, ABC7, PICALM, MS4A4E/MS4A6A, CD2Ap, CD33, EPHA1, CLU, CR1, and SORL1. One or 2 copies of the apolipoprotein E ε4 allele are a major risk factor for late-onset AD. With DNA Aβ42 vaccination, a Th2-type noninflammatory immune response was achieved with a downregulation of Aβ42-specific effector (Th1, Th17, and Th2) cell responses at later immunization times. DNA Aβ42 vaccination upregulated T regulator cells (CD4+, CD25+, and FoxP3+) and its cytokine interleukin 10, resulting in downregulation of T effectors. CONCLUSIONS AND RELEVANCE Mutations in APP and PS-1 and PS-2 genes that are associated with early-onset, autosomal, dominantly inherited AD, in addition to the at-risk gene polymorphisms responsible for late-onset AD, all indicate a direct and early role of Aβ in the pathogenesis of AD. A translational result of genomic research has been Aβ-reducing therapies including DNA Aβ42 vaccination as a promising approach to delay or prevent this disease.
Collapse
Affiliation(s)
- Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas2Editor, JAMA Neurology
| | | | - Gang Yu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas
| | - Weiming Xia
- Geriatric Research, Education and Clinical Center, Bedford Veterans Hospital, Bedford, Massachusetts5Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
17
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
18
|
Kim YH, Beak SH, Charidimou A, Song M. Discovering New Genes in the Pathways of Common Sporadic Neurodegenerative Diseases: A Bioinformatics Approach. J Alzheimers Dis 2016; 51:293-312. [PMID: 26836166 DOI: 10.3233/jad-150769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Late onset Alzheimer's disease (AD) and Parkinson's disease (PD) are mostly "sporadic" age-related neurodegenerative disorders, but with a clear genetic component. However, their genetic architecture is complex and heterogeneous, largely remaining a conundrum, with only a handful of well-established genetic risk factors consistently associated with these diseases. It is possible that numerous, yet undiscovered, AD and PD related genes might exist. We focused on the 'gene' as a mediator to find new potential genes that might have a relationship with both disorders using bio-literature mining techniques. Based on Entrez Gene, we extracted the genes and directional gene-gene relation in the entire MEDLINE records and then constructed a directional gene-gene network. We identified common genes associated with two different but related diseases by performing shortest path analysis on the network. With our approach, we were able to identify and map already known genes that have a direct relationship with PD and AD. In addition, we identified 7 genes previously unknown to be a bridge between these two disorders. We confirmed 4 genes, ROS1, FMN1, ATP8A2, and SNORD12C, by biomedical literature and further checked 3 genes, ERVK-10, PRS, and C7orf49, that might have a high possibility to be related with both diseases. Additional experiments were performed to demonstrate the effectiveness of our proposed method. Comparing to the co-occurrence approach, our approach detected 25% more candidate genes and verified 10% more genes that have the relationship between both diseases than the co-occurrence approach did.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Seung Han Beak
- Institute of Convergence, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Andreas Charidimou
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Min Song
- Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
19
|
Gama Sosa MA, De Gasperi R, Hof PR, Elder GA. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation. Sci Rep 2016; 6:30267. [PMID: 27443835 PMCID: PMC4957214 DOI: 10.1038/srep30267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/20/2016] [Indexed: 12/05/2022] Open
Abstract
Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1−/− embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1−/− cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1−/− cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1−/− cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1−/− cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1−/− cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Patrick R Hof
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory A Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Otto GP, Sharma D, Williams RS. Non-Catalytic Roles of Presenilin Throughout Evolution. J Alzheimers Dis 2016; 52:1177-87. [PMID: 27079701 PMCID: PMC4927835 DOI: 10.3233/jad-150940] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Research into Alzheimer's disease pathology and treatment has often focused on presenilin proteins. These proteins provide the key catalytic activity of the γ-secretase complex in the cleavage of amyloid-β precursor protein and resultant amyloid tangle deposition. Over the last 25 years, screening novel drugs to control this aberrant proteolytic activity has yet to identify effective treatments for the disease. In the search for other mechanisms of presenilin pathology, several studies have demonstrated that mammalian presenilin proteins also act in a non-proteolytic role as a scaffold to co-localize key signaling proteins. This role is likely to represent an ancestral presenilin function, as it has been described in genetically distant species including non-mammalian animals, plants, and a simple eukaryotic amoeba Dictyostelium that diverged from the human lineage over a billion years ago. Here, we review the non-catalytic scaffold role of presenilin, from mammalian models to other biomedical models, and include recent insights using Dictyostelium, to suggest that this role may provide an early evolutionary function of presenilin proteins.
