1
|
Ledger EVK, Lau K, Tate EW, Edwards AM. XerC Is Required for the Repair of Antibiotic- and Immune-Mediated DNA Damage in Staphylococcus aureus. Antimicrob Agents Chemother 2023; 67:e0120622. [PMID: 36802166 PMCID: PMC10019262 DOI: 10.1128/aac.01206-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
To survive in the host environment, pathogenic bacteria need to be able to repair DNA damage caused by both antibiotics and the immune system. The SOS response is a key bacterial pathway to repair DNA double-strand breaks and may therefore be a good target for novel therapeutics to sensitize bacteria to antibiotics and the immune response. However, the genes required for the SOS response in Staphylococcus aureus have not been fully established. Therefore, we carried out a screen of mutants involved in various DNA repair pathways to understand which were required for induction of the SOS response. This led to the identification of 16 genes that may play a role in SOS response induction and, of these, 3 that affected the susceptibility of S. aureus to ciprofloxacin. Further characterization revealed that, in addition to ciprofloxacin, loss of the tyrosine recombinase XerC increased the susceptibility of S. aureus to various classes of antibiotics, as well as to host immune defenses. Therefore, the inhibition of XerC may be a viable therapeutic approach to sensitize S. aureus to both antibiotics and the immune response.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Katie Lau
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Meng L, Gao X, Liu X, Sun M, Yan H, Li A, Yang Y, Bai Z. Enhancement of heterologous protein production in Corynebacterium glutamicum via atmospheric and room temperature plasma mutagenesis and high-throughput screening. J Biotechnol 2021; 339:22-31. [PMID: 34311028 DOI: 10.1016/j.jbiotec.2021.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
Atmospheric and room temperature plasma (ARTP) is a new and efficient mutation breeding technique. In this study, we discuss a strategy combining ARTP mutagenesis and high-throughput screening to engineer Corynebacterium glutamicum towards high yield production of heterologous proteins. First, three target strains, MC2, MA8, and MA6, were screened from the mutant library with enhanced green fluorescent protein (EGFP) as the reporter protein, and their growth stability and the influence of heterologous protein production were verified. Second, genes encoding three high-value medicinal proteins (glycoprotein D, gD; endoxylanase, XynA; and variable domain of heavy chain of heavy-chain antibody, VHH) were expressed in the mutagenized strain, which confirmed its applicability for an increased biosynthesis of other heterologous proteins. During the large-scale fermentation of C. glutamicum for VHH production, the fermentation characteristics of the best mutant MA6 were verified. Compared to the original strain, the yield of VHH obtained with strain MA6 was increased by nearly 91 % to approximately 862 mg/L. Finally, through systematic genome analysis mutations in five genes were obtained. These genes code for putative proteases or are potentially related to the bacterial restriction repair systems. These findings will help to obtain optimized chassis cells and provide a direction for in-depth research on genetic targets that can increase protein production.
Collapse
Affiliation(s)
- Lihong Meng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiuxia Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Manman Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - An Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Gonçalves OS, Santana MF. The coexistence of monopartite integrative and conjugative elements in the genomes of Acidobacteria. Gene 2021; 777:145476. [PMID: 33549716 DOI: 10.1016/j.gene.2021.145476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Soil bacteria can rapidly adapt to environmental perturbations through horizontal gene transfer. Acidobacteria is one of the most persistent dominant phyla in the soil. However, the role of these organisms in terrestrial ecosystems remains elusive. Here we identified and describe the integrative and conjugative elements (ICEs) in the published complete genomes of Acidobacteria. In total, ten novel ICEs were identified, in which nine were found integrated as three separated monopartite ICEs in the single chromosome sequences of three Acidobacteria. These ICEs carry a repertoire of genes with potential environmental roles, including heavy metal resistance, iron uptake, secondary metabolism, and antibiotic resistance. To our knowledge, these are the first evidence of three monopartite ICEs identified in the single chromosome, and this might be due to the absence of recognizable entry exclusion systems. We hypothesis that the coexistence of multiples ICEs in the chromosome of Acidobacteria might reflect a major advantage for the survival, resistance, and persistence of phylum in the environment.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | - Mateus Ferreira Santana
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil.
| |
Collapse
|
4
|
Lin DL, Traglia GM, Baker R, Sherratt DJ, Ramirez MS, Tolmasky ME. Functional Analysis of the Acinetobacter baumannii XerC and XerD Site-Specific Recombinases: Potential Role in Dissemination of Resistance Genes. Antibiotics (Basel) 2020; 9:E405. [PMID: 32668667 PMCID: PMC7399989 DOI: 10.3390/antibiotics9070405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Modules composed of a resistance gene flanked by Xer site-specific recombination sites, the vast majority of which were found in Acinetobacter baumannii, are thought to behave as elements that facilitate horizontal dissemination. The A. baumannii xerC and xerD genes were cloned, and the recombinant clones used to complement the cognate Escherichia coli mutants. The complemented strains supported the resolution of plasmid dimers, and, as is the case with E. coli and Klebsiella pneumoniae plasmids, the activity was enhanced when the cells were grown in a low osmolarity growth medium. Binding experiments showed that the partially purified A. baumannii XerC and XerD proteins (XerCAb and XerDAb) bound synthetic Xer site-specific recombination sites, some of them with a nucleotide sequence deduced from existing A. baumannii plasmids. Incubation with suicide substrates resulted in the covalent attachment of DNA to a recombinase, probably XerCAb, indicating that the first step in the recombination reaction took place. The results described show that XerCAb and XerDAb are functional proteins and support the hypothesis that they participate in horizontal dissemination of resistant genes among bacteria.
Collapse
Affiliation(s)
- David L. Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (D.L.L.); (M.S.R.)
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| | - German M. Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UDeLaR), Montevideo 11600, Uruguay;
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (D.L.L.); (M.S.R.)
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (D.L.L.); (M.S.R.)
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| |
Collapse
|
5
|
Shi L, Liang Q, Feng J, Zhan Z, Zhao Y, Yang W, Yang H, Chen Y, Huang M, Tong Y, Li X, Yin Z, Wang J, Zhou D. Coexistence of two novel resistance plasmids, bla KPC-2-carrying p14057A and tetA(A) -carrying p14057B, in Pseudomonas aeruginosa. Virulence 2017; 9:306-311. [PMID: 28891735 PMCID: PMC6205034 DOI: 10.1080/21505594.2017.1372082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Lining Shi
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Quanhui Liang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China.,c Department of Clinical Laboratory , the First People's Hospital of Foshan , Foshan , China
| | - Jiao Feng
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Zhe Zhan
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yachao Zhao
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Wenhui Yang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Huiying Yang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yong Chen
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Mei Huang
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Yigang Tong
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Xiaojun Li
- a Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University , Nanjing , China
| | - Zhe Yin
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Jinglin Wang
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Dongsheng Zhou
- b State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing , China
| |
Collapse
|
6
|
Xu Y, Niu Y, Sun F, Yang Y, Luo W, Wang Z. The novel Pseudomonas putida plasmid p12969-2 harbors an In127-carrying multidrug-resistant region. Future Microbiol 2017; 12:573-584. [PMID: 28660784 DOI: 10.2217/fmb-2016-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: This study aims to characterize a multidrug-resistant (MDR) plasmid p12969-2 coexistent with the previously reported one p12969-DIM in clinical Pseudomonas putida. Materials & methods: The complete sequence of p12969-2 was determined using next-generation sequencing technology. Results: p12969-2 contains a 29.2 kb MDR region, which carries In127 harboring three resistance genes aadA2, qacED1 and sul1. The MDR region is derived from the connection of Tn5041D and Tn5045, which is facilitated by two copies of miniature inverted-repeat transposable element. Conclusion & future perspective: p12969-2 represents a novel lineage with the highest but limited nucleotide sequence similarity with the plasmid pGRT1 that does not carry any of the resistance genes. This is the first report of coexistence of two MDR plasmids in P. putida.
