1
|
Wang S, Wang X, Qin C, Liang C, Li W, Ran A, Ma Q, Pan X, Yang F, Ren J, Huang B, Liu Y, Zhang Y, Li H, Ning H, Jiang Y, Xiao B. PTBP1 knockdown impairs autophagy flux and inhibits gastric cancer progression through TXNIP-mediated oxidative stress. Cell Mol Biol Lett 2024; 29:110. [PMID: 39153986 PMCID: PMC11330137 DOI: 10.1186/s11658-024-00626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood. METHODS To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC. RESULTS Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo. CONCLUSION PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Shimin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Changhong Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
2
|
Altina NH, Maranon DG, Anderson JR, Donaldson MK, Elmegerhi S, St Clair LA, Perera R, Geiss BJ, Wilusz J. The leader RNA of SARS-CoV-2 sequesters polypyrimidine tract binding protein (PTBP1) and influences pre-mRNA splicing in infected cells. Virology 2024; 592:109986. [PMID: 38290414 PMCID: PMC10923090 DOI: 10.1016/j.virol.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
The large amount of viral RNA produced during infections has the potential to interact with and effectively sequester cellular RNA binding proteins, thereby influencing aspects of post-transcriptional gene regulation in the infected cell. Here we demonstrate that the abundant 5' leader RNA region of SARS-CoV-2 viral RNAs can interact with the cellular polypyrimidine tract binding protein (PTBP1). Interestingly, the effect of a knockdown of PTBP1 protein on cellular gene expression is also mimicked during SARS-CoV-2 infection, suggesting that this protein may be functionally sequestered by viral RNAs. Consistent with this model, the alternative splicing of mRNAs that is normally controlled by PTBP1 is dysregulated during SARS-CoV-2 infection. Collectively, these data suggest that the SARS-CoV-2 leader RNA sequesters the cellular PTBP1 protein during infection, resulting in significant impacts on the RNA biology of the host cell. These alterations in post-transcriptional gene regulation may play a role in SARS-CoV-2 mediated molecular pathogenesis.
Collapse
Affiliation(s)
- Noelia H Altina
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - David G Maranon
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Meghan K Donaldson
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Suad Elmegerhi
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Laura A St Clair
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
3
|
Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes. iScience 2022; 25:104811. [PMID: 35982794 PMCID: PMC9379569 DOI: 10.1016/j.isci.2022.104811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have used an L-body RNA-binding protein, PTBP3, to test the role of RNA–protein interactions in regulating the biophysical characteristics of L-bodies in vivo and PTBP3–RNA condensates in vitro. Our results reveal that RNA–protein interactions drive recruitment of PTBP3 and localized RNA to L-bodies and that multivalent interactions tune the dynamics of the PTBP3 after localization. In a concentration-dependent manner, RNA becomes non-dynamic and interactions with the RNA determine PTBP3 dynamics within these biomolecular condensates in vivo and in vitro. Importantly, RNA, and not protein, is required for maintenance of the PTBP3–RNA condensates in vitro, pointing to a model where RNA serves as a non-dynamic substructure in these condensates. RNA–protein interactions drive recruitment of both RNA and protein to L-bodies RNA is non-dynamic in both L-bodies and in vitro condensates Multivalent interactions with RNA tune protein dynamics both in vivo and in vitro RNA, but not protein, is required for maintenance of the in vitro condensates
Collapse
|
4
|
Yang C, Dominique GM, Champion MM, Huber PW. Remnants of the Balbiani body are required for formation of RNA transport granules in Xenopus oocytes. iScience 2022; 25:103878. [PMID: 35243240 PMCID: PMC8861640 DOI: 10.1016/j.isci.2022.103878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The Balbiani body (Bb), an organelle comprised of mitochondria, ER, and RNA, is found in the oocytes of most organisms. In Xenopus, the structure is initially positioned immediately adjacent to the nucleus, extends toward the vegetal pole, and eventually disperses, leaving behind a region highly enriched in mitochondria. This area is later transversed by RNP complexes that are being localized to the vegetal cortex. Inhibition of mitochondrial ATP synthesis prevents perinuclear formation of the transport complexes that can be reversed by a nonhydrolyzable ATP analog, indicating the nucleotide is acting as a hydrotrope. The protein composition, sensitivity to hexanediol, and coalescence in the absence of transport provide evidence that the transport RNP complexes are biocondensates. The breakdown of the Bb engenders regions of clustered mitochondria that are used not to meet extraordinary energy demands, but rather to promote a liquid-liquid phase separation.
Collapse
Affiliation(s)
- Chao Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gena M. Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Dai S, Wang C, Zhang C, Feng L, Zhang W, Zhou X, He Y, Xia X, Chen B, Song W. PTB: Not just a polypyrimidine tract-binding protein. J Cell Physiol 2022; 237:2357-2373. [PMID: 35288937 DOI: 10.1002/jcp.30716] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
Polypyrimidine tract-binding protein (PTB), as a member of the heterogeneous nuclear ribonucleoprotein family, functions by rapidly shuttling between the nucleus and the cytoplasm. PTB is involved in the alternative splicing of pre-messenger RNA (mRNA) and almost all steps of mRNA metabolism. PTB regulation is organ-specific; brain- or muscle-specific microRNAs and long noncoding RNAs partially contribute to regulating PTB, thereby modulating many physiological and pathological processes, such as embryonic development, cell development, spermatogenesis, and neuron growth and differentiation. Previous studies have shown that PTB knockout can inhibit tumorigenesis and development. The knockout of PTB in glial cells can be reprogrammed into functional neurons, which shows great promise in the field of nerve regeneration but is controversial.
Collapse
Affiliation(s)
- Shirui Dai
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xuezhi Zhou
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Ye He
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Xiaobo Xia
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, P. R. China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, P. R. China
| |
Collapse
|
6
|
Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M, Fan X. LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis 2022. [PMID: 35110535 DOI: 10.1038/s41419-022-04509-1.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) play critical functions in various cancers. Firre intergenic repeating RNA element (FIRRE), a lncRNA located in the nucleus, was overexpressed in colorectal cancer (CRC). However, the detailed mechanism of FIRRE in CRC remains elusive. Results of RNA sequence and qPCR illustrated overexpression of FIRRE in CRC cell lines and tissues. The aberrant expression of FIRRE was correlated with the migration, invasion, and proliferation in cell lines. In accordance, it was also associated with lymphatic metastasis and distant metastasis in patients with CRC. FIRRE was identified to physically interact with Polypyrimidine tract-binding protein (PTBP1) by RNA pull-down and RNA immunoprecipitation (RIP). Overexpression of FIRRE induced the translocation of PTBP1 from nucleus to cytoplasm, which was displayed by immunofluorescence and western blot. In turn, delocalization of FIRRE from nucleus to cytoplasm is observed after the loss of PTBP1. The RNA-protein complex in the cytoplasm directly bound to BECN1 mRNA, and the binding site was at the 3' end of the mRNA. Cells with FIRRE and PTBP1 depletion alone or in combination were treated by Actinomycin D (ACD). Results of qPCR showed FIRRE stabilized BECN1 mRNA in a PTBP1-medieated manner. In addition, FIRRE contributed to autophagy activity. These findings indicate FIRRE acts as an oncogenic factor in CRC, which induces tumor development through stabilizing BECN1 mRNA and facilitating autophagy in a PTBP1-mediated manner.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Zhengyang Li
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Shizan Xu
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Wenjun Li
- Department of Anaesthesiology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201503, China
| | - Mengyun Chen
- General Practice of Huamu Community Health Service Center, 90 Yulan Road, Shanghai, 201204, China
| | - Miao Jiang
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
| |
Collapse
|
7
|
Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M, Fan X. LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis 2022; 13:98. [PMID: 35110535 PMCID: PMC8811066 DOI: 10.1038/s41419-022-04509-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) play critical functions in various cancers. Firre intergenic repeating RNA element (FIRRE), a lncRNA located in the nucleus, was overexpressed in colorectal cancer (CRC). However, the detailed mechanism of FIRRE in CRC remains elusive. Results of RNA sequence and qPCR illustrated overexpression of FIRRE in CRC cell lines and tissues. The aberrant expression of FIRRE was correlated with the migration, invasion, and proliferation in cell lines. In accordance, it was also associated with lymphatic metastasis and distant metastasis in patients with CRC. FIRRE was identified to physically interact with Polypyrimidine tract-binding protein (PTBP1) by RNA pull-down and RNA immunoprecipitation (RIP). Overexpression of FIRRE induced the translocation of PTBP1 from nucleus to cytoplasm, which was displayed by immunofluorescence and western blot. In turn, delocalization of FIRRE from nucleus to cytoplasm is observed after the loss of PTBP1. The RNA-protein complex in the cytoplasm directly bound to BECN1 mRNA, and the binding site was at the 3' end of the mRNA. Cells with FIRRE and PTBP1 depletion alone or in combination were treated by Actinomycin D (ACD). Results of qPCR showed FIRRE stabilized BECN1 mRNA in a PTBP1-medieated manner. In addition, FIRRE contributed to autophagy activity. These findings indicate FIRRE acts as an oncogenic factor in CRC, which induces tumor development through stabilizing BECN1 mRNA and facilitating autophagy in a PTBP1-mediated manner.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Zhengyang Li
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Shizan Xu
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Wenjun Li
- Department of Anaesthesiology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai, 201503, China
| | - Mengyun Chen
- General Practice of Huamu Community Health Service Center, 90 Yulan Road, Shanghai, 201204, China
| | - Miao Jiang
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
| |
Collapse
|
8
|
Neil CR, Jeschonek SP, Cabral SE, O'Connell LC, Powrie EA, Otis JP, Wood TR, Mowry KL. L-bodies are RNA-protein condensates driving RNA localization in Xenopus oocytes. Mol Biol Cell 2021; 32:ar37. [PMID: 34613784 PMCID: PMC8694076 DOI: 10.1091/mbc.e21-03-0146-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a nondynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.