Collapse
Affiliation(s)
- Grant P. Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Devdutt Sharma
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Robin S.B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
21
|
Li P, Lin X, Zhang JR, Li Y, Lu J, Huang FC, Zheng CH, Xie JW, Wang JB, Huang CM. The expression of presenilin 1 enhances carcinogenesis and metastasis in gastric cancer. Oncotarget 2016; 7:10650-10662. [PMID: 26872378 PMCID: PMC4891148 DOI: 10.18632/oncotarget.7298] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/19/2016] [Indexed: 12/12/2022] Open
Abstract
Presenilin 1 (PS-1, encoded by PSEN1) is a part of the gamma- (γ-) secretase complex. Mutations in PSEN1 cause the majority of cases of familial Alzheimer's disease (FAD). Although in recent years PS-1 has been implicated as a tumor enhancer in various cancers, nothing is known regarding its role in gastric cancer (GC). In the present study, we investigate the role and clinical significance of PS-1 in GC. We observed that PS-1 was significantly upregulated and amplified in GC tissues and cell lines, and its aberrant expression was positively correlated with lymph node metastasis and with poor overall survival. Furthermore, PS-1 promoted tumor invasion and metastasis of GC both in vitro and vivo without affecting the proliferation of GC cells (MGC-803 and MKN-45). The results of treatment with the γ-secretase inhibitor DAPT were consistent with the outcomes of PS-1 silencing. PS-1/γ-secretase cleaves E-cadherin and releases its bound protein partner, β-catenin, from the actin cytoskeleton, thereby allowing it to translocate into the nucleus and to activate the TCF/LEF-1 transcriptional activator, which may promote GC invasion and metastasis.In conclusion, PS-1 promotes invasion and metastasis in GC and may represent a novel prognostic biomarker and potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Xi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Jun-Rong Zhang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Yun Li
- Key Laboratory of the Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Fei-Chao Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
22
|
Duggan SP, McCarthy JV. Beyond γ-secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cell Signal 2015; 28:1-11. [PMID: 26498858 DOI: 10.1016/j.cellsig.2015.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 01/24/2023]
Abstract
The presenilins are the catalytic subunit of the membrane-embedded tetrameric γ-secretase protease complexes. More that 90 transmembrane proteins have been reported to be γ-secretase substrates, including the widely studied amyloid precursor protein (APP) and the Notch receptor, which are precursors for the generation of amyloid-β peptides and biologically active APP intracellular domain (AICD) and Notch intracellular domain (NICD). The diversity of γ-secretase substrates highlights the importance of presenilin-dependent γ-secretase protease activities as a regulatory mechanism in a range of biological systems. However, there is also a growing body of evidence that supports the existence of γ-secretase-independent functions for the presenilins in the regulation and progression of an array of cell signalling pathways. In this review, we will present an overview of current literature that proposes evolutionarily conserved presenilin functions outside of the γ-secretase complex, with a focus on the suggested role of the presenilins in the regulation of Wnt/β-catenin signalling, protein trafficking and degradation, calcium homeostasis and apoptosis.
Collapse
Affiliation(s)
- Stephen P Duggan
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland
| | - Justin V McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
23
|
Song H, Moon M, Choe HK, Han DH, Jang C, Kim A, Cho S, Kim K, Mook-Jung I. Aβ-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer's disease. Mol Neurodegener 2015; 10:13. [PMID: 25888034 PMCID: PMC4404698 DOI: 10.1186/s13024-015-0007-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/26/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Patients with Alzheimer's disease (AD) frequently experience disruption of their circadian rhythms, but whether and how circadian clock molecules are perturbed by AD remains unknown. AD is an age-related neurological disorder and amyloid-β (Aβ) is one of major causative molecules in the pathogenesis of AD. RESULTS In this study, we investigated the role of Aβ in the regulation of clock molecules and circadian rhythm using an AD mouse model. These mice exhibited altered circadian behavior, and altered expression patterns of the circadian clock genes, Bmal1 and Per2. Using cultured cells, we showed that Aβ induces post-translational degradation of the circadian clock regulator CBP, as well as the transcription factor BMAL1, which forms a complex with the master circadian transcription factor CLOCK. Aβ-induced degradation of BMAL1 and CBP correlated with the reduced binding of transcription factors to the Per2 promoter, which in turn resulted in disruptions to PER2 protein expression and the oscillation of Per2 mRNA levels. CONCLUSIONS Our results elucidate the underlying mechanisms for disrupted circadian rhythm in AD.
Collapse
Affiliation(s)
- Hyundong Song
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Seoul, 110-799, Jongno-gu, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 302-718, Korea.
| | - Han Kyoung Choe
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, Korea.
| | - Dong-Hee Han
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, 130-701, Korea.
| | - Changhwan Jang
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Seoul, 110-799, Jongno-gu, Korea.
| | - Ahbin Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Seoul, 110-799, Jongno-gu, Korea.
| | - Sehyung Cho
- Department of Neuroscience and Neurodegeneration Control Research Center, Kyung Hee University, Seoul, 130-701, Korea.
| | - Kyungjin Kim
- Department of Brain Science, DGIST, Daegu, 711-873, Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Seoul, 110-799, Jongno-gu, Korea.
| |
Collapse
|
24
|
Ma F, Liu D. 17β-trenbolone, an anabolic-androgenic steroid as well as an environmental hormone, contributes to neurodegeneration. Toxicol Appl Pharmacol 2014; 282:68-76. [PMID: 25461682 DOI: 10.1016/j.taap.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 01/17/2023]
Abstract
Both genetic and environmental factors contribute to neurodegenerative disorders. In a large number of neurodegenerative diseases (for example, Alzheimer's disease (AD)), patients do not carry the mutant genes. Other risk factors, for example the environmental factors, should be evaluated. 17β-trenbolone is a kind of environmental hormone as well as an anabolic-androgenic steroid. 17β-trenbolone is used as a growth promoter for livestock in the USA. Also, a large portion of recreational exercisers inject 17β-trenbolone in large doses and for very long time to increase muscle and strength. 17β-trenbolone is stable in the environment after being excreted. In the present study, 17β-trenbolone was administered to adult and pregnant rats and the primary hippocampal neurons. 17β-trenbolone's distribution and its effects on serum hormone levels and Aβ42 accumulation in vivo and its effects on AD related parameters in vitro were assessed. 17β-trenbolone accumulated in adult rat brain, especially in the hippocampus, and in the fetus brain. It altered Aβ42 accumulation. 17β-trenbolone induced apoptosis of primary hippocampal neurons in vitro and resisted neuroprotective function of testosterone. Presenilin-1 protein expression was down-regulated while β-amyloid peptide 42 (Aβ42) production and caspase-3 activities were increased. Both androgen and estrogen receptors mediated the processes. 17β-trenbolone played critical roles in neurodegeneration. Exercisers who inject large doses of trenbolone and common people who are exposed to 17β-trenbolone by various ways are all influenced chronically and continually. Identification of such environmental risk factors will help us take early prevention measure to slow down the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Fucui Ma
- Wenzhou Institute of Biomaterials and Engineering, No. 16 Xinshan Road, Hi-tech Industry Park, Wenzhou, PR China; Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, PR China.
| | - Daicheng Liu
- Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, PR China.