Collapse
Affiliation(s)
- Yang Xu
- Department of Gynaecology & Obstetrics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yong Niu
- Criminal Investigation Bureau, Ministry of Public Security, Beijing 100741, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ying Yang
- Department of Gynaecology & Obstetrics, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhe Wang
- Department of Oncology & Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
7
|
Jo M, Murayama Y, Tsutsui Y, Iwasaki H. In vitro site-specific recombination mediated by the tyrosine recombinase XerA of Thermoplasma acidophilum. Genes Cells 2017; 22:646-661. [PMID: 28557347 DOI: 10.1111/gtc.12503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/24/2017] [Indexed: 11/27/2022]
Abstract
In organisms with circular chromosomes, such as bacteria and archaea, an odd number of homologous recombination events can generate a chromosome dimer. Such chromosome dimers cannot be segregated unless they are converted to monomers before cell division. In Escherichia coli, dimer-to-monomer conversion is mediated by the paralogous XerC and XerD recombinases at a specific dif site in the replication termination region. Dimer resolution requires the highly conserved cell division protein/chromosome translocase FtsK, and this site-specific chromosome resolution system is present or predicted in most bacteria. However, most archaea have only XerA, a homologue of the bacterial XerC/D proteins, but no homologues of FtsK. In addition, the molecular mechanism of XerA-mediated chromosome resolution in archaea has been less thoroughly elucidated than those of the corresponding bacterial systems. In this study, we identified two XerA-binding sites (dif1 and dif2) in the Thermoplasma acidophilum chromosome. In vitro site-specific recombination assays showed that dif2, but not dif1, serves as a target site for XerA-mediated chromosome resolution. Mutational analysis indicated that not only the core consensus sequence of dif2, but also its flanking regions play important roles in the recognition and recombination reactions mediated by XerA.
Collapse
Affiliation(s)
- Minji Jo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuto Murayama
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuhiro Tsutsui
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hiroshi Iwasaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
8
|
Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017; 8:453. [PMID: 28373867 PMCID: PMC5357621 DOI: 10.3389/fmicb.2017.00453] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which is located at the replication terminus region of the chromosome. The septal protein FtsK controls the initiation of the dimer resolution reaction, so that recombination occurs at the right time (immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp recombination site (difSL). A similar recombination system has also been found in 𝜀-proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, several mobile elements have been found to exploit the dif/Xer system to integrate their genomes into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae, and Enterobacter cloacae. This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and summarizes our current understanding of homologs of dif/Xer machineries.
Collapse
Affiliation(s)
- Fabio Castillo
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| | | | - George Szatmari
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| |
Collapse
|
9
|
Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction. Sci Rep 2016; 6:33357. [PMID: 27708355 PMCID: PMC5052618 DOI: 10.1038/srep33357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022] Open
Abstract
Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data.
Collapse
|
10
|
Abstract
Transposons of the Tn3 family form a widespread and remarkably homogeneous group of bacterial transposable elements in terms of transposition functions and an extremely versatile system for mediating gene reassortment and genomic plasticity owing to their modular organization. They have made major contributions to antimicrobial drug resistance dissemination or to endowing environmental bacteria with novel catabolic capacities. Here, we discuss the dynamic aspects inherent to the diversity and mosaic structure of Tn3-family transposons and their derivatives. We also provide an overview of current knowledge of the replicative transposition mechanism of the family, emphasizing most recent work aimed at understanding this mechanism at the biochemical level. Previous and recent data are put in perspective with those obtained for other transposable elements to build up a tentative model linking the activities of the Tn3-family transposase protein with the cellular process of DNA replication, suggesting new lines for further investigation. Finally, we summarize our current view of the DNA site-specific recombination mechanisms responsible for converting replicative transposition intermediates into final products, comparing paradigm systems using a serine recombinase with more recently characterized systems that use a tyrosine recombinase.
Collapse
|
11
|
Jo CH, Kim J, Han AR, Park SY, Hwang KY, Nam KH. Crystal structure of Thermoplasma acidophilum XerA recombinase shows large C-shape clamp conformation and cis-cleavage mode for nucleophilic tyrosine. FEBS Lett 2016; 590:848-56. [PMID: 26919387 DOI: 10.1002/1873-3468.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/08/2022]
Abstract
Site-specific Xer recombination plays a pivotal role in reshuffling genetic information. Here, we report the 2.5 Å crystal structure of XerA from the archaean Thermoplasma acidophilum. Crystallographic data reveal a uniquely open conformational state, resulting in a C-shaped clamp with an angle of ~ 48° and a distance of 57 Å between the core-binding and the catalytic domains. The catalytic nucleophile, Tyr264, is positioned in cis-cleavage mode by XerA's C-term tail that interacts with the CAT domain of a neighboring monomer without DNA substrate. Structural comparisons of tyrosine recombinases elucidate the dynamics of Xer recombinase.
Collapse
Affiliation(s)
- Chang Hwa Jo
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Junsoo Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ah-reum Han
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sam Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ki Hyun Nam
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Kyungbuk, Korea
| |
Collapse
|
12
|
Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2016; 2. [PMID: 26104463 DOI: 10.1128/microbiolspec.mdna3-0056-2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two related tyrosine recombinases, XerC and XerD, are encoded in the genome of most bacteria where they serve to resolve dimers of circular chromosomes by the addition of a crossover at a specific site, dif. From a structural and biochemical point of view they belong to the Cre resolvase family of tyrosine recombinases. Correspondingly, they are exploited for the resolution of multimers of numerous plasmids. In addition, they are exploited by mobile DNA elements to integrate into the genome of their host. Exploitation of Xer is likely to be advantageous to mobile elements because the conservation of the Xer recombinases and of the sequence of their chromosomal target should permit a quite easy extension of their host range. However, it requires means to overcome the cellular mechanisms that normally restrict recombination to dif sites harbored by a chromosome dimer and, in the case of integrative mobile elements, to convert dedicated tyrosine resolvases into integrases.
Collapse
|
13
|
Abstract
One of the disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of crossing-over occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused. If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division. Resolution of multimeric forms of circular plasmids and chromosomes is mediated by site-specific recombination, and the enzymes that catalyze this type of reaction fall into two families of proteins: the serine and tyrosine recombinase families. Here we give an overview of the variety of site-specific resolution systems found on circular plasmids and chromosomes.