Collapse
Affiliation(s)
- Christopher R Neil
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Sarah E Cabral
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Liam C O'Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Erin A Powrie
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Timothy R Wood
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
9
|
Ponomarev MB, Konduktorova VV, Luchinskaya NN, Belyavsky AV. Localization of Germes RNA in Xenopus Oocytes. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kim W, Shin JC, Lee KH, Kim KT. PTBP1 Positively Regulates the Translation of Circadian Clock Gene, Period1. Int J Mol Sci 2020; 21:ijms21186921. [PMID: 32967200 PMCID: PMC7555454 DOI: 10.3390/ijms21186921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 11/16/2022] Open
Abstract
Circadian oscillations of mRNAs and proteins are the main features of circadian clock genes. Among them, Period1 (Per1) is a key component in negative-feedback regulation, which shows a robust diurnal oscillation and the importance of circadian rhythm and translational regulation of circadian clock genes has been recognized. In the present study, we investigated the 5'-untranslated region (5'-UTR) of the mouse core clock gene, Per1, at the posttranscriptional level, particularly its translational regulation. The 5'-UTR of Per1 was found to promote its translation via an internal ribosomal entry site (IRES). We found that polypyrimidine tract-binding protein 1 (PTBP1) binds to the 5'-UTR of Per1 and positively regulates the IRES-mediated translation of Per1 without affecting the levels of Per1 mRNA. The reduction of PTBP1 level also decreased the endogenous levels of the PER1 protein but not of its mRNA. As for the oscillation of PER1 expression, the disruption of PTBP1 levels lowered the PER1 expression but not the phase of the oscillation. PTBP1 also changed the amplitudes of the mRNAs of other circadian clock genes, such as Cryptochrome 1 (Cry1) and Per3. Our results suggest that the PTBP1 is important for rhythmic translation of Per1 and it fine-tunes the overall circadian system.
Collapse
Affiliation(s)
- Wanil Kim
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
| | | | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
- Correspondence: (K.-H.L.); (K.-T.K.); Tel.: +82-53-819-7743 (K.-H.L.); +82-54-279-2297 (K.-T.K.)
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Cheongam-Ro 77, Pohang, Gyeongbuk 37673, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Cheongam-Ro 77, Pohang, Gyeongbuk 37673, Korea
- Correspondence: (K.-H.L.); (K.-T.K.); Tel.: +82-53-819-7743 (K.-H.L.); +82-54-279-2297 (K.-T.K.)
| |
Collapse
|
11
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
12
|
Liu Y, Qi J, Dou Z, Hu J, Lu L, Dai H, Wang H, Yang W. Systematic expression analysis of WEE family kinases reveals the importance of PKMYT1 in breast carcinogenesis. Cell Prolif 2019; 53:e12741. [PMID: 31837068 PMCID: PMC7046476 DOI: 10.1111/cpr.12741] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Many cancer cells depend on G2 checkpoint mechanism regulated by WEE family kinases to maintain genomic integrity. The PKMYT1 gene, as a member of WEE family kinases, participates in G2 checkpoint surveillance and probably links with tumorigenesis, but its role in breast cancer remains largely unclear. MATERIALS AND METHODS In this study, we used a set of bioinformatic tools to jointly analyse the expression of WEE family kinases and investigate the prognostic value of PKMYT1 in breast cancer. RESULTS The results indicated that PKMYT1 is the only frequently overexpressed member of WEE family kinases in breast cancer. KM plotter data suggests that abnormally high expression of PKMYT1 predicts poor prognosis, especially for some subtypes, such as luminal A/B and triple-negative (TNBC) types. Moreover, the up-regulation of PKMYT1 was associated with HER2-positive (HER2+), basal-like (Basal-like), TNBC statuses and increased classifications of Scarff, Bloom and Richardson (SBR). Co-expression analysis showed PKMYT1 has a strong positive correlation with Polo-like kinase 1 (PLK1), implying they may cooperate in regulating cancer cell proliferation by synchronizing rapid cell cycle with high quality of genome maintenance. CONCLUSIONS Collectively, this study demonstrates that overexpression of PKMYT1 is always found in breast cancer and predicts unfavourable prognosis, implicating it as an appealing therapeutic target for breast carcinoma.
Collapse
Affiliation(s)
- Yu Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jian Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Zhen Dou
- Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Jiliang Hu
- Department of Neurosurgery, The Shenzhen People's Hospital (The Second Clinical Medical Collage of Jinan University), Shenzhen, China
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
13
|
Wang S, Zhang Y, Cai Q, Ma M, Jin LY, Weng M, Zhou D, Tang Z, Wang JD, Quan Z. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression. Mol Cancer 2019; 18:145. [PMID: 31623628 PMCID: PMC6796492 DOI: 10.1186/s12943-019-1078-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/16/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have recently been identified as potential functional modulators of the cellular physiology processes. The study aims to uncover the potential clinical value and driving molecular mechanisms of circRNAs in gallbladder cancer (GBC). PATIENTS AND METHODS We performed RNA sequencing from four GBC and paired adjacent normal tissues to analyze the circRNA candidates. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to measure the circFOXP1 expression from 40 patient tissue samples. Short hairpin RNA mediated knockdown or exogenous expression of circFOXP1 combined with in vitro and in vivo assays were performed to prove the functional significance of circFOXP1. Double luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were also performed. RESULTS By performing RNA sequencing from GBC and paired adjacent normal tissues to analyze the circRNA candidates, we identified that circFOXP1 (hsa_circ_0008234) expression was significantly upregulated in GBC tissues and positively associated with lymph node metastasis, advanced TNM stage and poor prognosis in patients. Short hairpin RNA mediated knockdown or exogenous expression of circFOXP1 combined with in vitro assays demonstrated that circFOXP1 has pleiotropic effects, including promotion of cell proliferation, migration, invasion, and inhibition of cell apoptosis in GBC. In vivo, circFOXP1 promoted tumor growth. Mechanistically, double luciferase reporter, RNA immunoprecipitation (RIP) and biotin-labeled RNA pull-down assays clarified that circFOXP1 interacted with PTBP1 that could bind to the 3'UTR region and coding region (CDS) of enzyme pyruvate kinase, liver and RBC (PKLR) mRNA (UCUU binding bites) to protect PKLR mRNA from decay. Additionally, circFOXP1 acted as the sponge of miR-370 to regulate PKLR, resulting in promoting Warburg effect in GBC progression. CONCLUSIONS These results demonstrated that circFOXP1 serve as a prognostic biomarker and critical regulator in GBC progression and Warburg effect, suggesting a potential target for GBC treatment.