| |
Collapse
|
25
|
Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development 2014; 141:1671-82. [PMID: 24715457 DOI: 10.1242/dev.102988] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of the vertebrate brain requires an exquisite balance between proliferation and differentiation of neural progenitors. Notch signaling plays a pivotal role in regulating this balance, yet the interaction between signaling and receiving cells remains poorly understood. We have found that numerous nascent neurons and/or intermediate neurogenic progenitors expressing the ligand of Notch retain apical endfeet transiently at the ventricular lumen that form adherens junctions (AJs) with the endfeet of progenitors. Forced detachment of the apical endfeet of those differentiating cells by disrupting AJs resulted in precocious neurogenesis that was preceded by the downregulation of Notch signaling. Both Notch1 and its ligand Dll1 are distributed around AJs in the apical endfeet, and these proteins physically interact with ZO-1, a constituent of the AJ. Furthermore, live imaging of a fluorescently tagged Notch1 demonstrated its trafficking from the apical endfoot to the nucleus upon cleavage. Our results identified the apical endfoot as the central site of active Notch signaling to securely prohibit inappropriate differentiation of neural progenitors.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Jurisch-Yaksi N, Sannerud R, Annaert W. A fast growing spectrum of biological functions of γ-secretase in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2815-27. [PMID: 24099003 DOI: 10.1016/j.bbamem.2013.04.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/03/2013] [Accepted: 04/11/2013] [Indexed: 12/17/2022]
Abstract
γ-secretase, which assembles as a tetrameric complex, is an aspartyl protease that proteolytically cleaves substrate proteins within their membrane-spanning domain; a process also known as regulated intramembrane proteolysis (RIP). RIP regulates signaling pathways by abrogating or releasing signaling molecules. Since the discovery, already >15 years ago, of its catalytic component, presenilin, and even much earlier with the identification of amyloid precursor protein as its first substrate, γ-secretase has been commonly associated with Alzheimer's disease. However, starting with Notch and thereafter a continuously increasing number of novel substrates, γ-secretase is becoming linked to an equally broader range of biological processes. This review presents an updated overview of the current knowledge on the diverse molecular mechanisms and signaling pathways controlled by γ-secretase, with a focus on organ development, homeostasis and dysfunction. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Laboratory for Membrane Trafficking, VIB-Center for the Biology of Disease & Department for Human Genetics (KU Leuven), Leuven, Belgium
| | | | | |
Collapse
|
27
|
Ghani M, Sato C, Lee JH, Reitz C, Moreno D, Mayeux R, St George-Hyslop P, Rogaeva E. Evidence of recessive Alzheimer disease loci in a Caribbean Hispanic data set: genome-wide survey of runs of homozygosity. JAMA Neurol 2013; 70:1261-7. [PMID: 23978990 PMCID: PMC3991012 DOI: 10.1001/jamaneurol.2013.3545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding. OBJECTIVE To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations. DESIGN We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses. SETTING A whole-genome case-control ROH study. PARTICIPANTS A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants. EXPOSURE Alzheimer disease risk genes. MAIN OUTCOMES AND MEASURES We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection. RESULTS In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for multiple testing (empirical P value 1 [EMP1], .0001; EMP2, .002; 21 AD cases vs 2 controls). Among the African Hispanic subset, the most significant but nominal association was observed for CTNNA3, a well-known AD gene candidate (EMP1, .002; 10 AD cases vs 0 controls). CONCLUSIONS AND RELEVANCE Our results show that ROHs could significantly contribute to the etiology of AD. Future studies would require the analysis of larger, relatively inbred data sets that might reveal novel recessive AD genes. The next step is to conduct sequencing of top significant loci in a subset of samples with overlapping ROHs.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York3Department of Epidemiolo
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada5Cambridge Institute for Medical Research and Department of Clinical Neuroscienc
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada4Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Schon EA, Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 2013; 55:26-36. [DOI: 10.1016/j.mcn.2012.07.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 01/03/2023] Open
|
29
|
De Strooper B, Iwatsubo T, Wolfe MS. Presenilins and γ-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb Perspect Med 2013; 2:a006304. [PMID: 22315713 DOI: 10.1101/cshperspect.a006304] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline.
Collapse
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, Leuven Institute for Neurodegenerative Diseases, KULeuven, 3000 Leuven, Belgium; Department of Molecular and Developmental Genetics, VIB, 3000, Leuven, Belgium
| | | | | |
Collapse
|
30
|
Bauer K, Gosau M, Reinders J, Oefner P, Reichert TE, Bauer R. Presenilin 1/γ-secretase modulates P-cadherin processing and influences cell adhesion in oral squamous cell carcinoma cell lines. Carcinogenesis 2013; 34:2622-8. [PMID: 23740836 DOI: 10.1093/carcin/bgt211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
P-cadherin belongs to a family of Ca(2+)-dependent homophilic cell-cell adhesion proteins that are important for correct cellular localization and tissue integrity in the oral epithelium. P-cadherin is only expressed in the basal and suprabasal cell layers of the oral epithelium, but in advanced oral squamous cell carcinoma (OSCC), a reduced membranous and an enhanced cytoplasmic truncated P-cadherin level is observed. In this study, we investigated the impact of presenilin (PS) 1/γ-secretase on P-cadherin processing in OSCC. Western blot analyses showed an enhanced PS1 expression in OSCC cell lines and in primary oral keratinocytes (POK) isolated from primary OSCC tissue (OSCC POK) compared with POKs isolated from normal oral mucosa. Immunocytochemical stainings and co-immunoprecipitation experiments revealed a cytoplasmic colocalization and a direct interaction of P-cadherin and PS1 in OSCC POKs. Blocking of PS1/γ-secretase activity by the PS1/γ-secretase inhibitors and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, another specific γ-secretase inhibitor yielded a 100 kDa P-cadherin band on western blots of OSCC cell line extracts. Small interfering RNA knockdown of PS1 equally generated a 100 kDa P-cadherin form in OSCC POKs. Mass spectrometry analyses and experiments with the glycosylation inhibitor tunicamycin characterized the appearing 100 kDa P-cadherin band as the unglycosylated full-length form of P-cadherin. On the functional level, cell attachment assays demonstrated an enhanced cell adhesion after PS1/γ-secretase inhibition only in the transiently P-cadherin expressing OSCC cell line PCI52 but not in the PCI52 control cells. In summary, our results show that PS1/γ-secretase contributes to P-cadherin processing and to reduced cell adhesion in OSCC.