Collapse
|
14
|
Harmer CJ, Hall RM. The A to Z of A/C plasmids. Plasmid 2015; 80:63-82. [DOI: 10.1016/j.plasmid.2015.04.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
15
|
Guo X, Yin H, Liang Y, Hu Q, Zhou X, Xiao Y, Ma L, Zhang X, Qiu G, Liu X. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST. PLoS One 2014; 9:e99417. [PMID: 24940621 PMCID: PMC4062416 DOI: 10.1371/journal.pone.0099417] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/14/2014] [Indexed: 12/21/2022] Open
Abstract
The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs). The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal resistance systems to adapt the heavy metal-containing environments.
Collapse
Affiliation(s)
- Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Qi Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xishu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Liyuan Ma
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
16
|
Diagne CT, Salhi M, Crozat E, Salomé L, Cornet F, Rousseau P, Tardin C. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse. Nucleic Acids Res 2013; 42:1721-32. [PMID: 24214995 PMCID: PMC3919580 DOI: 10.1093/nar/gkt1024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.
Collapse
Affiliation(s)
- Cheikh Tidiane Diagne
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne BP 64182, F-31077 Toulouse, France, Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France, Université de Toulouse; UPS; LMGM (Laboratoire de Microbiologie et Génétique Moléculaires); F-31062 Toulouse, France and CNRS; LMGM; F-31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 2012; 21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022]
Abstract
Integrative mobile genetic elements directly participate in the rapid response of bacteria to environmental challenges. They generally encode their own dedicated recombination machineries. CTXφ, a filamentous bacteriophage that harbors the genes encoding cholera toxin in Vibrio cholerae provided the first notable exception to this rule: it hijacks XerC and XerD, two chromosome-encoded tyrosine recombinases for lysogenic conversion. XerC and XerD are highly conserved in bacteria because of their role in the topological maintenance of circular chromosomes and, with the advent of high throughput sequencing, numerous other integrative mobile elements exploiting them have been discovered. Here, we review our understanding of the molecular mechanisms of integration of the different integrative mobile elements exploiting Xer (IMEXs) so far described.
Collapse
Affiliation(s)
- Bhabatosh Das
- CNRS, Centre de Génétique Moléculaire, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
18
|
Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012; 31:3757-67. [PMID: 22863778 PMCID: PMC3442271 DOI: 10.1038/emboj.2012.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/13/2012] [Indexed: 02/02/2023] Open
Abstract
Integration of toxin-producing phage into the Vibrio cholerae genome co-opts not only bacterial recombinases, but also a host excision repair enzyme, assigning it an unsuspected structural role. Toxigenic conversion of Vibrio cholerae bacteria results from the integration of a filamentous phage, CTXϕ. Integration is driven by the bacterial Xer recombinases, which catalyse the exchange of a single pair of strands between the phage single-stranded DNA and the host double-stranded DNA genomes; replication is thought to convert the resulting pseudo-Holliday junction (HJ) intermediate into the final recombination product. The natural tendency of the Xer recombinases to recycle HJ intermediates back into substrate should thwart this integration strategy, which prompted a search for additional co-factors aiding directionality of the process. Here, we show that Endo III, a ubiquitous base excision repair enzyme, facilitates CTXϕ-integration in vivo. In vitro, we show that it prevents futile Xer recombination cycles by impeding new rounds of strand exchanges once the pseudo-HJ is formed. We further demonstrate that this activity relies on the unexpected ability of Endo III to bind to HJs even in the absence of the recombinases. These results explain how tandem copies of the phage genome can be created, which is crucial for subsequent virion production.
Collapse
|
19
|
Brankatschk K, Blom J, Goesmann A, Smits T, Duffy B. Comparative genomic analysis of Salmonella enterica subsp. enterica serovar Weltevreden foodborne strains with other serovars. Int J Food Microbiol 2012; 155:247-56. [DOI: 10.1016/j.ijfoodmicro.2012.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/14/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022]
|
20
|
Small plasmids harboring qnrB19: a model for plasmid evolution mediated by site-specific recombination at oriT and Xer sites. Antimicrob Agents Chemother 2012; 56:1821-7. [PMID: 22290975 DOI: 10.1128/aac.06036-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids pPAB19-1, pPAB19-2, pPAB19-3, and pPAB19-4, isolated from Salmonella and Escherichia coli clinical strains from hospitals in Argentina, were completely sequenced. These plasmids include the qnrB19 gene and are 2,699, 3,082, 2,989, and 2,702 nucleotides long, respectively, and they share extensive homology among themselves and with other previously described small qnrB19-harboring plasmids. The genetic environment of qnrB19 in all four plasmids is identical to that in these other plasmids and in transposons such as Tn2012, Tn5387, and Tn5387-like. Nucleotide sequence comparisons among these and previously described plasmids showed a variable region characterized by being flanked by an oriT locus and a Xer recombination site. We propose that this arrangement could play a role in the evolution of plasmids and present a model for DNA swapping between plasmid molecules mediated by site-specific recombination events at oriT and a Xer target site.
Collapse
|
21
|
Grainge I, Lesterlin C, Sherratt DJ. Activation of XerCD-dif recombination by the FtsK DNA translocase. Nucleic Acids Res 2011; 39:5140-8. [PMID: 21371996 PMCID: PMC3130261 DOI: 10.1093/nar/gkr078] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.
Collapse
Affiliation(s)
- Ian Grainge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|
22
|
Vanhooff V, Normand C, Galloy C, Segall AM, Hallet B. Control of directionality in the DNA strand-exchange reaction catalysed by the tyrosine recombinase TnpI. Nucleic Acids Res 2009; 38:2044-56. [PMID: 20044348 PMCID: PMC2847244 DOI: 10.1093/nar/gkp1187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1–IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1–DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed.
Collapse
Affiliation(s)
- Virginie Vanhooff
- Unité de Génétique, Institut des Sciences de la Vie, UCLouvain, 5/6 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
23
|
fpr, a deficient Xer recombination site from a Salmonella plasmid, fails to confer stability by dimer resolution: comparative studies with the pJHCMW1 mwr site. J Bacteriol 2009; 192:883-7. [PMID: 19966005 DOI: 10.1128/jb.01082-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella plasmid pFPTB1 includes a Tn3-like transposon and a Xer recombination site, fpr, which mediates site-specific recombination at efficiencies lower than those required for stabilizing a plasmid by dimer resolution. Mutagenesis and comparative studies with mwr, a site closely related to fpr, indicate that there is an interdependence of the sequences in the XerC binding region and the central region in Xer site-specific recombination sites.