Collapse
Affiliation(s)
- Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China
| | - Yongjie Zhang
- Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital, National Center of Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qiang Cai
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China
| | - Mingzhe Ma
- Department of Gastric Cancer and Soft Tissue Sarcoma, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Long Yang Jin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China.
| | - Jian Dong Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China.
| | - Zhiwei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kong jiang Road, Yangpu District, Shanghai, 200000, China.
| |
Collapse
|
14
|
Cell Cycle Kinase Polo Is Controlled by a Widespread 3' Untranslated Region Regulatory Sequence in Drosophila melanogaster. Mol Cell Biol 2019; 39:MCB.00581-18. [PMID: 31085682 DOI: 10.1128/mcb.00581-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/04/2019] [Indexed: 01/06/2023] Open
Abstract
Alternative polyadenylation generates transcriptomic diversity, although the physiological impact and regulatory mechanisms involved are still poorly understood. The cell cycle kinase Polo is controlled by alternative polyadenylation in the 3' untranslated region (3'UTR), with critical physiological consequences. Here, we characterized the molecular mechanisms required for polo alternative polyadenylation. We identified a conserved upstream sequence element (USE) close to the polo proximal poly(A) signal. Transgenic flies without this sequence show incorrect selection of polo poly(A) signals with consequent downregulation of Polo expression levels and insufficient/defective activation of Polo kinetochore targets Mps1 and Aurora B. Deletion of the USE results in abnormal mitoses in neuroblasts, revealing a role for this sequence in vivo We found that Hephaestus binds to the USE RNA and that hephaestus mutants display defects in polo alternative polyadenylation concomitant with a striking reduction in Polo protein levels, leading to mitotic errors and aneuploidy. Bioinformatic analyses show that the USE is preferentially localized upstream of noncanonical polyadenylation signals in Drosophila melanogaster genes. Taken together, our results revealed the molecular mechanisms involved in polo alternative polyadenylation, with remarkable physiological functions in Polo expression and activity at the kinetochores, and disclosed a new in vivo function for USEs in Drosophila melanogaster.
Collapse
|
15
|
Li X, Han F, Liu W, Shi X. PTBP1 promotes tumorigenesis by regulating apoptosis and cell cycle in colon cancer. Bull Cancer 2018; 105:1193-1201. [PMID: 30309622 DOI: 10.1016/j.bulcan.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Increased expression of polypyrimidine tract-binding protein 1 (PTBP1) has been observed in human ovarian tumors, glioblastomas, and breast cancer, but its biological roles in tumorigenesis is not fully clear. In the present research, we investigated the biological role of PTBP1 in colon cancer. We found that PTBP1 was overexpressed both in colon cancer cell lines and tissues. Tissue microarray analysis (TMA) indicated that low PTBP1 expression predicted a favorable overall survival for colon cancer patients. Using small interfering RNA technology, we found that down-regulation of PTBP1 significantly inhibited colon cancer cell growth/proliferation, and induced cell cycle arrest as well as apoptosis in vitro. Western blot analysis showed that siRNA PTBP1 could up-regulate the expression of cytoC, p53 and Bax as well as down-regulated p85, p-AKT, cyclinD1, CDK4 and Bcl2 compared to the control. Furthermore, Caspase-3 and PARP1 were activated when PTBP1 is knockdown. This study implies that PTBP1 plays an important role in tumorigenesis of colon cancer.
Collapse
Affiliation(s)
- Xiaona Li
- Xinxiang Second People's Hospital, Department of Pharmacy, Xinxiang, PR China
| | - Fei Han
- Army Medical University, College of Preventive Medicine, Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, Chongqing, China
| | - Wenbin Liu
- Army Medical University, College of Preventive Medicine, Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, Chongqing, China
| | - Xiaoyan Shi
- Henan University, Institute of Chinese materia medica, Kaifeng, China.
| |
Collapse
|
16
|
Wang X, Li Y, Fan Y, Yu X, Mao X, Jin F. PTBP1 promotes the growth of breast cancer cells through the PTEN/Akt pathway and autophagy. J Cell Physiol 2018; 233:8930-8939. [PMID: 29856478 PMCID: PMC6175200 DOI: 10.1002/jcp.26823] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Invasion and migration is the hallmark of malignant tumors as well as the major cause for breast cancer death. The polypyrimidine tract binding, PTB, protein serves as an important model for understanding how RNA binding proteins affect proliferation and invasion and how changes in the expression of these proteins can control complex programs of tumorigenesis. We have investigated some roles of polypyrimidine tract binding protein 1 (PTBP1) in human breast cancer. We found that PTBP1 was upregulated in breast cancer tissues compared with normal tissues and the same result was confirmed in breast cancer cell lines. Knockdown of PTBP1 substantially inhibited tumor cell growth, migration, and invasion. These results suggest that PTBP1 is associated with breast tumorigenesis and appears to be required for tumor cell growth and maintenance of metastasis. We further analyzed the relationship between PTBP1 and clinicopathological parameters and found that PTBP1 was correlated with her‐2 expression, lymph node metastasis, and pathological stage. This will be a novel target for her‐2(+) breast cancer. PTBP1 exerts these effects, in part, by regulating the phosphatase and tensin homolog‐phosphatidylinositol‐4,5‐bisphosphate 3‐kinase/protein kinase B (PTEN‐PI3K/Akt) pathway and autophagy, and consequently alters cell growth and contributes to the invasion and metastasis.
Collapse
Affiliation(s)
- Xu Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yan Fan
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning, China
| |
Collapse
|
17
|
Hou P, Li L, Chen F, Chen Y, Liu H, Li J, Bai J, Zheng J. PTBP3-Mediated Regulation of ZEB1 mRNA Stability Promotes Epithelial-Mesenchymal Transition in Breast Cancer. Cancer Res 2017; 78:387-398. [PMID: 29187406 DOI: 10.1158/0008-5472.can-17-0883] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
Abstract
The RNA polypyrimidine tract-binding protein PTBP3 is a little studied paralog of PTBP1, which has oncogenic properties. In this study, we demonstrate that PTBP3 induces epithelial-mesenchymal transition (EMT) in breast tumor cells and promotes their invasive growth and metastasis. Elevated expression of PTBP3 associated significantly with lymph node metastasis, advanced histology grade, TNM stage, and poor 5-year overall survival of patients. In human mammary epithelial cells, PTBP3 overexpression was sufficient to induce EMT and to enhance cell migration, invasion, and cancer stem-like cell properties. PTBP3 regulated expression of the EMT regulatory transcription factor ZEB1 by binding the 3'UTR of its mRNA, thereby preventing its degradation. Conversely, ZEB1 ablation blocked the ability of PTBP3 to induce EMT. Overall, our findings define PTBP3 as a regulator of EMT that acts by governing expression of ZEB1, and they establish an oncogenic function of PTBP3, suggesting its candidacy as a theranostic target.Significance: These findings define PTBP3 as a regulator of EMT that acts by governing expression of ZEB1, and they establish an oncogenic function of PTBP3, suggesting its candidacy as a theranostic target. Cancer Res; 78(2); 387-98. ©2017 AACR.
Collapse
Affiliation(s)
- Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Liu
- School of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
Taniguchi K, Sakai M, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakayama T, Ueda H, Nakagawa Y, Ito Y, Futamura M, Uno B, Otsuki Y, Yoshida K, Uchiyama K, Akao Y. PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 2017; 7:18940-52. [PMID: 26980745 PMCID: PMC4951342 DOI: 10.18632/oncotarget.8005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/05/2016] [Indexed: 01/24/2023] Open
Abstract
It is known that pyruvate kinase in muscle (PKM), which is a rate-limiting glycolytic enzyme, has essential roles in the Warburg effect and that expression of cancer-dominant PKM2 is increased by polypyrimidine tract-binding protein 1 (PTBP1), which is a splicer of the PKM gene. In other words, PKM2 acts as a promoter of the Warburg effect. Previously, we demonstrated that the Warburg effect was partially established by down-regulation of several microRNAs (miRs) that bind to PTBP1 and that ectopic expression of these miRs suppressed the Warburg effect. In this study, we investigated the functions of miR-1 and -133b, which are well known as muscle-specific miRs, from the viewpoint of the Warburg effect in colorectal tumors. The expression levels of miR-1 and -133b were relatively high in colon tissue except muscle and very frequently down-regulated in 75 clinical colorectal tumors samples, even in adenomas, compared with those of the adjacent normal tissue samples. The ectopic expression of these miRs induced growth suppression and autophagic cell death through the switching of PKM isoform expression from PKM2 to PKM1 by silencing PTBP1 expression both in vitro and in vivo. Also, we showed that the resultant increase in the intracellular level of reactive oxygen species (ROS) was involved in this mechanism. Furthermore, PTBP1 was highly expressed in most of the 30 clinical colorectal tumor samples examined, even in adenomas. Our results suggested that PTBP1 and PTBP1-associated miR-1 and -133b are crucial molecules for the maintenance of the Warburg effect in colorectal tumors.