Collapse
Affiliation(s)
- Karin Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany and
| | | | | | | | | | | |
Collapse
|
31
|
Jeon AHW, Böhm C, Chen F, Huo H, Ruan X, Ren CH, Ho K, Qamar S, Mathews PM, Fraser PE, Mount HTJ, St George-Hyslop P, Schmitt-Ulms G. Interactome analyses of mature γ-secretase complexes reveal distinct molecular environments of presenilin (PS) paralogs and preferential binding of signal peptide peptidase to PS2. J Biol Chem 2013; 288:15352-66. [PMID: 23589300 PMCID: PMC3663554 DOI: 10.1074/jbc.m112.441840] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
γ-Secretase plays a pivotal role in the production of neurotoxic amyloid β-peptides (Aβ) in Alzheimer disease (AD) and consists of a heterotetrameric core complex that includes the aspartyl intramembrane protease presenilin (PS). The human genome codes for two presenilin paralogs. To understand the causes for distinct phenotypes of PS paralog-deficient mice and elucidate whether PS mutations associated with early-onset AD affect the molecular environment of mature γ-secretase complexes, quantitative interactome comparisons were undertaken. Brains of mice engineered to express wild-type or mutant PS1, or HEK293 cells stably expressing PS paralogs with N-terminal tandem-affinity purification tags served as biological source materials. The analyses revealed novel interactions of the γ-secretase core complex with a molecular machinery that targets and fuses synaptic vesicles to cellular membranes and with the H+-transporting lysosomal ATPase macrocomplex but uncovered no differences in the interactomes of wild-type and mutant PS1. The catenin/cadherin network was almost exclusively found associated with PS1. Another intramembrane protease, signal peptide peptidase, predominantly co-purified with PS2-containing γ-secretase complexes and was observed to influence Aβ production.
Collapse
Affiliation(s)
- Amy Hye Won Jeon
- Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario M5S3H2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
De Gasperi R, Gama Sosa MA, Elder GA. Presenilin-1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells. BMC BIOCHEMISTRY 2012; 13:28. [PMID: 23259730 PMCID: PMC3556133 DOI: 10.1186/1471-2091-13-28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 12/13/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Presenilin-1 (PS1) is a transmembrane protein first discovered because of its association with familial Alzheimer's disease. Mice with null mutations in PS1 die shortly after birth exhibiting multiple CNS and non-CNS abnormalities. One of the most prominent features in the brains of PS1-/- embryos is a vascular dysgenesis that leads to multiple intracerebral hemorrhages. The molecular and cellular basis for the vascular dysgenesis in PS1-/- mice remains incompletely understood. Because the extracellular matrix plays key roles in vascular development we hypothesized that an abnormal extracellular matrix might be present in endothelial cells lacking PS1 and examined whether the lack of PS1 affects expression of fibronectin a component of the extracellular matrix known to be essential for vascular development. RESULTS We report that primary as well as continuously passaged PS1-/- endothelial cells contain more fibronectin than wild type cells and that the excess fibronectin in PS1-/- endothelial cells is incorporated into a fibrillar network. Supporting the in vivo relevance of this observation fibronectin expression was increased in microvascular preparations isolated from E14.5 to E18.5 PS1-/- embryonic brain. Reintroduction of PS1 into PS1-/- endothelial cells led to a progressive decrease in fibronectin levels showing that the increased fibronectin in PS1-/- endothelial cells was due to loss of PS1. Increases in fibronectin protein in PS1-/- endothelial cells could not be explained by increased levels of fibronectin RNA nor based on metabolic labeling studies by increased protein synthesis. Rather we show based on the rate of turnover of exogenously added biotinylated fibronectin that increased fibronectin in PS1-/- endothelial cells results from a slower degradation of the fibronectin fibrillar matrix on the cell surface. CONCLUSIONS These studies show that PS1 regulates the constitutive turnover of the fibronectin matrix in endothelial cells. These studies provide molecular clues that may help to explain the origin of the vascular dysgenesis that develops in PS1-/- embryonic mice.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 10468, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Miguel A Gama Sosa
- Research and Development, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 10468, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 10468, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
33
|
Jun G, Moncaster JA, Koutras C, Seshadri S, Buros J, McKee AC, Levesque G, Wolf PA, St. George-Hyslop P, Goldstein LE, Farrer LA. δ-Catenin is genetically and biologically associated with cortical cataract and future Alzheimer-related structural and functional brain changes. PLoS One 2012; 7:e43728. [PMID: 22984439 PMCID: PMC3439481 DOI: 10.1371/journal.pone.0043728] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence suggest that specific subtypes of age-related cataract (ARC) and Alzheimer disease (AD) are related etiologically. To identify shared genetic factors for ARC and AD, we estimated co-heritability of quantitative measures of cataract subtypes with AD-related brain MRI traits among 1,249 members of the Framingham Eye Study who had a brain MRI scan approximately ten years after the eye exam. Cortical cataract (CC) was found to be co-heritable with future development of AD and with several MRI traits, especially temporal horn volume (THV, ρ = 0.24, P<10(-4)). A genome-wide association study using 187,657 single nucleotide polymorphisms (SNPs) for the bivariate outcome of CC and THV identified genome-wide significant association with CTNND2 SNPs rs17183619, rs13155993 and rs13170756 (P<2.6 × 10(-7)). These SNPs were also significantly associated with bivariate outcomes of CC and scores on several highly heritable neuropsychological tests (5.7 × 10(-9) ≤ P<3.7 × 10(-6)). Statistical interaction was demonstrated between rs17183619 and APP SNP rs2096488 on CC (P = 0.0015) and CC-THV (P = 0.038). A rare CTNND2 missense mutation (G810R) 249 base pairs from rs17183619 altered δ-catenin localization and increased secreted amyloid-β(1-42) in neuronal cell culture. Immunohistopathological analysis of lens tissue obtained from two autopsy-confirmed AD subjects and two non-AD controls revealed elevated expression of δ-catenin in epithelial and cortical regions of lenses from AD subjects compared to controls. Our findings suggest that genetic variation in delta catenin may underlie both cortical lens opacities in mid-life and subsequent MRI and cognitive changes that presage the development of AD.