Collapse
|
24
|
Laprise J, Yoneji S, Gardner JF. Homology-dependent interactions determine the order of strand exchange by IntDOT recombinase. Nucleic Acids Res 2009; 38:958-69. [PMID: 19952068 PMCID: PMC2817482 DOI: 10.1093/nar/gkp927] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Bacteroides conjugative transposon CTnDOT encodes an integrase, IntDOT, which is a member of the tyrosine recombinase family. Other members of this group share a strict requirement for sequence identity within the region of strand exchange, called the overlap region. Tyrosine recombinases catalyze recombination by making an initial cleavage, strand exchange and ligation, followed by strand swapping isomerization requiring sequence identity in the overlap region, followed by the second cleavage, strand exchange and ligation. IntDOT is of particular interest because it has been shown to utilize a three-step mechanism: a sequence identity-dependent initial strand exchange that requires two base pairs of complementary DNA at the site of cleavage; a sequence identity-independent strand swapping isomerization, followed by a sequence identity-independent cleavage, strand exchange and ligation. In addition to the sequence identity requirement in the overlap region, Lambda Int interactions with arm-type sites dictate the order of strand exchange regardless of the orientation of the overlap region. Although IntDOT has an arm-binding domain, we show here that the location of sequence identity within the overlap region dictates where the initial cleavage takes place and that IntDOT can recombine substrates containing mismatches in the overlap region so long as a single base of sequence identity exists at the site of initial cleavage.
Collapse
Affiliation(s)
- Jennifer Laprise
- Department of Microbiology and College of Medicine, University of Illinois, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
25
|
Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination. EMBO J 2009; 28:1745-56. [PMID: 19440204 DOI: 10.1038/emboj.2009.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/21/2009] [Indexed: 11/08/2022] Open
Abstract
Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3'-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns.
Collapse
|
26
|
Gelato KA, Martin SS, Liu PH, Saunders AA, Baldwin EP. Spatially directed assembly of a heterotetrameric Cre-Lox synapse restricts recombination specificity. J Mol Biol 2008; 378:653-65. [PMID: 18374357 DOI: 10.1016/j.jmb.2008.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/13/2008] [Accepted: 02/25/2008] [Indexed: 12/21/2022]
Abstract
The pseudo-fourfold homotetrameric synapse formed by Cre protein and target DNA restricts site-specific recombination to sequences containing dyad-symmetric Cre-binding repeats. Mixtures of engineered altered-specificity Cre monomers can form heterotetramers that recombine nonidentical asymmetric sequences, allowing greater flexibility for target site selection in the genome of interest. However, the variety of tetramers allowed by random subunit association increases the chances of unintended reactivity at nontarget sites. This problem can be circumvented by specifying a unique spatial arrangement of heterotetramer subunits. By reconfiguring intersubunit protein-protein contacts, we directed the assembly of two different Cre monomers, each having a distinct DNA sequence specificity, in an alternating (ABAB) configuration. This designed heterotetramer preferentially recombined a particular pair of asymmetric Lox sites over other pairs, whereas a mixture of freely associating subunits showed little bias. Alone, the engineered monomers had reduced reactivity towards both dyad-symmetric and asymmetric sites. Specificity arose because the organization of Cre-binding repeats of the preferred substrate matched the programmed arrangement of the subunits in the heterotetrameric synapse. When this "spatial matching" principle is applied, Cre-mediated recombination can be directed to asymmetric DNA sequences with greater fidelity.
Collapse
Affiliation(s)
- Kathy A Gelato
- Biochemistry and Molecular Biology Graduate Group, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Le Bourgeois P, Bugarel M, Campo N, Daveran-Mingot ML, Labonté J, Lanfranchi D, Lautier T, Pagès C, Ritzenthaler P. The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet 2007; 3:e117. [PMID: 17630835 PMCID: PMC1914069 DOI: 10.1371/journal.pgen.0030117] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/04/2007] [Indexed: 11/19/2022] Open
Abstract
Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving two paralogous tyrosine recombinases, XerC and XerD, and a 28-bp recombination site (dif) located at the junction of the two replication arms. Xer recombination is tightly controlled by the septal protein FtsK. XerCD recombinases and FtsK are found on most sequenced eubacterial genomes, suggesting that the Xer recombination system as described in E. coli is highly conserved among prokaryotes. We show here that Streptococci and Lactococci carry an alternative Xer recombination machinery, organized in a single recombination module. This corresponds to an atypical 31-bp recombination site (dif(SL)) associated with a dedicated tyrosine recombinase (XerS). In contrast to the E. coli Xer system, only a single recombinase is required to recombine dif(SL), suggesting a different mechanism in the recombination process. Despite this important difference, XerS can only perform efficient recombination when dif(SL) sites are located on chromosome dimers. Moreover, the XerS/dif(SL) recombination requires the streptococcal protein FtsK(SL), probably without the need for direct protein-protein interaction, which we demonstrated to be located at the division septum of Lactococcus lactis. Acquisition of the XerS recombination module can be considered as a landmark of the separation of Streptococci/Lactococci from other firmicutes and support the view that Xer recombination is a conserved cellular function in bacteria, but that can be achieved by functional analogs.
Collapse
Affiliation(s)
- Pascal Le Bourgeois
- Laboratoire de Microbiologie et Génétique Microbienne, CNRS, Université Paul Sabatier, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vanhooff V, Galloy C, Agaisse H, Lereclus D, Révet B, Hallet B. Self-control in DNA site-specific recombination mediated by the tyrosine recombinase TnpI. Mol Microbiol 2006; 60:617-29. [PMID: 16629665 DOI: 10.1111/j.1365-2958.2006.05127.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tn4430 is a distinctive transposon of the Tn3 family that encodes a tyrosine recombinase (TnpI) to resolve replicative transposition intermediates. The internal resolution site of Tn4430 (IRS, 116 bp) contains two inverted repeats (IR1 and IR2) at the crossover core site, and two additional TnpI binding motifs (DR1 and DR2) adjacent to the core. Deletion analysis demonstrated that DR1 and DR2 are not required for recombination in vivo and in vitro. Their function is to provide resolution selectivity to the reaction by stimulating recombination between directly oriented sites on a same DNA molecule. In the absence of DR1 and/or DR2, TnpI-mediated recombination of supercoiled DNA substrates gives a mixture of topologically variable products, while deletion between two wild-type IRSs exclusively produces two-noded catenanes. This demonstrates that TnpI binding to the accessory motifs DR1 and DR2 contributes to the formation of a specific synaptic complex in which catalytically inert recombinase subunits act as architectural elements to control recombination sites pairing and strand exchange. A model for the organization of TnpI/IRS recombination complex is presented.
Collapse
Affiliation(s)
- Virginie Vanhooff
- Unité de Génétique, Institut des Sciences de la Vie, Université Catholique de Louvain, 5/6 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
Yates J, Zhekov I, Baker R, Eklund B, Sherratt DJ, Arciszewska LK. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase. Mol Microbiol 2006; 59:1754-66. [PMID: 16553881 PMCID: PMC1413583 DOI: 10.1111/j.1365-2958.2005.05033.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsKC, which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsKC interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the ‘bottom’ strand. The resulting recombinase–DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsKC-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD–FtsKC interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.