Collapse
Affiliation(s)
- Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.,Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Miku Sakai
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Nami Yamada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Tatsushi Nakayama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University, School of Medicine, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Manabu Futamura
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu 501-1193, Japan
| | - Bunji Uno
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhiro Yoshida
- Department of Oncological Surgery, Gifu University School of Medicine, Gifu 501-1193, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
19
|
King ML. Maternal messages to live by: a personal historical perspective. Genesis 2017; 55:10.1002/dvg.23007. [PMID: 28095642 PMCID: PMC5276792 DOI: 10.1002/dvg.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
In the 1980s, the study of localized maternal mRNAs was just emerging as a new research area. Classic embryological studies had linked the inheritance of cytoplasmic domains with specific cell lineages, but the underlying molecular nature of these putative determinants remained a mystery. The model system Xenopus would play a pivotal role in the progress of this new field. In fact, the first localized maternal mRNA to be identified and cloned from any organism was Xenopus vg1, a TGF-beta family member. This seminal finding opened the door to many subsequent studies focused on how RNAs are localized and what functions they had in development. As the field moves into the future, Xenopus remains the system of choice for studies identifying RNA/protein transport particles and maternal RNAs through RNA-sequencing.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
20
|
Localization in Oogenesis of Maternal Regulators of Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:173-207. [DOI: 10.1007/978-3-319-46095-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Fred RG, Mehrabi S, Adams CM, Welsh N. PTB and TIAR binding to insulin mRNA 3'- and 5'UTRs; implications for insulin biosynthesis and messenger stability. Heliyon 2016; 2:e00159. [PMID: 27699280 PMCID: PMC5035359 DOI: 10.1016/j.heliyon.2016.e00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Insulin expression is highly controlled on the posttranscriptional level. The RNA binding proteins (RBPs) responsible for this result are still largely unknown. METHODS AND RESULTS To identify RBPs that bind to insulin mRNA we performed mass spectrometry analysis on proteins that bound synthetic oligonucloetides mimicing the 5'- and the 3'-untranslated regions (UTRs) of rat and human insulin mRNA in vitro. We observed that the RBPs heterogeneous nuclear ribonucleoprotein (hnRNP) U, polypyrimidine tract binding protein (PTB), hnRNP L and T-cell restricted intracellular antigen 1-related protein (TIA-1-related protein; TIAR) bind to insulin mRNA sequences, and that the in vitro binding affinity of these RBPs changed when INS-1 cells were exposed to glucose, 3-isobutyl-1-methylxanthine (IBMX) or nitric oxide. High glucose exposure resulted in a modest increase in PTB and TIAR binding to an insulin mRNA sequence. The inducer of nitrosative stress DETAnonoate increased markedly hnRNP U and TIAR mRNA binding. An increased PTB to TIAR binding ratio in vitro correlated with higher insulin mRNA levels and insulin biosynthesis rates in INS-1 cells. To further investigate the importance of RNA-binding proteins for insulin mRNA stability, we decreased INS-1 and EndoC-βH1 cell levels of PTB and TIAR by RNAi. In both cell lines, decreased levels of PTB resulted in lowered insulin mRNA levels while decreased levels of TIAR resulted in increased insulin mRNA levels. Thapsigargin-induced stress granule formation was associated with a redistribution of TIAR from the cytosol to stress granules. CONCLUSIONS These experiments indicate that alterations in insulin mRNA stability and translation correlate with differential RBP binding. We propose that the balance between PTB on one hand and TIAR on the other participates in the control of insulin mRNA stability and utilization for insulin biosynthesis.
Collapse
Affiliation(s)
- Rikard G Fred
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Syrina Mehrabi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christopher M Adams
- Department of Biological and Medical Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Xue J, Liu Y, Yang Y, Wu S, Hu Y, Yang F, Zhou X, Wang J, Chen F, Zheng M, Zhu H, Chen Z. MEAN inhibits hepatitis C virus replication by interfering with a polypyrimidine tract-binding protein. J Cell Mol Med 2016; 20:1255-65. [PMID: 26929148 PMCID: PMC4929307 DOI: 10.1111/jcmm.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
MEAN (6‐methoxyethylamino‐numonafide) is a small molecule compound, and here, we report that it effectively inhibits hepatitis C virus (HCV) infection in an HCV cell culture system using a JC1‐Luc chimeric virus, with a 50% effective concentration (EC50) of 2.36 ± 0.29 μM. Drug combination usage analyses demonstrated that MEAN was synergistic with interferon α, ITX5061 and ribavirin. In addition, MEAN effectively inhibits N415D mutant virus and G451R mutant viral infections. Mechanistic studies show that the treatment of HCV‐infected hepatocytes with MEAN inhibits HCV replication but not translation. Furthermore, treatment with MEAN significantly reduces polypyrimidine tract‐binding protein (PTB) levels and blocks the cytoplasmic redistribution of PTB upon infection. In the host cytoplasm, PTB is directly associated with HCV replication, and the inhibition of HCV replication by MEAN can result in the sequestration of PTB in treated nuclei. Taken together, these results indicate that MEAN is a potential therapeutic candidate for HCV infection, and the targeting of the nucleo‐cytoplasmic translocation of the host PTB protein could be a novel strategy to interrupt HCV replication.
Collapse
Affiliation(s)
- Jihua Xue
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Ying Yang
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Shanshan Wu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Ying Hu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Xiaotang Zhou
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | | | - Feng Chen
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Haihong Zhu
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| | - Zhi Chen
- State Key Lab of Diagnostic and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, 1st Affiliated Hospital of Medical School, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Abstract
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos-3'UTR. Importantly, Hermes/Rbpms specifically binds nanos, but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1. One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA.
Collapse
|
24
|
Marnef A, Jády BE, Kiss T. Human polypyrimidine tract-binding protein interacts with mitochondrial tRNA(Thr) in the cytosol. Nucleic Acids Res 2015; 44:1342-53. [PMID: 26657638 PMCID: PMC4756820 DOI: 10.1093/nar/gkv1355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/22/2015] [Indexed: 11/12/2022] Open
Abstract
Human polypyrimidine tract-binding protein PTB is a multifunctional RNA-binding protein with four RNA recognition motifs (RRM1 to RRM4). PTB is a nucleocytoplasmic shuttle protein that functions as a key regulator of alternative pre-mRNA splicing in the nucleoplasm and promotes internal ribosome entry site-mediated translation initiation of viral and cellular mRNAs in the cytoplasm. Here, we demonstrate that PTB and its paralogs, nPTB and ROD1, specifically interact with mitochondrial (mt) tRNA(Thr) both in human and mouse cells. In vivo and in vitro RNA-binding experiments demonstrate that PTB forms a direct interaction with the T-loop and the D-stem-loop of mt tRNA(Thr) using its N-terminal RRM1 and RRM2 motifs. RNA sequencing and cell fractionation experiments show that PTB associates with correctly processed and internally modified, mature mt tRNA(Thr) in the cytoplasm outside of mitochondria. Consistent with this, PTB activity is not required for mt tRNA(Thr) biogenesis or for correct mitochondrial protein synthesis. PTB association with mt tRNA(Thr) is largely increased upon induction of apoptosis, arguing for a potential role of the mt tRNA(Thr)/PTB complex in apoptosis. Our results lend strong support to the recently emerging conception that human mt tRNAs can participate in novel cytoplasmic processes independent from mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Aline Marnef
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
25
|
Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways. Dev Biol 2015; 409:489-501. [PMID: 26546114 DOI: 10.1016/j.ydbio.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 09/14/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
In humans, genetic diseases affecting skin integrity (genodermatoses) are generally caused by mutations in a small number of genes that encode structural components of the dermal-epidermal junctions. In this article, we first show that inactivation of both exosc9, which encodes a component of the RNA exosome, and ptbp1, which encodes an RNA-binding protein abundant in Xenopus embryonic skin, impairs embryonic Xenopus skin development, with the appearance of dorsal blisters along the anterior part of the fin. However, histological and electron microscopy analyses revealed that the two phenotypes are distinct. Exosc9 morphants are characterized by an increase in the apical surface of the goblet cells, loss of adhesion between the sensorial and peridermal layers, and a decrease in the number of ciliated cells within the blisters. Ptbp1 morphants are characterized by an altered goblet cell morphology. Gene expression profiling by deep RNA sequencing showed that the expression of epidermal and genodermatosis-related genes is also differentially affected in the two morphants, indicating that alterations in post-transcriptional regulations can lead to skin developmental defects through different routes. Therefore, the developing larval epidermis of Xenopus will prove to be a useful model for dissecting the post-transcriptional regulatory network involved in skin development and stability with significant implications for human diseases.