Collapse
Affiliation(s)
- Gyungah Jun
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- * E-mail: (GJ); (LAF)
| | - Juliet A. Moncaster
- Department of Psychiatry, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Carolina Koutras
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Sudha Seshadri
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Framingham Heart Study, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Jacqueline Buros
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Ann C. McKee
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Pathology & Laboratory Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Boston University Alzheimer's Disease Center, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Geriatric Research Education Clinical Center, Bedford Veterans Administration Hospital, Bedford, Massachusetts, United States of America
| | - Georges Levesque
- Neurosciences Research Centre-CHUL, Université Laval, Québec, Canada
| | - Philip A. Wolf
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Framingham Heart Study, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Peter St. George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Lee E. Goldstein
- Department of Psychiatry, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Pathology & Laboratory Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Boston University Alzheimer's Disease Center, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- Boston University Alzheimer's Disease Center, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States of America
- * E-mail: (GJ); (LAF)
| |
Collapse
|
34
|
Gael B, Georgakopoulos A, Robakis NK. Cellular mechanisms of γ-secretase substrate selection, processing and toxicity. Prog Neurobiol 2012; 98:166-75. [PMID: 22622135 PMCID: PMC3404154 DOI: 10.1016/j.pneurobio.2012.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 01/04/2023]
Abstract
Presenilins (PSs) are catalytic components of the γ-secretase proteolytic complexes that produce Aβ and cell signaling peptides. γ-Secretase substrates are mostly membrane-bound peptides derived following proteolytic cleavage of the extracellular domain of type I transmembrane proteins. Recent work reveals that γ-secretase substrate processing is regulated by proteins termed γ-secretase substrate recruiting factors (γSSRFs) that bridge substrates to γ-secretase complexes. These factors constitute novel targets for pharmacological control of specific γ-secretase products, such as Aβ and signaling peptides. PS familial Alzheimer's disease (FAD) mutants cause a loss of γ-secretase cleavage function at epsilon sites of substrates thus inhibiting production of cell signaling peptides while promoting accumulation of uncleaved toxic substrates. Importantly, γ-secretase inhibitors may cause toxicity in vivo by similar mechanisms. Here we review novel mechanisms that control γ-secretase substrate selection and cleavage and examine their relevance to AD.
Collapse
Affiliation(s)
- Barthet Gael
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nikolaos K. Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
35
|
Hochmeister S, Romauch M, Bauer J, Seifert-Held T, Weissert R, Linington C, Hartung HP, Fazekas F, Storch MK. Re-expression of N-cadherin in remyelinating lesions of experimental inflammatory demyelination. Exp Neurol 2012; 237:70-7. [PMID: 22735489 DOI: 10.1016/j.expneurol.2012.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
The cell adhesion molecule N-cadherin is involved in several processes during central nervous system development, but also in certain pathologic conditions in the adult brain, including tumorigenesis and Alzheimer's disease. N-cadherin function in inflammatory demyelinating disease has so far not been investigated. In vitro studies suggest a role of N-cadherin in myelination; on the other hand N-cadherin has been implicated in the formation of the glial scar, which is believed to impede remyelination. The aim of our study was to investigate the expression pattern of N-cadherin immunoreactivity in experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein (MOG-EAE), an animal model closely mimicking multiple sclerosis. It allows a detailed evaluation of all stages of de- and remyelination during lesion development. Immunopathological evaluation was performed on paraffin-embedded CNS sections sampled at days 20 to 120 post immunization. We found a predominant expression of N-cadherin on oligodendrocytes in early remyelinating lesions, while in fully remyelinated shadow plaques there was no detectable immunoreactivity for N-cadherin. This expression pattern indicates a role of N-cadherin in the initiation of remyelination, most likely by providing a guidance between myelin lamellae and oligodendrocytes. Once the initial contact is made N-cadherin is then rapidly downregulated and virtually absent after completion of the repair process, analog to its known role in developmental myelination. Our results show that N-cadherin plays an important role in creating a remyelination-facilitating environment.
Collapse
Affiliation(s)
- S Hochmeister
- Department of Neurology, Medical University Graz, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ye Y, Gao JX, Tian H, Yearsley K, Lange AR, Robertson FM, Barsky SH. Early to Intermediate Steps of Tumor Embolic Formation Involve Specific Proteolytic Processing of E-Cadherin Regulated by Rab7. Mol Cancer Res 2012; 10:713-26. [DOI: 10.1158/1541-7786.mcr-12-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Andreyeva A, Nieweg K, Horstmann K, Klapper S, Müller-Schiffmann A, Korth C, Gottmann K. C-terminal fragment of N-cadherin accelerates synapse destabilization by amyloid-β. Brain 2012; 135:2140-54. [DOI: 10.1093/brain/aws120] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
38
|
Abstract
'Secretase' is a generic term coined more than 20 years ago to refer to a group of proteases responsible for the cleavage of a vast number of membrane proteins. These endoproteolytic events result in the extracellular or intracellular release of soluble metabolites associated with a broad range of intrinsic physiological functions. α-Secretase refers to the activity targeting the amyloid precursor protein (APP) and generating sAPPα, a soluble extracellular fragment potentially associated with neurotrophic and neuroprotective functions. Several proteases from the a disintegrin and metalloproteinase (ADAM) family, including ADAM10 and ADAM17, have been directly or indirectly associated with the constitutive and regulated α-secretase activities. Recent evidence in primary neuronal cultures indicates that ADAM10 may represent the genuine constitutive α-secretase. Mainly because α-secretase cleaves APP within the sequence of Aβ, the core component of the cerebral amyloid plaques in Alzheimer's disease, α-secretase activation is considered to be of therapeutic value. In this article, we will provide a historical perspective on the characterization of α-secretase and review the recent literature on the identification and biology of the current α-secretase candidates.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
39
|
Kim J, Chang A, Dudak A, Federoff HJ, Lim ST. Characterization of nectin processing mediated by presenilin-dependent γ-secretase. J Neurochem 2011; 119:945-56. [PMID: 21910732 DOI: 10.1111/j.1471-4159.2011.07479.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nectins play an important role in forming various intercellular junctions including synapses. This role is regulated by several secretases present at intercellular junctions. We have investigated presenilin (PS)-dependent secretase-mediated processing of nectins in PS1 KO cells and primary hippocampal neurons. The loss of PS1/γ-secretase activity delayed the processing of nectin-1 and caused the accumulation of its full-length and C-terminal fragments. Over-expression of PS2 in PS1 KO cells compensated for the loss of PS1, suggesting that PS2 also has the ability to regulate nectin-1 processing. In mouse brain slices, a pronounced increase in levels of 30 and 24 kDa C-terminal fragments in response to chemical long-term potentiation was observed. The mouse brain synaptosomal fractionation study indicated that nectin-1 localized to post-synaptic and preferentially pre-synaptic membranes and that shedding occurs in both compartments. These data suggest that nectin-1 shedding and PS-dependent intramembrane cleavage occur at synapses, and is a regulated event during conditions of synaptic plasticity in the brain. Point mutation analysis identified several residues within the transmembrane domain that play a critical role in the positioning of cleavage sites by ectodomain sheddases. Nectin-3, which forms hetero-trans-dimers with nectin-1, also undergoes intramembrane cleavage mediated by PS1/γ-secretase, suggesting that PS1/γ-secreatse activity regulates synapse formation and remodeling by nectin processing.