Collapse
Affiliation(s)
| | | | | | | | - David J Sherratt
- *For correspondence. E-mail ; Tel. (+44) 1865 275 296; Fax (+44) 1865 275 297
| | | |
Collapse
|
30
|
Bui D, Ramiscal J, Trigueros S, Newmark JS, Do A, Sherratt DJ, Tolmasky ME. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes. J Bacteriol 2006; 188:2812-20. [PMID: 16585742 PMCID: PMC1446988 DOI: 10.1128/jb.188.8.2812-2820.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xer-mediated dimer resolution at the mwr site of the multiresistance plasmid pJHCMW1 is osmoregulated in Escherichia coli containing either the Escherichia coli Xer recombination machinery or Xer recombination elements from K. pneumoniae. In the presence of K. pneumoniae XerC (XerC(Kp)), the efficiency of recombination is lower than that in the presence of the E. coli XerC (XerC(Ec)) and the level of dimer resolution is insufficient to stabilize the plasmid, even at low osmolarity. This lower efficiency of recombination at mwr is observed in the presence of E. coli or K. pneumoniae XerD proteins. Mutagenesis experiments identified a region near the N terminus of XerC(Kp) responsible for the lower level of recombination catalyzed by XerC(Kp) at mwr. This region encompasses the second half of the predicted alpha-helix B and the beginning of the predicted alpha-helix C. The efficiencies of recombination at other sites such as dif or cer in the presence of XerC(Kp) or XerC(Ec) are comparable. Therefore, XerC(Kp) is an active recombinase whose action is impaired on the mwr recombination site. This characteristic may result in restriction of the host range of plasmids carrying this site, a phenomenon that may have important implications in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Duyen Bui
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Akopian A, Gourlay S, James H, Colloms SD. Communication between accessory factors and the Cre recombinase at hybrid psi-loxP sites. J Mol Biol 2006; 357:1394-408. [PMID: 16487975 DOI: 10.1016/j.jmb.2006.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 11/19/2022]
Abstract
By placing loxP adjacent to the accessory sequences from the Xer/psi multimer resolution system, we have imposed topological selectivity and specificity on Cre/loxP recombination. In this hybrid recombination system, the Xer accessory protein PepA binds to psi accessory sequences, interwraps them, and brings the loxP sites together such that the product of recombination is a four-node catenane. Here, we investigate communication between PepA and Cre by varying the distance between loxP and the accessory sequences, and by altering the orientation of loxP. The yield of four-node catenane and the efficiency of recombination in the presence of PepA varied with the helical phase of loxP with respect to the accessory sequences. When the orientation of loxP was reversed, or when half a helical turn was added between the accessory sequences and loxP, PepA reversed the preferred order of strand exchange by Cre at loxP. The results imply that PepA and the accessory sequences define precisely the geometry of the synapse formed by the loxP sites, and that this overcomes the innate preference of Cre to initiate recombination on the bottom strand of loxP. Further analysis of our results demonstrates that PepA can stimulate strand exchange by Cre in two distinct synaptic complexes, with the C-terminal domains of Cre facing either towards or away from PepA. Thus, no specific PepA-recombinase interaction is required, and correct juxtaposition of the loxP sites is sufficient to activate Cre in this system.
Collapse
Affiliation(s)
- Aram Akopian
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, Anderson College, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
32
|
Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 2005; 19:559-66. [PMID: 16109379 DOI: 10.1016/j.molcel.2005.07.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/31/2005] [Accepted: 07/05/2005] [Indexed: 12/12/2022]
Abstract
A major determinant of Vibrio cholerae pathogenicity, the cholera enterotoxin, is encoded in the genome of an integrated phage, CTXvarphi. CTXvarphi integration depends on two host-encoded tyrosine recombinases, XerC and XerD. It occurs at dif1, a 28 bp site on V. cholerae chromosome 1 normally used by XerCD for chromosome dimer resolution. The replicative form of the phage contains two pairs of binding sites for XerC and XerD in inverted orientations. Here we show that in the single-stranded genome of the phage, these sites fold into a hairpin structure, which creates a recombination target for XerCD. In the presence of XerD, XerC can catalyze a single pair of strand exchanges between this target and dif1, resulting in integration of the phage. This integration strategy explains why the rules that normally apply to tyrosine recombinase reactions seemed not to apply to CTXvarphi integration and, in particular, why integration is irreversible.
Collapse
Affiliation(s)
- Marie-Eve Val
- Centre de Génétique Moléculaire, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Hazelbaker D, Radman-Livaja M, Landy A. Receipt of the C-terminal tail from a neighboring lambda Int protomer allosterically stimulates Holliday junction resolution. J Mol Biol 2005; 351:948-55. [PMID: 16054645 PMCID: PMC1805820 DOI: 10.1016/j.jmb.2005.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 06/29/2005] [Indexed: 11/19/2022]
Abstract
Bacteriophage lambda integrase (Int) catalyzes the integration and excision of the phage lambda chromosome into and out of the Esherichia coli host chromosome. The seven carboxy-terminal residues (C-terminal tail) of Int comprise a context-sensitive regulatory element that links catalytic function with protein multimerization and also coordinates Int functions within the multimeric recombinogenic complex. The experiments reported here show that the beta5-strand of Int is not simply a placeholder for the C-terminal tail but rather exerts its own allosteric effects on Int function in response to the incoming tail. Using a mutant integrase in which the C-terminal tail has been deleted (W350ter), we demonstrate that the C-terminal tail is required for efficient and accurate resolution of Holliday junctions by tetrameric Int. Addition of a free heptameric peptide of the same sequence as the C-terminal tail partially reverses the W350ter defects by stimulating Holliday junction resolution. The peptide also stimulates the topoisomerase function of monomeric W350ter. Single residue alterations in the peptide sequence and a mutant of the beta5 strand indicate that the observed stimulation arises from specific contacts with the beta5 strand (residues 239-243). The peptide does not stimulate binding of W350ter to its cognate DNA sites and therefore appears to recapitulate the effects of the normal C-terminal tail intermolecular contacts in wild-type Int. Models for the allosteric stimulation of Int activity by beta5 strand contacts are discussed.
Collapse
Affiliation(s)
- Dane Hazelbaker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
34
|
Lesterlin C, Barre FX, Cornet F. Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 2005; 54:1151-60. [PMID: 15554958 DOI: 10.1111/j.1365-2958.2004.04356.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic recombination is central to DNA metabolism. It promotes sequence diversity and maintains genome integrity in all organisms. However, it can have perverse effects and profoundly influence the cell cycle. In bacteria harbouring circular chromosomes, recombination frequently has an unwanted outcome, the formation of chromosome dimers. Dimers form by homologous recombination between sister chromosomes and are eventually resolved by the action of two site-specific recombinases, XerC and XerD, at their target site, dif, located in the replication terminus of the chromosome. Studies of the Xer system and of the modalities of dimer formation and resolution have yielded important knowledge on how both homologous and site-specific recombination are controlled and integrated in the cell cycle. Here, we briefly review these advances and highlight the important questions they raise.