Collapse
|
26
|
Claußen M, Lingner T, Pommerenke C, Opitz L, Salinas G, Pieler T. Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species. Mol Biol Cell 2015; 26:3777-87. [PMID: 26337391 PMCID: PMC4626063 DOI: 10.1091/mbc.e15-02-0115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Subcellular localization of mRNAs contributes to the generation of cellular asymmetries and cell fate determination. A comparative global analysis is given of animally and vegetally enriched RNAs in oocytes from two closely related Xenopus species. RNAs that localize to the vegetal cortex during Xenopus laevis oogenesis have been reported to function in germ layer patterning, axis determination, and development of the primordial germ cells. Here we report on the genome-wide, comparative analysis of differentially localizing RNAs in Xenopus laevis and Xenopus tropicalis oocytes, revealing a surprisingly weak degree of conservation in respect to the identity of animally as well as vegetally enriched transcripts in these closely related species. Heterologous RNA injections and protein binding studies indicate that the different RNA localization patterns in these two species are due to gain/loss of cis-acting localization signals rather than to differences in the RNA-localizing machinery.
Collapse
Affiliation(s)
- Maike Claußen
- Institute of Developmental Biochemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Claudia Pommerenke
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Lennart Opitz
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Tomas Pieler
- Institute of Developmental Biochemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Bauermeister D, Claußen M, Pieler T. A novel role for Celf1 in vegetal RNA localization during Xenopus oogenesis. Dev Biol 2015; 405:214-24. [PMID: 26164657 DOI: 10.1016/j.ydbio.2015.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/22/2015] [Accepted: 07/07/2015] [Indexed: 12/23/2022]
Abstract
The localization of certain mRNAs to the vegetal cortex of Xenopus oocytes is of crucial importance for germ cell development and early embryonic patterning. Vegetal RNA localization is mediated by cis-acting RNA localization elements (LE). Several proteins assemble on the RNA LE and direct transport to the vegetal cortex. Although a number of localization RNP components have been identified, their full composition is unknown. In an RNA affinity purification approach, using the dead end 1 (dnd1) RNA LE, we identified Xenopus Celf1 as a novel component of vegetal localization RNP complexes. Celf1 is part of an RNP complex together with known vegetal localization factors and shows specific interactions with LEs from several but not all vegetally localizing RNAs. Immunostaining experiments reveal co-localization of Celf1 with vegetally localizing RNA and with known localization factors. Inhibition of Celf1 protein binding by localization element mutagenesis as well as Celf1 overexpression interfere with vegetal RNA localization. These results argue for a role of Celf1 in vegetal RNA localization during Xenopus oogenesis.
Collapse
Affiliation(s)
- Diana Bauermeister
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany.
| | - Maike Claußen
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany.
| | - Tomas Pieler
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany.
| |
Collapse
|
28
|
Hansen TH, Vestergaard H, Jørgensen T, Jørgensen ME, Lauritzen T, Brandslund I, Christensen C, Pedersen O, Hansen T, Gjesing AP. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes. BMC MEDICAL GENETICS 2015; 16:17. [PMID: 25927630 PMCID: PMC4422140 DOI: 10.1186/s12881-015-0160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The variant rs11085226 (G) within the gene encoding polypyrimidine tract binding protein 1 (PTBP1) was reported to associate with reduced insulin release determined by an oral glucose tolerance test (OGTT) as well as an intravenous glucose tolerance test (IVGTT). The aim of the present study was to validate the association of the rs11085226 G-allele of PTBP1 with previously investigated OGTT- and IVGTT-derived diabetes-related metabolic quantitative phenotypes, to conduct exploratory analyses of additional measures of beta-cell function, and to further investigate a potential association with type 2 diabetes. METHODS PTBP1 rs11085226 was genotyped in 20,911 individuals of Danish Caucasian ethnicity ascertained from 9 study samples. Case control analysis was performed on 5,634 type 2 diabetic patients and 11,319 individuals having a normal fasting glucose level as well as 4,641 glucose tolerant controls, respectively. Quantitative trait analyses were performed in up to 13,605 individuals subjected to an OGTT or blood samples obtained after an overnight fast, as well as in 596 individuals subjected to an IVGTT. RESULTS Analyses of fasting and OGTT-derived quantitative traits did not show any significant associations with the PTBP1 rs11085226 variant. Meta-analysis of IVGTT-derived quantitative traits showed a nominally significant association between the variant and reduced beta-cell responsiveness to glucose (β = -0.1 mmol · kg(-1) · min(-1); 95% CI: -0.200.20 - -0.024; P = 0.01) assuming a dominant model of inheritance, but failed to replicate a previously reported association with area under the curve (AUC) for insulin. Case control analysis did not show an association of the PTBP1 rs11085226 variant with type 2 diabetes. CONCLUSIONS Despite failure to replicate the previously reported associations of PTBP1 rs11085226 with OGTT- and IVGTT-derived measures of beta-cell function, we did find a nominally significant association with reduced beta-cell responsiveness to glucose during an IVGTT, a trait not previously investigated, leaving the potential influence of this variant in PTBP1 on glucose stimulated insulin release open for further investigation. However, the present study does not support the hypothesis that the variant confers risk of type 2 diabetes.
Collapse
Affiliation(s)
- Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup University Hospital, Nordre Ringvej 57, Building 84-85, DK-2600, Glostrup, Denmark. .,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Torsten Lauritzen
- Department of Public Health, Section of General Practice, Aarhus University, Bartholins Allé 2, DK-8000, Aarhus, Denmark.
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, Kabbeltoft 25, DK-7100, Vejle, Denmark. .,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Cramer Christensen
- Department of Internal Medicine and Endocrinology, SLB, Vejle Hospital, Kabbeltoft 25, DK-7100, Vejle, Denmark.
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark. .,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| | - Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
29
|
Refinement of the spectra of exon usage by combined effects of extracellular stimulus and intracellular factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:537-45. [PMID: 24844182 DOI: 10.1016/j.bbagrm.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022]
Abstract
Finely tuned differential expression of alternative splice variants contributes to important physiological processes such as the fine-tuning of electrical firing or hearing frequencies; yet the underlying molecular basis for the expression control is not clear. The inclusion levels of four depolarization-regulated alternative exons were measured by RT-PCR in GH3 pituitary cells under different conditions of stimulation and/or RNA interference of splicing factors. The usage of the exons was reduced by membrane depolarization to various extents and was differentially modulated by the knock-down of splicing factors hnRNP L, L-like, I (PTBP1) or K or their combinations. A spectrum of each exon's level was produced under six knock-down conditions and was significantly shifted by depolarization. When all these conditions were considered together, a more refined or expanded spectrum of exon usage was obtained for each of the four exons. As a proof of principle for the molecular basis of the fine-tuning of exon usage, we show in the cases of hnRNP L and LL that their differential effects through the same element or different combinations of RNA sequences by the same factor hnRNP L are critical. The results thus demonstrate that the combined effect of varying extracellular stimuli and intracellular factors/RNA sequences refines or expands the spectra of endogenous exon usage, likely contributing to the fine-tuning of cellular properties.