Collapse
Affiliation(s)
- Jinsook Kim
- Department of Neuroscience, Georgetown University Medical Center, NW, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
40
|
Jang C, Choi J, Na Y, Jang B, Wasco W, Buxbaum JD, Kim Y, Choi E. Calsenilin regulates presenilin 1/γ‐secretase‐mediated N‐cadherin ∊‐cleavage and β‐catenin signaling. FASEB J 2011; 25:4174-83. [DOI: 10.1096/fj.11-185926] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changhwan Jang
- Ilsong Institute of Life ScienceHallym University Anyang Korea
- Department of MicrobiologyCollege of Medicine, Hallym University Chuncheon Korea
| | - Jin‐Kyu Choi
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| | - Yeo‐Jung Na
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| | - Byungki Jang
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| | - Wilma Wasco
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of NeurologyMassachusetts General Hospital, Harvard Medical School Charlestown Massachusetts USA
| | - Joseph D. Buxbaum
- Laboratory of Molecular Neuropsychiatry, Department of Psychiatry and NeurobiologyMount Sinai School of Medicine New York New York USA
| | - Yong‐Sun Kim
- Ilsong Institute of Life ScienceHallym University Anyang Korea
- Department of MicrobiologyCollege of Medicine, Hallym University Chuncheon Korea
| | - Eun‐Kyoung Choi
- Ilsong Institute of Life ScienceHallym University Anyang Korea
| |
Collapse
|
41
|
Georgakopoulos A, Xu J, Xu C, Mauger G, Barthet G, Robakis NK. Presenilin1/gamma-secretase promotes the EphB2-induced phosphorylation of ephrinB2 by regulating phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk binding protein. FASEB J 2011; 25:3594-604. [PMID: 21746865 DOI: 10.1096/fj.11-187856] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reverse signaling through the ephrinB ligands is important for several morphogenetic events, such as axon guidance, neuronal plasticity, spine maturation, and synaptogenesis. Signaling is initiated by binding of EphB receptors to ephrinB ligands, stimulating their tyrosine phosphorylation via an unclear mechanism. Here we show that this mechanism involves presenilin1 (PS1)/γ-secretase regulation of phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk binding protein (PAG/Cbp), an adaptor protein that controls the activity of Src kinases. Using immunoprecipitation and Western blot of mouse primary neuronal and human embryonic kidney (HEK293) cell extracts overexpressing PAG/Cbp, we show that EphB2 induces tyrosine dephosphorylation of PAG/Cbp in a γ-secretase-dependent manner. In these cells, PAG/Cbp dephosphorylation is promoted by the PS1/γ-secretase-produced fragment of ephrinB2 cleavage (ephrinB2/CTF2), which forms complexes with PAG/Cbp when introduced exogenously. EphB2-induced tyrosine phosphorylation of ephrinB2 depends on PAG/Cbp because EphB2 cannot increase ephrinB2 phosphorylation in cells treated with anti-PAG siRNA or in PAG/Cbp-knockout (KO) cells. Furthermore, in contrast to WT PS1, familial Alzheimer disease (FAD) PS1 mutants expressed in PS1-KO mouse embryonic fibroblasts inhibited both the EphB2-induced dephosphorylation of PAG/Cbp and the phosphorylation of ephrinB2. PS1 FAD mutations may thus inhibit the function of ephrinB in the brain, promoting neurodegeneration in Alzheimer disease.
Collapse
Affiliation(s)
- Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Department of Psychiatry, Mt. Sinai School of Medicine, New York University, 1 Gustave L. Levy Pl., Box 1229, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
AD (Alzheimer's disease) is a neurodegenerative disease characterized by a gradual loss of neurons and the accumulation of neurotoxic Aβ (amyloid β-peptide) and hyperphosphorylated tau. The discovery of mutations in three genes, PSEN1 (presenilin 1), PSEN2 (presenilin 2) and APP (amyloid precursor protein), in patients with FAD (familial AD) has made an important contribution towards an understanding of the disease aetiology; however, a complete molecular mechanism is still lacking. Both presenilins belong to the γ-secretase complex, and serve as the catalytic entity needed for the final cleavage of APP into Aβ. PSEN only functions within the γ-secretase complex through intra- and inter-molecular interactions with three other membrane components, including nicastrin, Aph-1 (anterior pharynx defective-1) and Pen-2 (PSEN enhancer-2). However, although the list of γ-secretase substrates is still expanding, other non-catalytic activities of presenilins are also increasing the complexity behind its molecular contribution towards AD. These γ-secretase-independent roles are so far mainly attributed to PSEN1, including the transport of membrane proteins, cell adhesion, ER (endoplasmic reticulum) Ca(2+) regulation and cell signalling. In the present minireview, we discuss the current understanding of the γ-secretase-independent roles of PSENs and their possible implications in respect of AD.