Collapse
Affiliation(s)
- Christian Lesterlin
- Laboratoire de Microbiologie et de Génétique Moléculaire, 118, route de Narbonne, F-31062 Toulouse Cedex, France.
| | | | | |
Collapse
|
35
|
Lee SY, Radman-Livaja M, Warren D, Aihara H, Ellenberger T, Landy A. Non-equivalent interactions between amino-terminal domains of neighboring lambda integrase protomers direct Holliday junction resolution. J Mol Biol 2005; 345:475-85. [PMID: 15581892 DOI: 10.1016/j.jmb.2004.10.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 10/21/2004] [Indexed: 11/28/2022]
Abstract
The bacteriophage lambda site-specific recombinase (Int), in contrast to other family members such as Cre and Flp, has an amino-terminal domain that binds "arm-type" DNA sequences different and distant from those involved in strand exchange. This defining feature of the heterobivalent recombinases confers a directionality and regulation that is unique among all recombination pathways. We show that the amino-terminal domain is not a simple "accessory" element, as originally thought, but rather is incorporated into the core of the recombination mechanism, where it is well positioned to exert its profound effects. The results reveal an unexpected pattern of intermolecular interactions between the amino-terminal domain of one protomer and the linker region of its neighbor within the tetrameric Int complex and provide insights into those features distinguishing an "active" from an "inactive" pair of Ints during Holliday junction resolution.
Collapse
Affiliation(s)
- Sang Yeol Lee
- Division of Biology and Medicine, Brown University, 69 Brown Street, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lee L, Sadowski PD. Strand Selection by the Tyrosine Recombinases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:1-42. [PMID: 16164971 DOI: 10.1016/s0079-6603(05)80001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Linda Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
37
|
Bankhead T, Chaconas G. Mixing active-site components: a recipe for the unique enzymatic activity of a telomere resolvase. Proc Natl Acad Sci U S A 2004; 101:13768-73. [PMID: 15365172 PMCID: PMC518831 DOI: 10.1073/pnas.0405762101] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 11/18/2022] Open
Abstract
The ResT protein, a telomere resolvase from Borrelia burgdorferi, processes replication intermediates into linear replicons with hairpin ends by using a catalytic mechanism similar to that for tyrosine recombinases and type IB topoisomerases. We have identified in ResT a hairpin binding region typically found in cut-and-paste transposases. We show that substitution of residues within this region results in a decreased ability of these mutants to catalyze telomere resolution. However, the mutants are capable of resolving heteroduplex DNA substrates designed to allow spontaneous destabilization and prehairpin formation. These findings support the existence of a hairpin binding region in ResT, the only known occurrence outside a transposase. The combination of transposase-like and tyrosine-recombinase-like domains found in ResT indicates the use of a composite active site and helps explain the unique breakage-and-reunion reaction observed with this protein. Comparison of the ResT sequence with other known telomere resolvases suggests that a hairpin binding motif is a common feature in this class of enzyme; the sequence motif also appears in the RAG recombinases. Finally, our data support a mechanism of action whereby ResT induces prehairpin formation before the DNA cleavage step.
Collapse
Affiliation(s)
- Troy Bankhead
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
38
|
Gourlay SC, Colloms SD. Control of Cre recombination by regulatory elements from Xer recombination systems. Mol Microbiol 2004; 52:53-65. [PMID: 15049810 DOI: 10.1111/j.1365-2958.2003.03962.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific recombination by the Cre recombinase takes place at a simple DNA site (loxP), requires no additional proteins and gives topologically simple recombination products. In contrast, cer and psi sites for Xer recombination contain approximately 150 bp of accessory sequences, require accessory proteins PepA, ArgR and ArcA, and the products are specifically linked to form a four-noded catenane. Here, we use hybrid sites consisting of accessory sequences of cer or psi fused to loxP to probe the function of accessory proteins in site-specific recombination. We show that PepA instructs Cre to produce four-noded catenane, but is not required for recombination at these hybrid sites. Mutants of Cre that require PepA and accessory sequences for efficient recombination were selected. PepA-dependent Cre gave products with a specific topology and displayed resolution selectivity. Our results reveal that PepA acts autonomously in the synapsis of psi and cer accessory sequences and is the main architectural element responsible for intertwining accessory site DNA. We suggest that accessory proteins can activate recombinases simply by synapsing the regulatory DNA sequences, thus bringing the recombination sites together with a specific geometry. This may occur without the need for protein-protein interactions between accessory proteins and the recombinases.
Collapse
Affiliation(s)
- Sarah C Gourlay
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | |
Collapse
|
39
|
Konieczka JH, Paek A, Jayaram M, Voziyanov Y. Recombination of Hybrid Target Sites by Binary Combinations of Flp Variants: Mutations that Foster Interprotomer Collaboration and Enlarge Substrate Tolerance. J Mol Biol 2004; 339:365-78. [PMID: 15136039 DOI: 10.1016/j.jmb.2004.03.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 03/18/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
Strategies of directed evolution and combinatorial mutagenesis applied to the Flp site-specific recombinase have yielded recombination systems that utilize bi-specific hybrid target sites. A hybrid site is assembled from two half-sites, each harboring a distinct binding specificity. Satisfying the two specificities by a binary combination of Flp variants, while necessary, may not be sufficient to elicit recombination. We have identified amino acid substitutions that foster interprotomer collaboration between partner Flp variants to potentiate strand exchange in hybrid sites. One such substitution, A35T, acts specifically in cis with one of the two partners of a variant pair, Flp(K82M) and Flp(A35T, R281V). The same A35T mutation is also present within a group of mutations that rescue a Flp variant, Flp(Y60S), that is defective in establishing monomer-monomer interactions on the native Flp target site. Strikingly, these mutations are localized to peptide regions involved in interdomain and interprotomer interactions within the recombination complex. The same group of mutations, when transferred to the context of wild-type Flp, can relax its specificity to include non-native target sites. The hybrid Flp systems described here mimic the naturally occurring XerC/XerD recombination system that utilizes two recombinases with distinct DNA binding specificities. The ability to overcome the constraints of binding site symmetry in Flp recombination has important implications in the targeted manipulations of genomes.
Collapse
Affiliation(s)
- Jay H Konieczka
- Molecular Genetics and Microbiology, University of Texas, Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | | | | | | |
Collapse
|
40
|
Jayaram M, Mehta S, Uzri D, Voziyanov Y, Velmurugan S. Site-specific recombination and partitioning systems in the stable high copy propagation of the 2-micron yeast plasmid. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:127-72. [PMID: 15196892 DOI: 10.1016/s0079-6603(04)77004-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Makkuni Jayaram
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
41
|
Villion M, Szatmari G. The XerC recombinase of Proteus mirabilis: characterization and interaction with other tyrosine recombinases. FEMS Microbiol Lett 2003; 226:65-71. [PMID: 13129609 DOI: 10.1016/s0378-1097(03)00577-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
XerC and XerD are two site-specific recombinases, which act on different sites to maintain replicons in a monomeric state. This system, which was first discovered and studied in Escherichia coli, is present in several species including Proteus mirabilis, where the XerD recombinase was previously characterized by our laboratory. In this paper, we report the presence of the xerC gene in P. mirabilis. Using in vitro reactions, we show that the two P. mirabilis recombinases display binding and cleavage activity on the E. coli dif site and the ColE1 cer site, together or in collaboration with E. coli recombinases. In vivo, P. mirabilis XerC and XerD are able to resolve and monomerize a plasmid containing two cer sites, increasing its stability. However, P. mirabilis XerC, in combination with E. coli XerD, is unable to perform these functions.