Collapse
|
30
|
He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT. Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 2014; 3:e84. [PMID: 24418892 PMCID: PMC3940912 DOI: 10.1038/oncsis.2013.47] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022] Open
Abstract
We have investigated some roles of splicing factor polypyrimidine tract-binding protein (PTBP1) in human breast cancer. We found that PTBP1 was upregulated in progressively transformed human mammary epithelial cells (HMECs), as well as in breast tumor cell lines compared with HMECs with finite growth potential and found that the level of PTBP1 correlated with the transformation state of HMECs. Knockdown of PTBP1 expression substantially inhibited tumor cell growth, colony formation in soft agar and in vitro invasiveness of breast cancer cell lines, a result similar to what we have reported in ovarian cancer. However, ectopic expression of PTBP1 (as a PTBP1-EGFP fusion protein) did not enhance the proliferation of immortalized HMEC. Rather, PTBP1 expression promoted anchorage-independent growth of an immortalized HMEC as assessed by increased colony formation in soft agar. In addition, we found that knockdown of PTBP1 expression led to upregulation of the expression of the M1 isoform of pyruvate kinase (PKM1) and increase of the ratio of PKM1 vs PKM2. PKM1 has been reported to promote oxidative phosphorylation and reduce tumorigenesis. Correspondingly, we observed increased oxygen consumption in PTBP1-knockdown breast cancer cells. Together, these results suggest that PTBP1 is associated with breast tumorigenesis and appears to be required for tumor cell growth and maintenance of transformed properties. PTBP1 exerts these effects, in part, by regulating the splicing of pyruvate kinase, and consequently alters glucose metabolism and contributes to the Warburg effect.
Collapse
Affiliation(s)
- X He
- 1] Department of Biopharmaceutical Sciences, College of Pharmacy-Rockford, University of Illinois at Chicago, Rockford, IL, USA [2] Cancer Center, University of Illinois, Chicago, IL, USA
| | - A D Arslan
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - T-T Ho
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - C Yuan
- Department of Biopharmaceutical Sciences, College of Pharmacy-Rockford, University of Illinois at Chicago, Rockford, IL, USA
| | - M R Stampfer
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - W T Beck
- 1] Cancer Center, University of Illinois, Chicago, IL, USA [2] Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
McDermott SM, Davis I. Drosophila Hephaestus/polypyrimidine tract binding protein is required for dorso-ventral patterning and regulation of signalling between the germline and soma. PLoS One 2013; 8:e69978. [PMID: 23894566 PMCID: PMC3720928 DOI: 10.1371/journal.pone.0069978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/14/2013] [Indexed: 02/05/2023] Open
Abstract
In the Drosophila oocyte, gurken (grk) mRNA encodes a secreted TGF-α signal that specifies the future embryonic dorso-ventral axes by altering the fate of the surrounding epithelial follicle cells. We previously identified a number of RNA binding proteins that associate specifically with the 64 nucleotide grk localization signal, including the Drosophila orthologue of polypyrimidine tract-binding protein (PTB), Hephaestus (Heph). To test whether Heph is required for correct grk mRNA or protein function, we used immunoprecipitation to validate the association of Heph with grk mRNA and characterized the heph mutant phenotype. We found that Heph is a component of grk mRNP complexes but heph germline clones show that Heph is not required for grk mRNA localization. Instead, we identify a novel function for Heph in the germline and show that it is required for proper Grk protein localization. Furthermore, we show that Heph is required in the oocyte for the correct organization of the actin cytoskeleton and dorsal appendage morphogenesis. Our results highlight a requirement for an mRNA binding protein in the localization of Grk protein, which is independent of mRNA localization, and we propose that Heph is required in the germline for efficient Grk signalling to the somatic follicle cells during dorso-ventral patterning.
Collapse
Affiliation(s)
- Suzanne M. McDermott
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (SMM); (ID)
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (SMM); (ID)
| |
Collapse
|
32
|
Snedden DD, Bertke MM, Vernon D, Huber PW. RNA localization in Xenopus oocytes uses a core group of trans-acting factors irrespective of destination. RNA (NEW YORK, N.Y.) 2013; 19:889-895. [PMID: 23645708 PMCID: PMC3683923 DOI: 10.1261/rna.038232.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
The 3' untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.
Collapse
|
33
|
Lin S, Wang MJ, Tseng KY. Polypyrimidine tract-binding protein induces p19(Ink4d) expression and inhibits the proliferation of H1299 cells. PLoS One 2013; 8:e58227. [PMID: 23536791 PMCID: PMC3594294 DOI: 10.1371/journal.pone.0058227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
The expression of polypyrimidine tract-binding protein (PTB) is up-regulated in many types of cancer. Here, we studied the role of PTB in the growth of non small cell lung cancer cells. Data showed that PTB overexpression inhibited the growth of H1299 cells at least by inhibiting DNA synthesis. Quantitative real-time PCR and Western blot analyses showed that PTB overexpression in H1299 cells specifically induced the expression of p19Ink4d, an inhibitor of cyclin-dependent kinase 4. Repression of p19Ink4d expression partially rescued PTB-caused proliferation inhibition. PTB overexpression also inhibited the growth and induced the expression of p19Ink4d mRNA in A549 cells. However, Western blot analyses failed to detect the presence of p19Ink4d protein in A549 cells. To address how PTB induced p19Ink4d in H1299 cells, we showed that PTB might up-regulate the activity of p19Ink4d gene (CDKN2D) promoter. Besides, PTB lacking the RNA recognition motif 3 (RRM3) was less effective in growth inhibition and p19Ink4d induction, suggesting that RNA-binding activity of PTB plays an important role in p19Ink4d induction. However, immunoprecipitation of ribonuclearprotein complexes plus quantitative real-time PCR analyses showed that PTB might not bind p19Ink4d mRNA, suggesting that PTB overexpression might trigger the other RNA-binding protein(s) to bind p19Ink4d mRNA. Subsequently, RNA electrophoretic mobility-shift assays revealed a 300-base segment (designated as B2) within the 3′UTR of p19Ink4d mRNA, with which the cytoplasmic lysates of PTB-overexpressing cells formed more prominent complexes than did control cell lysates. Insertion of B2 into a reporter construct increased the expression of the chimeric luciferase transcripts in transfected PTB-overexpressing cells but not in control cells; conversely, overexpression of B2-containing reporter construct in PTB-overexpressing cells abolished the induction of p19Ink4d mRNA. In sum, we have shown that PTB plays as a negative regulator in H1299 cell proliferation at least by inducing p19Ink4d expression at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Shankung Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli, Taiwan, Republic of China.
| | | | | |
Collapse
|
34
|
Regulation of cell polarity and RNA localization in vertebrate oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:127-85. [PMID: 24016525 DOI: 10.1016/b978-0-12-407694-5.00004-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has long been appreciated that the inheritance of maternal cytoplasmic determinants from different regions of the egg can lead to differential specification of blastomeres during cleavage. Localized RNAs are important determinants of cell fate in eggs and embryos but are also recognized as fundamental regulators of cell structure and function. This chapter summarizes recent molecular and genetic experiments regarding: (1) mechanisms that regulate polarity during different stages of vertebrate oogenesis, (2) pathways that localize presumptive protein and RNA determinants within the polarized oocyte and egg, and (3) how these determinants act in the embryo to determine the ultimate cell fates. Emphasis is placed on studies done in Xenopus, where extensive work has been done in these areas, and comparisons are drawn with fish and mammals. The prospects for future work using in vivo genome manipulation and other postgenomic approaches are also discussed.