Collapse
|
43
|
Zhang C, Browne A, Divito JR, Stevenson JA, Romano D, Dong Y, Xie Z, Tanzi RE. Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. J Alzheimers Dis 2011; 22:683-984. [PMID: 20847415 DOI: 10.3233/jad-2010-100816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mounting evidence suggests that Alzheimer's disease (AD) is caused by the accumulation of the small peptide, amyloid-β (Aβ), a proteolytic cleavage product of amyloid-β protein precursor (AβPP). Aβ is generated through a serial cleavage of AβPP by β- and γ-secretase. Aβ40 and Aβ42 are the two main components of amyloid plaques in AD brains, with Aβ42 being more prone to aggregation. AβPP can also be processed by α-secretase, which cleaves AβPP within the Aβ sequence, thereby preventing the generation of Aβ. Little is currently known regarding the effects of cell density on AβPP processing and Aβ generation. Here we assessed the effects of cell density on AβPP processing in neuronal and non-neuronal cell lines, as well as mouse primary cortical neurons. We found that decreased cell density significantly increases levels of Aβ40, Aβ42, total Aβ, and the ratio of Aβ42: Aβ40. These results also indicate that cell density is a significant modulator of AβPP processing. Overall, these findings carry profound implications for both previous and forthcoming studies aiming to assess the effects of various conditions and genetic/chemical factors, e.g., novel drugs on AβPP processing and Aβ generation in cell-based systems. Moreover, it is interesting to speculate whether cell density changes in vivo may also affect AβPP processing and Aβ levels in the AD brain.
Collapse
Affiliation(s)
- Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
De Strooper B, Annaert W. Novel Research Horizons for Presenilins and γ-Secretases in Cell Biology and Disease. Annu Rev Cell Dev Biol 2010; 26:235-60. [DOI: 10.1146/annurev-cellbio-100109-104117] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium; ,
| | - Wim Annaert
- Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium; ,
| |
Collapse
|
45
|
Bareiss S, Kim K, Lu Q. Delta-catenin/NPRAP: A new member of the glycogen synthase kinase-3beta signaling complex that promotes beta-catenin turnover in neurons. J Neurosci Res 2010; 88:2350-63. [PMID: 20623542 DOI: 10.1002/jnr.22414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Through a multiprotein complex, glycogen synthase kinase-3beta (GSK-3beta) phosphorylates and destabilizes beta-catenin, an important signaling event for neuronal growth and proper synaptic function. delta-Catenin, or NPRAP (CTNND2), is a neural enriched member of the beta-catenin superfamily and is also known to modulate neurite outgrowth and synaptic activity. In this study, we investigated the possibility that delta-catenin expression is also affected by GSK-3beta signaling and participates in the molecular complex regulating beta-catenin turnover in neurons. Immunofluorescent light microscopy revealed colocalization of delta-catenin with members of the molecular destruction complex: GSK-3beta, beta-catenin, and adenomatous polyposis coli proteins in rat primary neurons. GSK-3beta formed a complex with delta-catenin, and its inhibition resulted in increased delta-catenin and beta-catenin expression levels. LY294002 and amyloid peptide, known activators of GSK-3beta signaling, reduced delta-catenin expression levels. Furthermore, delta-catenin immunoreactivity increased and protein turnover decreased when neurons were treated with proteasome inhibitors, suggesting that the stability of delta-catenin, like that of beta-catenin, is regulated by proteasome-mediated degradation. Coimmunoprecipitation experiments showed that delta-catenin overexpression promoted GSK-3beta and beta-catenin interactions. Primary cortical neurons and PC12 cells expressing delta-catenin treated with proteasome inhibitors showed increased ubiquitinated beta-catenin forms. Consistent with the hypothesis that delta-catenin promotes the interaction of the destruction complex molecules, cycloheximide treatment of cells overexpressing delta-catenin showed enhanced beta-catenin turnover. These studies identify delta-catenin as a new member of the GSK-3beta signaling pathway and further suggest that delta-catenin is potentially involved in facilitating the interaction, ubiquitination, and subsequent turnover of beta-catenin in neuronal cells.
Collapse
Affiliation(s)
- Sonja Bareiss
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | |
Collapse
|
46
|
Céspedes-Rubio A, Jurado FW, Cardona-Gómez GP. p120 catenin/αN-catenin are molecular targets in the neuroprotection and neuronal plasticity mediated by atorvastatin after focal cerebral ischemia. J Neurosci Res 2010; 88:3621-34. [PMID: 20936696 DOI: 10.1002/jnr.22511] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 08/01/2010] [Accepted: 08/12/2010] [Indexed: 02/06/2023]
Abstract
Atorvastatin (ATV), a 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, exerts beneficial effects on stroke through several pleiotropic mechanisms. However, its role following cerebral ischemia is not completely understood yet. We evaluated the effect of ATV treatment on the synaptic adhesion proteins after a transient middle cerebral artery occlusion (t-MCAO) model in rats. Ischemic male Wistar rats were treated with 10 mg/kg ATV. The first dose was 6 hr after reperfusion, then every 24 hr for 3days. Our findings showed that ATV treatment produced an increase in pAkt ser473 and a decrease in pMAPK 44/42 protein levels 12 and 24 hr postischemia in the cerebral cortex and the hippocampus. However, p120 catenin and αN-catenin became drastically increased throughout the temporal course of postischemia treatment (12-72 hr), mainly in the hippocampus. Neurological recovery was observed at 48 and 72 hr, supported by a significant reduction of infarct volume, neuronal loss, and glial hyperreactivity after 72 hr of postischemia treatment with ATV. ATV treatment also up-regulated the association of p120(ctn) , αN-catenin to PSD-95, accompanied by a reduction of RhoA activation and the recovery of MAP2 immunoreactivity, these being significantly affected by the focal cerebral ischemia. Our findings suggested that p120(ctn) and αN-catenin synaptic adhesion proteins are crucial molecular targets in ATV-mediated neuroprotection and neuronal plasticity after focal cerebral ischemia.