Collapse
Affiliation(s)
- Manuela Villion
- Département de microbiologie et immunologie, Université de Montréal, CP 6128, Succ. Centre-Ville, H3C 3J7, Montreal, QC, Canada
| | | |
Collapse
|
42
|
Yates J, Aroyo M, Sherratt DJ, Barre FX. Species specificity in the activation of Xer recombination at dif by FtsK. Mol Microbiol 2003; 49:241-9. [PMID: 12823825 DOI: 10.1046/j.1365-2958.2003.03574.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, chromosome dimers are resolved to monomers by the addition of a single cross-over at a specific locus on the chromosome, dif. Recombination is performed by two tyrosine recombinases, XerC and XerD, and requires the action of an additional protein, FtsK. We show that Haemophilus influenzae FtsK activates recombination by H. influenzae XerCD at H. influenzae dif. However, it cannot activate recombination by E. coli XerCD. Reciprocally, E. coli FtsK cannot activate recombination by the H. influenzae recombinases at H. influenzae dif. We took advantage of this species specificity to gain further insight into the mechanism of activation of Xer recombination at dif by FtsK. We mapped the region of FtsK implicated in species specificity to the extreme 140-amino-acid C-terminal residues of the protein. Our results suggest that FtsK interacts directly with XerCD in order to activate recombination at dif.
Collapse
Affiliation(s)
- James Yates
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
43
|
Ferreira H, Butler-Cole B, Burgin A, Baker R, Sherratt DJ, Arciszewska LK. Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD. J Mol Biol 2003; 330:15-27. [PMID: 12818199 DOI: 10.1016/s0022-2836(03)00558-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tyrosine family site-specific recombinases XerC and XerD convert dimers of the Escherichia coli chromosome and many natural plasmids to monomers. The heterotetrameric recombination complex contains two molecules of XerC and two of XerD, with each recombinase mediating one pair of DNA strand exchanges. The two pairs of strand exchanges are separated in time and space. This demands that the catalytic activity of the four recombinase molecules be controlled so that only XerC or XerD is active at any given time, there being a switch in the recombinase activity state at the Holliday junction intermediate stage. Here, we analyse chimeras and deletion variants within the recombinase C-terminal domains in order to probe determinants that may be specific to either XerC or XerD, and to further understand how XerC-XerD interactions control catalysis in a recombining heterotetramer. The data confirm that the C-terminal "end" region of each recombinase plays an important role in coordinating catalysis within the XerCD heterotetramer and suggest that the interactions between the end regions of XerC and XerD and their cognate receptors within the partner recombinase are structurally and functionally different. The results support the hypothesis that the "normal" state in the heterotetrameric complex, in which XerC is catalytically active and XerD is inactive, depends on the interactions between the C-terminal end region of XerC and its receptor region within the C-terminal domain of XerD; interference with these interactions leads to a switch in the catalytic state, so that XerD is now preferentially active.
Collapse
Affiliation(s)
- Henrique Ferreira
- Division of Molecular Genetics, Biochemistry Department, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
44
|
Radman-Livaja M, Shaw C, Azaro M, Biswas T, Ellenberger T, Landy A. Arm sequences contribute to the architecture and catalytic function of a lambda integrase-Holliday junction complex. Mol Cell 2003; 11:783-94. [PMID: 12667459 DOI: 10.1016/s1097-2765(03)00111-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
lambda integrase (Int) mediates recombination between attachment sites on lambda phage and E. coli DNAs. With the assistance of accessory proteins that induce DNA loops, Int bridges pairs of distinct arm- and core-type DNA binding sites to form synapsed recombination complexes, which then recombine via a Holliday junction (HJ) intermediate. We show that, in addition to promoting the proper positioning of Int protomers, the arm sequences facilitate the catalytic activities of the Int tetramer, independent of accessory proteins or physical continuity between the arm and core sites. We have determined the architecture of ternary complexes containing a HJ, Int, and P'1,2 arm-type DNA. These structures accommodate simultaneous binding of Int to direct-repeat arm sites and indirect-repeat core sites and afford a new view of the higher-order recombinogenic complexes.
Collapse
Affiliation(s)
- Marta Radman-Livaja
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J360, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lee L, Sadowski PD. Sequence of the loxP site determines the order of strand exchange by the Cre recombinase. J Mol Biol 2003; 326:397-412. [PMID: 12559909 DOI: 10.1016/s0022-2836(02)01429-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Conservative site-specific recombinases of the integrase family carry out recombination via a Holliday intermediate. The Cre recombinase, a member of the integrase family, was previously shown to initiate recombination by cleaving and exchanging preferentially on the bottom strand of its loxP target sequence. We have confirmed this strand bias for an intermolecular recombination reaction that used wild-type loxP sites and Cre protein. We have examined the sequence determinants for this strand preference by selectively mutating the two asymmetric scissile base-pairs in the lox site (those immediately adjacent to the sites of cleavage by Cre). We found that the initial strand exchange occurs preferentially next to the scissile G residue. Resolution of the Holliday intermediate thus formed takes place preferentially next to the scissile A residue. Lys86, which contacts the scissile nucleotides in the Cre-lox crystal structures, was important for establishing the strand preference in the resolution of the loxP-Holliday intermediate, but not for the initiation of recombination between loxP sites.
Collapse
Affiliation(s)
- Linda Lee
- Department of Medical Genetics and Microbiology, Faculty of Medicine, University of Toronto, 4284 Medical Science Building, Toronto, Ont., Canada M5S 1A
| | | |
Collapse
|
46
|
Tekle M, Warren DJ, Biswas T, Ellenberger T, Landy A, Nunes-Düby SE. Attenuating functions of the C terminus of lambda integrase. J Mol Biol 2002; 324:649-65. [PMID: 12460568 DOI: 10.1016/s0022-2836(02)01108-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tyrosine family site-specific recombinases, in contrast to the related type I topoisomerases, which act as monomers on a single DNA molecule, rely on multi-protein complexes to synapse partner DNAs and coordinate two sequential strand exchanges involving four nicking-closing reactions. Here, we analyze three mutants of the catalytic domain of lambda integrase (Int), A241V, I353M and W350ter that are defective for normal recombination, but possess increased topoisomerase activity. The mutant enzymes can carry out individual DNA strand exchanges using truncated substrates or Holliday junctions, and they show more DNA-cleavage activity than wild-type Int on isolated att sites. Structural modeling predicts that the substituted residues may destabilize interactions between the C-terminal beta-strand (beta7) of Int and the core of the protein. The cleavage-competent state of Int requires the repositioning of the nucleophile (Y342) located on beta6 and the catalyst K235 located on the flexible beta2-beta3 loop, relative to their positions in a crystal structure of the inactive conformation. We propose that the anchoring of beta7 against the protein core restrains the movement of Tyr342 and/or Lys235, causing an attenuation of cleavage activity in most contexts. Within a bona fide recombination complex, the release of strand beta7 would allow Tyr342 and Lys235 to assume catalytically active conformations in coordination with other Int protomers in the complex. The loss of beta7 packing by misalignment or truncation in the mutant proteins described here causes a loss of regulated activity, thereby favoring DNA cleavage activity in monomeric complexes and forfeiting the coordination of strand-exchange necessary for efficient recombination.