Collapse
|
35
|
Polymorphism rs11085226 in the gene encoding polypyrimidine tract-binding protein 1 negatively affects glucose-stimulated insulin secretion. PLoS One 2012; 7:e46154. [PMID: 23077502 PMCID: PMC3471934 DOI: 10.1371/journal.pone.0046154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Polypyrimidine tract-binding protein 1 (PTBP1) promotes stability and translation of mRNAs coding for insulin secretion granule proteins and thereby plays a role in β-cells function. We studied whether common genetic variations within the PTBP1 locus influence insulin secretion, and/or proinsulin conversion. METHODS We genotyped 1,502 healthy German subjects for four tagging single nucleotide polymorphisms (SNPs) within the PTBP1 locus (rs351974, rs11085226, rs736926, and rs123698) covering 100% of genetic variation with an r(2)≥0.8. The subjects were metabolically characterized by an oral glucose tolerance test with insulin, proinsulin, and C-peptide measurements. A subgroup of 320 subjects also underwent an IVGTT. RESULTS PTBP1 SNP rs11085226 was nominally associated with lower insulinogenic index and lower cleared insulin response in the OGTT (p≤0.04). The other tested SNPs did not show any association with the analyzed OGTT-derived secretion parameters. In the IVGTT subgroup, SNP rs11085226 was accordingly associated with lower insulin levels within the first ten minutes following glucose injection (p = 0.0103). Furthermore, SNP rs351974 was associated with insulin levels in the IVGTT (p = 0.0108). Upon interrogation of MAGIC HOMA-B data, our rs11085226 result was replicated (MAGIC p = 0.018), but the rs351974 was not. CONCLUSIONS We conclude that common genetic variation in PTBP1 influences glucose-stimulated insulin secretion. This underlines the importance of PTBP1 for beta cell function in vivo.
Collapse
|
36
|
Gonsalvez GB, Long RM. Spatial regulation of translation through RNA localization. F1000 BIOLOGY REPORTS 2012; 4:16. [PMID: 22912650 PMCID: PMC3412389 DOI: 10.3410/b4-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA localization is a mechanism to post-transcriptionally regulate gene
expression. Eukaryotic organisms ranging from fungi to mammals localize mRNAs to
spatially restrict synthesis of specific proteins to distinct regions of the
cytoplasm. In this review, we provide a general summary of RNA localization
pathways in Saccharomyces cerevisiae, Xenopus,
Drosophila and mammalian neurons.
Collapse
Affiliation(s)
- Graydon B. Gonsalvez
- Department of Cellular Biology and
Anatomy, Georgia Health Sciences UniversityC2915D,
1459 Laney Walker Blvd., Augusta, GA
30912USA
| | - Roy M. Long
- Department of Microbiology, Immunology
& Molecular Genetics, Medical College of
Wisconsin8701 Watertown Plank Rd., Milwaukee, WI
53226USA
| |
Collapse
|
37
|
Keppetipola N, Sharma S, Li Q, Black DL. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 2012; 47:360-78. [PMID: 22655688 DOI: 10.3109/10409238.2012.691456] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alternative splicing patterns are regulated by RNA binding proteins that assemble onto each pre-mRNA to form a complex RNP structure. The polypyrimidine tract binding protein, PTB, has served as an informative model for understanding how RNA binding proteins affect spliceosome assembly and how changes in the expression of these proteins can control complex programs of splicing in tissues. In this review, we describe the mechanisms of splicing regulation by PTB and its function, along with its paralog PTBP2, in neuronal development.
Collapse
Affiliation(s)
- Niroshika Keppetipola
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
38
|
Association of the RAVER2 gene with increased susceptibility for ulcerative colitis. Hum Immunol 2012; 73:732-5. [PMID: 22561236 DOI: 10.1016/j.humimm.2012.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 11/21/2022]
Abstract
Crohn's disease (CD), ulcerative colitis (UC), systemic lupus erythematosus (SLE) and autoimmune polyglandular syndromes (APS) are autoimmune diseases (ADs) that may share common susceptibility pathways. We examined ribonucleo-protein, polypyrimidine tract-binding protein (PTB)-binding 2 (RAVER2) loci for these diseases in a cohort of 39 CD cases, 67 UC cases, 93 SLE cases, 60 APS cases and 162 healthy control subjects of Tunisian origin. We genotyped 3 SNPs of RAVER2 (rs2780814, rs1333739 and rs2780889) and evaluated it genetic association with each ADs, using X2-test. For each association, odds ratio (OR) and 95% CI were calculated. We show that rs2780814 is significantly associated with UC (P = 0.00016, P(corr) = 0.00048, OR = 3.66 (1.82; 7.34)). We also observed a trend of possible association to SLE (P = 0.023, P(corr) = 0.69, OR = 2.19 (1.1; 4.36)). None of these RAVER2 SNPs were associated with CD and APS susceptibility. These findings establish RAVER2 as a new UC genetic susceptibility factor and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between ADs suggesting different immunopathological roles of RAVER2 in these diseases.
Collapse
|
39
|
Joshi A, Coelho MB, Kotik-Kogan O, Simpson PJ, Matthews SJ, Smith CWJ, Curry S. Crystallographic analysis of polypyrimidine tract-binding protein-Raver1 interactions involved in regulation of alternative splicing. Structure 2012; 19:1816-25. [PMID: 22153504 PMCID: PMC3420021 DOI: 10.1016/j.str.2011.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/28/2022]
Abstract
The polypyrimidine tract-binding protein (PTB) is an important regulator of alternative splicing. PTB-regulated splicing of α-tropomyosin is enhanced by Raver1, a protein with four PTB-Raver1 interacting motifs (PRIs) that bind to the helical face of the second RNA recognition motif (RRM2) in PTB. We present the crystal structures of RRM2 in complex with PRI3 and PRI4 from Raver1, which—along with structure-based mutagenesis—reveal the molecular basis of their differential binding. High-affinity binding by Raver1 PRI3 involves shape-matched apolar contacts complemented by specific hydrogen bonds, a new variant of an established mode of peptide-RRM interaction. Our results refine the sequence of the PRI motif and place important structural constraints on functional models of PTB-Raver1 interactions. Our analysis indicates that the observed Raver1-PTB interaction is a general mode of binding that applies to Raver1 complexes with PTB paralogues such as nPTB and to complexes of Raver2 with PTB.
Collapse
Affiliation(s)
- Amar Joshi
- Division of Cell and Molecular Biology, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
McDermott SM, Meignin C, Rappsilber J, Davis I. Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification. Biol Open 2012; 1:488-97. [PMID: 23213441 PMCID: PMC3507208 DOI: 10.1242/bio.2012885] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the Drosophila oocyte, mRNA transport and localised translation play a fundamental role in axis determination and germline formation of the future embryo. gurken mRNA encodes a secreted TGF-α signal that specifies dorsal structures, and is localised to the dorso-anterior corner of the oocyte via a cis-acting 64 nucleotide gurken localisation signal. Using GRNA chromatography, we characterised the biochemical composition of the ribonucleoprotein complexes that form around the gurken mRNA localisation signal in the oocyte. We identified a number of the factors already known to be involved in gurken localisation and translational regulation, such as Squid and Imp, in addition to a number of factors with known links to mRNA localisation, such as Me31B and Exu. We also identified previously uncharacterised Drosophila proteins, including the fly homologue of mammalian SYNCRIP/hnRNPQ, a component of RNA transport granules in the dendrites of mammalian hippocampal neurons. We show that Drosophila Syncrip binds specifically to gurken and oskar, but not bicoid transcripts. The loss-of-function and overexpression phenotypes of syncrip in Drosophila egg chambers show that the protein is required for correct grk and osk mRNA localisation and translational regulation. We conclude that Drosophila Syncrip is a new factor required for localisation and translational regulation of oskar and gurken mRNA in the oocyte. We propose that Syncrip/SYNCRIP is part of a conserved complex associated with localised transcripts and required for their correct translational regulation in flies and mammals.
Collapse
Affiliation(s)
- Suzanne M McDermott
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU , UK ; Present address: Seattle Biomedical Research Institute, 307 Westlake Avenue N, Suite 500, Seattle, WA 98109-5219, USA
| | | | | | | |
Collapse
|
41
|
Shahbabian K, Chartrand P. Control of cytoplasmic mRNA localization. Cell Mol Life Sci 2012; 69:535-52. [PMID: 21984598 PMCID: PMC11115051 DOI: 10.1007/s00018-011-0814-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Karen Shahbabian
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| |
Collapse
|
42
|
Houston DW. Cortical rotation and messenger RNA localization in Xenopus axis formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:371-88. [PMID: 23801488 DOI: 10.1002/wdev.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Xenopus eggs, fertilization initiates a rotational movement of the cortex relative to the cytoplasm, resulting in the transport of critical determinants to the future dorsal side of the embryo. Cortical rotation is mediated by microtubules, resulting in activation of the Wnt/β-catenin signaling pathway and expression of organizer genes on the dorsal side of the blastula. Similar cytoplasmic localizations resulting in β-catenin activation occur in many chordate embryos, suggesting a deeply conserved mechanism for patterning early embryos. This review summarizes the experimental evidence for the molecular basis of this model, focusing on recent maternal loss-of-function studies that shed light on two main unanswered questions: (1) what regulates microtubule assembly during cortical rotation and (2) how is Wnt/β-catenin signaling activated dorsally? In addition, as these processes depend on vegetally localized molecules in the oocyte, the mechanisms of RNA localization and novel roles for localized RNAs in axis formation are discussed. The work reviewed here provides a beginning framework for understanding the coupling of asymmetry in oogenesis with the establishment of asymmetry in the embryo.