Collapse
Affiliation(s)
- Angel Céspedes-Rubio
- Neuroscience Group, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
47
|
Schwarzman AL, Sarantseva SV, Runova OL, Talalaeva EI, Vitek MP. Familial Alzheimer’s disease mutations in the presenilin 1 gene reduce cell-cell adhesion in transfected fibroblasts. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2010; 2:a002915. [PMID: 20182623 DOI: 10.1101/cshperspect.a002915] [Citation(s) in RCA: 480] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling. Numerous experiments have shown that the loss of cadherin-mediated cell adhesion can promote beta-catenin release and signaling; this is accomplished by proteases, protein kinases and other molecules. Cadherin loss can also signal to several other regulatory pathways. Additionally, many target genes of Wnt signaling influence cadherin adhesion. The most conspicuous of these Wnt target genes encode the transcription factors Twist and Slug, which directly inhibit the E-cadherin gene promoter. Other Wnt/beta-catenin target genes encode metalloproteases or the cell adhesion molecule L1, which favor the degradation of E-cadherin. These factors provide a mechanism whereby cadherin loss and increased Wnt signaling induce epithelial-mesenchymal transition in both carcinomas and development.
Collapse
Affiliation(s)
- Julian Heuberger
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
49
|
Mitsuishi Y, Hasegawa H, Matsuo A, Araki W, Suzuki T, Tagami S, Okochi M, Takeda M, Roepman R, Nishimura M. Human CRB2 inhibits gamma-secretase cleavage of amyloid precursor protein by binding to the presenilin complex. J Biol Chem 2010; 285:14920-14931. [PMID: 20299451 DOI: 10.1074/jbc.m109.038760] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drosophila Crumbs has been reported to attenuate Notch signaling by inhibition of gamma-secretase cleavage at the wing margins. gamma-Secretase is an intramembrane protease that is responsible for the generation of amyloid-beta (Abeta) peptides from the beta-amyloid precursor protein (APP). Here, we re-examined gamma-secretase inhibition by human CRB2, which is the most abundant Crumbs ortholog in the brain. Transfected CRB2 inhibited proteolytic production of Abeta and APP intracellular domains from APP C-terminal fragments in HEK293 and SH-SY5Y cells. Conversely, knockdown of endogenous CRB2 increased gamma-secretase cleavage products in SH-SY5Y cells. CRB2 inhibition of gamma-cleavage was also detected in cell-free assays. CRB2 interacted with the gamma-secretase complex, but was not a competitive substrate for gamma-cleavage. The transmembrane domain of CRB2 was indispensable for inhibition of Abeta generation and mediated CRB2 binding with the gamma-secretase complex. In addition, the cytoplasmic domain appeared to play a supportive role in gamma-secretase inhibition, whereas mutational disruption of the two protein-binding motifs involved in the formation of cell adhesion complexes did not affect gamma-secretase inhibition. Co-overexpression of presenilin-1 or APH-1 abrogated gamma-secretase inhibition probably through prevention of the incorporation of CRB2 into the gamma-secretase complex. Our results suggest that CRB2 functions as an inhibitory binding protein that is involved in the formation of a mature but inactive pool of the gamma-secretase complex.
Collapse
Affiliation(s)
- Yachiyo Mitsuishi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hiroshi Hasegawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Akinori Matsuo
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Tokyo 187-8502, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Shinji Tagami
- Department of Post-Genomics and Diseases, Division of Psychiatry and Behavioral Proteomics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masayasu Okochi
- Department of Post-Genomics and Diseases, Division of Psychiatry and Behavioral Proteomics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masatoshi Takeda
- Department of Post-Genomics and Diseases, Division of Psychiatry and Behavioral Proteomics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan.
| |
Collapse
|
50
|
Delker DA, Geter DR, Roop BC, Ward WO, Ahlborn GJ, Allen JW, Nelson GM, Ouyang M, Welsh W, Chen Y, O'Brien T, Kitchin KT. Oncogene expression profiles in K6/ODC mouse skin and papillomas following a chronic exposure to monomethylarsonous acid. J Biochem Mol Toxicol 2010; 23:406-18. [PMID: 20024957 DOI: 10.1002/jbt.20304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously observed that a chronic drinking water exposure to monomethylarsonous acid [MMA(III)], a cellular metabolite of inorganic arsenic, increases tumor frequency in the skin of keratin VI/ornithine decarboxylase (K6/ODC) transgenic mice. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcinogenesis, skin and papilloma RNA was isolated from K6/ODC mice administered 0, 10, 50, and 100 ppm MMA(III) in their drinking water for 26 weeks. Following RNA processing, the resulting cRNA samples were hybridized to Affymetrix Mouse Genome 430A 2.0 GeneChips(R). Micoarray data were normalized using MAS 5.0 software, and statistically significant genes were determined using a regularized t-test. Significant changes in bZIP transcription factors, MAP kinase signaling, chromatin remodeling, and lipid metabolism gene transcripts were observed following MMA(III) exposure as determined using the Database for Annotation, Visualization and Integrated Discovery 2.1 (DAVID) (Dennis et al., Genome Biol 2003;4(5):P3). MMA(III) also caused dose-dependent changes in multiple Rho guanine nucleotide triphosphatase (GTPase) and cell cycle related genes as determined by linear regression analyses. Observed increases in transcript abundance of Fosl1, Myc, and Rac1 oncogenes in mouse skin support previous reports on the inducibility of these oncogenes in response to arsenic and support the relevance of these genomic changes in skin tumor induction in the K6/ODC mouse model.
Collapse
Affiliation(s)
- Don A Delker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development Environmental Carcinogenesis Division, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|