Collapse
Affiliation(s)
- Michael Tekle
- Division of Pathology, Department of Microbiology, Pathology and Immunology, Karolinska Institutet, Huddinge University Hospital, F46, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Kazmierczak RA, Swalla BM, Burgin AB, Gumport RI, Gardner JF. Regulation of site-specific recombination by the C-terminus of lambda integrase. Nucleic Acids Res 2002; 30:5193-204. [PMID: 12466544 PMCID: PMC137966 DOI: 10.1093/nar/gkf652] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Site-specific recombination catalyzed by bacteriophage lambda integrase (Int) is essential for establishment and termination of the viral lysogenic life cycle. Int is the archetype of the tyrosine recombinase family whose members are responsible for DNA rearrangement in prokaryotes, eukaryotes and viruses. The mechanism regulating catalytic activity during recombination is incompletely understood. Studies of tyrosine recombinases bound to their target substrates suggest that the C-termini of the proteins are involved in protein-protein contacts that control the timing of DNA cleavage events during recombination. We investigated an Int truncation mutant (W350) that possesses enhanced topoisomerase activity but greater than 100-fold reduced recombination activity. Alanine scanning mutagenesis of the C-terminus indicates that two mutants, W350A and I353A, cannot perform site-specific recombination although their DNA binding, cleavage and ligation activities are at wild-type levels. Two other mutants, R346A and R348A, are deficient solely in the ability to cleave DNA. To explain these results, we have constructed a homology-threaded model of the Int structure using a Cre crystal structure. We propose that residues R346 and R348 are involved in orientation of the catalytic tyrosine that cleaves DNA, whereas W350 and I353 control and make intermolecular contacts with other Int proteins in the higher order recombination structures known as intasomes. These results suggest that Int and the other tyrosine recombinases have evolved regulatory contacts that coordinate site-specific recombination at the C-terminus.
Collapse
Affiliation(s)
- Robert A Kazmierczak
- Department of Microbiology and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
48
|
Bregu M, Sherratt DJ, Colloms SD. Accessory factors determine the order of strand exchange in Xer recombination at psi. EMBO J 2002; 21:3888-97. [PMID: 12110600 PMCID: PMC126124 DOI: 10.1093/emboj/cdf379] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Xer site-specific recombination in Escherichia coli converts plasmid multimers to monomers, thereby ensuring their correct segregation at cell division. Xer recombination at the psi site of plasmid pSC101 is preferentially intramolecular, giving products of a single topology. This intramolecular selectivity is imposed by accessory proteins, which bind at psi accessory sequences and activate Xer recombination at the psi core. Strand exchange proceeds sequentially within the psi core; XerC first exchanges top strands to produce Holliday junctions, then XerD exchanges bottom strands to give final products. In this study, recombination was analysed at sites in which the psi core was inverted with respect to the accessory sequences. A plasmid containing two inverted-core psi sites recombined with a reversed order of strand exchange, but with unchanged product topology. Thus the architecture of the synapse, formed by accessory proteins binding to accessory sequences, determines the order of strand exchange at psi. This finding has important implications for the way in which accessory proteins interact with the recombinases.
Collapse
Affiliation(s)
| | | | - Sean D. Colloms
- Microbiology Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
Present address: Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK Corresponding author e-mail:
| |
Collapse
|
49
|
Ron Y, Flitman-Tene R, Dybvig K, Yogev D. Identification and characterization of a site-specific tyrosine recombinase within the variable loci of Mycoplasma bovis, Mycoplasma pulmonis and Mycoplasma agalactiae. Gene 2002; 292:205-11. [PMID: 12119115 DOI: 10.1016/s0378-1119(02)00679-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three highly mutable loci of the wall-less pathogens Mycoplasma bovis, Mycoplasma pulmonis and Mycoplasma agalactiae undergo high-frequency genomic rearrangements and generate extensive antigenic variation of major surface lipoproteins. Adjacent to each locus, an open reading frame exists as a single chromosomal copy and is predicted to encode a site-specific DNA recombinase exhibiting high homology to the recombinases XerD of Escherichia coli and CodV of Bacillus subtilis. Each of the mycoplasmal proteins are members of the lambda integrase family of tyrosine site-specific recombinases and likely mediates site-specific DNA inversions observed within the adjacent, variable loci.
Collapse
Affiliation(s)
- Yael Ron
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
50
|
Nunes-Düby SE, Radman-Livaja M, Kuimelis RG, Pearline RV, McLaughlin LW, Landy A. Gamma integrase complementation at the level of DNA binding and complex formation. J Bacteriol 2002; 184:1385-94. [PMID: 11844768 PMCID: PMC134844 DOI: 10.1128/jb.184.5.1385-1394.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Accepted: 11/02/2001] [Indexed: 11/20/2022] Open
Abstract
Site-specific recombinases of the gamma Int family carry out two single-strand exchanges by binding as head-to-head dimers on inverted core-type DNA sites. Each protomer may cleave its own site as a monomer in cis (as for Cre recombinase), or it may recruit the tyrosine from its partner in trans to form a composite active site (as for Flp recombinase). The crystal structure of the gamma Int catalytic domain is compatible with both cleavage mechanisms, but two previous biochemical studies on gamma integrase (Int) generated data that were not in agreement. Support for cis and trans cleavage came from assays with bispecific DNA substrates for gamma and HK022 Ints and from functional complementation between recombination-deficient mutants, respectively. The data presented here do not provide new evidence for cis cleavage, but they strongly suggest that the previously described complementation results cannot be used in support of a trans-cleavage mechanism. We show here that IntR212Q retains some residual catalytic function but is impaired in binding to core-type DNA on linear substrates and in forming higher-order attL intasome structures. The binding-proficient mutant IntY342F can stabilize IntR212Q binding to core-type DNA through protein-protein interactions. Similarly, the formation of higher-order Int complexes with arm- and core-type DNA is boosted with both mutants present. This complementation precedes cleavage and thus precludes any conclusions about the mechanism of catalysis. Cross-core stimulation of wild-type HK022-Int cleavage on its cognate site (in cis) by mutant gamma Ints on bispecific core DNA suicide substrates is shown to be independent of the catalytic tyrosine but appears to be proportional to the respective core-binding affinities of the gamma Int mutants.
Collapse
Affiliation(s)
- Simone E Nunes-Düby
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|