Collapse
|
43
|
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 2012; 97:19-33. [PMID: 15601255 DOI: 10.1042/bc20040067] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Localization of maternal mRNAs in many developing organisms provides the basis for both initial polarity during oogenesis and patterning during embryogenesis. Prominent examples of this phenomenon are found in Xenopus laevis, where localized maternal mRNAs generate developmental polarity along the animal/vegetal axis. Targeting of mRNA molecules to specific subcellular regions is a fundamental mechanism for spatial regulation of gene expression, and considerable progress has been made in defining the underlying molecular pathways.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
44
|
Abstract
The highly conserved VICKZ (Vg1 RBP/Vera, IMP-1,2,3, CRD-BP, KOC, ZBP-1) family of RNA-binding proteins recognize specific cis-acting elements in a variety of different RNAs and have been implicated in cell polarity and migration, cell proliferation, and cancer. In just the last two years, the use of transgenic mice, antisense RNA, and RNAi (RNA interference) techniques have contributed to our understanding of the roles of these proteins and how they interface with many diverse processes in cells. In this article, I will review the recent advances relating to VICKZ proteins and try to suggest a framework for understanding how, in conjunction with other RNA-binding proteins, they participate in a combinatorial fashion to help determine the fate of their RNA targets and, ultimately, the function of cells in which they are expressed. Such a 'post-transcriptional operon' model, as proposed by Keene and Tenenbaum [(2002) Mol. Cell 9, 1161-1167], can explain the differential, integrated action of multiple RNA-binding proteins on mRNA targets.
Collapse
Affiliation(s)
- Joel K Yisraeli
- Department of Anatomy and Cell Biology, Hebrew University - Hadassah Medical School, POB 12272, Jerusalem, Israel 91120.
| |
Collapse
|
45
|
Kato Y, Nakamura A. Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the Drosophila oocyte. Dev Growth Differ 2011; 54:19-31. [PMID: 22111938 DOI: 10.1111/j.1440-169x.2011.01314.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracellular mRNA localization and translation are ways to achieve asymmetric protein sorting in polarized cells, and they play fundamental roles in cell-fate decisions and body patterning during animal development. These processes are regulated by the interplay between cis-acting elements and trans-acting RNA-binding proteins that form and occur within a ribonucleoprotein (RNP) complex. Recent studies in the Drosophila oocyte have revealed that RNP complex assembly in the nucleus is critical for the regulation of cytoplasmic mRNA localization and translation. Furthermore, several trans-acting factors promote the reorganization of target mRNAs in the cytoplasm into higher-order RNP granules, which are often visible by light microscopy. Therefore, RNA localization and translation are likely to be coupled within these RNP granules. Notably, diverse cytoplasmic RNP granules observed in different cell types share conserved sets of proteins, suggesting they have fundamental and common cellular functions.
Collapse
Affiliation(s)
- Yasuko Kato
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
46
|
Abstract
The localization of mRNAs in developing animal cells is essential for establishing cellular polarity and setting up the body plan for subsequent development. Cellular and molecular mechanisms by which maternal mRNAs are localized during oogenesis have been extensively studied in Drosophila and Xenopus. In contrast, evidence for mechanisms used in the localization of mRNAs encoded by developmentally important genes has also been accumulating in several other organisms. This offers the opportunity to unravel the fundamental mechanisms of mRNA localization shared among many species, as well as unique mechanisms specifically acquired or retained by animals based on their developmental needs. In addition to maternal mRNAs, the localization of zygotically expressed mRNAs in the cells of cleaving embryos is also important for early development. In this review, mRNA localization dynamics in the oocytes/eggs of Drosophila and Xenopus are first summarized, and evidence for localized mRNAs in the oocytes/eggs and cleaving embryos of other organisms is then presented.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
47
|
Sinnamon JR, Czaplinski K. mRNA trafficking and local translation: the Yin and Yang of regulating mRNA localization in neurons. Acta Biochim Biophys Sin (Shanghai) 2011; 43:663-70. [PMID: 21749992 DOI: 10.1093/abbs/gmr058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Localized translation and the requisite trafficking of the mRNA template play significant roles in the nervous system including the establishment of dendrites and axons, axon path-finding, and synaptic plasticity. We provide a brief review on the regulation of localizing mRNA in mammalian neurons through critical post-translational modifications of the factors involved. These examples highlight the relationship between mRNA trafficking and the translational regulation of trafficked mRNAs and provide insight into how extracellular signals target these events during signal transduction.
Collapse
Affiliation(s)
- John R Sinnamon
- Program in Neuroscience, Stony Brook University, NY 11794, USA
| | | |
Collapse
|
48
|
The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites. J Virol 2011; 85:5136-49. [PMID: 21411518 DOI: 10.1128/jvi.00195-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The coronavirus (CoV) discontinuous transcription mechanism is driven by long-distance RNA-RNA interactions between transcription-regulating sequences (TRSs) located at the 5' terminal leader (TRS-L) and also preceding each mRNA-coding sequence (TRS-B). The contribution of host cell proteins to CoV transcription needs additional information. Polypyrimidine tract-binding protein (PTB) was reproducibly identified in association with positive-sense RNAs of transmissible gastroenteritis coronavirus (TGEV) TRS-L and TRS-B by affinity chromatography and mass spectrometry. A temporal regulation of PTB cytoplasmic levels was observed during infection, with a significant increase from 7 to 16 h postinfection being inversely associated with a decrease in viral replication and transcription. Silencing the expression of PTB with small interfering RNA in two cell lines (Huh7 and HEK 293T) led to a significant increase of up to 4-fold in mRNA levels and virus titer, indicating a negative effect of PTB on CoV RNA accumulation. During CoV infection, PTB relocalized from the nucleus to novel cytoplasmic structures different from replication-transcription sites in which stress granule markers T-cell intracellular antigen-1 (TIA-1) and TIA-1-related protein (TIAR) colocalized. PTB was detected in these modified stress granules in TGEV-infected swine testis cells but not in stress granules induced by oxidative stress. Furthermore, viral genomic and subgenomic RNAs were detected in association with PTB and TIAR. These cytoplasmic ribonucleoprotein complexes might be involved in posttranscriptional regulation of virus gene expression.
Collapse
|
49
|
Suckale J, Wendling O, Masjkur J, Jäger M, Münster C, Anastassiadis K, Stewart AF, Solimena M. PTBP1 is required for embryonic development before gastrulation. PLoS One 2011; 6:e16992. [PMID: 21423341 PMCID: PMC3040740 DOI: 10.1371/journal.pone.0016992] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/18/2011] [Indexed: 12/27/2022] Open
Abstract
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
Collapse
Affiliation(s)
- Jakob Suckale
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Olivia Wendling
- Department of Functional Genomics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) & ICS (Institut Clinique de la Souris), Illkirch, France
| | - Jimmy Masjkur
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Melanie Jäger
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Konstantinos Anastassiadis
- Center for Regenerative Therapies Dresden, BioInnovationsZentrum Dresden University of Technology, Dresden, Germany
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Dresden University of Technology, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
50
|
Abstract
Visualization of in vivo mRNA localization provides a tool for understanding steps in the mechanism of transport. Here we detail a method of fluorescently labeling mRNA transcripts and microinjecting them into Xenopus laevis oocytes followed with imaging by confocal microscopy. This technique overcomes a significant hurdle of imaging RNA in the frog oocyte while providing a rapid method of visualizing mRNA localization in high resolution.
Collapse
|