1
|
Song X, Pan Z, Zhang Y, Yang W, Zhang T, Wang H, Chen Y, Yu X, Ding H, Li R, Ge P, Xu L, Dong G, Jiang F. Excessive MYC Orchestrates Macrophages induced Chromatin Remodeling to Sustain Micropapillary-Patterned Malignancy in Lung Adenocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403851. [PMID: 39899538 PMCID: PMC11948069 DOI: 10.1002/advs.202403851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Current understanding of micropapillary (MP)-subtype lung adenocarcinoma (LUAD) remains confined to biological activities and genomic landscapes. Unraveling the major regulatory programs underlying MP patterned malignancy offers opportunities to identify more feasible therapeutic targets for patients with MP LUAD. This study shows that patients with MP subtype LUAD have aberrant activation of the MYC pathway compared to patients with other subtypes. In vitro and xenograft mouse model studies reveal that MP pattern in malignancy cannot be solely due to aberrant MYC expression but requires the involvement of M2-like macrophages. Excessively expressed MYC leads to the accumulation of M2-like macrophages from the bone marrow, which secretes TGFβ, to induce the expression of FOSL2 in tumor cells, thereby remodeling chromatin accessibility at promoter regions of MP-pattern genes to promote the MYC-mediated de novo transcriptional regulation of these genes. Additionally, the MP-pattern in malignancy can be effectively alleviated by disrupting the TGFβ-FOSL2 axis. These findings reveal new functions for the M2-like macrophage-TGFβ-FOSL2 axis in MYC-overexpressing MP-subtype LUAD, identifying targetable vulnerabilities in this pathway.
Collapse
Affiliation(s)
- Xuming Song
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Zehao Pan
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Yi Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of PathologyNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
| | - Wenmin Yang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of PathologyNanjing Drum Tower hospitalNanjing210008P.R. China
| | - Te Zhang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of Biochemistry and Molecular GeneticsFeinberg School of MedicineNorthwestern UniversityChicagoIllinois60201USA
| | - Hui Wang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Yuzhong Chen
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Xinnian Yu
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Hanlin Ding
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Rutao Li
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow UniversityNanjing215000P. R. China
| | - Pengfei Ge
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- The Fourth Clinical College of Nanjing Medical UniversityNanjing210000P. R. China
| | - Lin Xu
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjing211116P. R. China
| | - Gaochao Dong
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
| | - Feng Jiang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjing210009P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjing210000P. R. China
| |
Collapse
|
2
|
Hertel A, Storchová Z. The Role of p53 Mutations in Early and Late Response to Mitotic Aberrations. Biomolecules 2025; 15:244. [PMID: 40001547 PMCID: PMC11852650 DOI: 10.3390/biom15020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Mutations in the TP53 gene and chromosomal instability (CIN) are two of the most common alterations in cancer. CIN, marked by changes in chromosome numbers and structure, drives tumor development, but is poorly tolerated in healthy cells, where developmental and tissue homeostasis mechanisms typically eliminate cells with chromosomal abnormalities. Mechanisms that allow cancer cells to acquire and adapt to CIN remain largely unknown. Tumor suppressor protein p53, often referred to as the "guardian of the genome", plays a critical role in maintaining genomic stability. In cancer, CIN strongly correlates with TP53 mutations, and recent studies suggest that p53 prevents the propagation of cells with abnormal karyotypes arising from mitotic errors. Furthermore, p53 dysfunction is frequent in cells that underwent whole-genome doubling (WGD), a process that facilitates CIN onset, promotes aneuploidy tolerance, and is associated with poor patient prognosis across multiple cancer types. This review summarizes current insights into p53's role in protecting cells from chromosome copy number alterations and discusses the implications of its dysfunction for the adaption and propagation of cancer cells.
Collapse
Affiliation(s)
| | - Zuzana Storchová
- Group Molecular Genetics, Faculty of Biology, RPTU Kaiserslautern-Landau, Paul Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Gong L, Xu D, Ni K, Li J, Mao W, Zhang B, Pu Z, Fang X, Yin Y, Ji L, Wang J, Hu Y, Meng J, Zhang R, Jiao J, Zou J. Smad1 Promotes Tumorigenicity and Chemoresistance of Glioblastoma by Sequestering p300 From p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402258. [PMID: 39629919 PMCID: PMC11789598 DOI: 10.1002/advs.202402258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Indexed: 01/30/2025]
Abstract
Acetylation is critically required for p53 activation, though it remains poorly understood how p53 acetylation is regulated in glioblastoma (GBM). This study reveals that p53 acetylation is a favorable prognostic marker for GBM, regardless of p53 status, and that Smad1, a key negative regulator of p53 acetylation, is involved in this process. Smad1 forms a complex with p53 and p300, inhibiting p300's interaction with p53 and leading to reduced p53 acetylation and increased Smad1 acetylation in GBM. This results in enhanced tumor growth and resistance to chemotherapy, particularly in tumors with missense mutant p53. Acetylation of K373 is found to be essential for Smad1's oncogenic function but does not confer chemoresistance in the absence of p53. Through molecular docking, it is discovered that Smad1 and p53 both interact with the acetyltransferase domain of p300, but at different amino acid sites. Disturbing the interface of Smad1 through amino acid mutations abolishes the Smad1-p300 complex and promotes p53 acetylation. Therefore, a small molecule is identified through virtual screening that specifically disrupts the Smad1-p300 interaction, offering a promising strategy for inhibiting GBM and increasing chemosensitivity by inhibiting Smad1 acetylation and restoring p53 acetylation.
Collapse
Affiliation(s)
- Lingli Gong
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Daxing Xu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Kaixiang Ni
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jie Li
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Wei Mao
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zhening Pu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jingjing Wang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jiao Meng
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
4
|
Giaimo BD, Ferrante F, Borggrefe T. Lysine and arginine methylation of transcription factors. Cell Mol Life Sci 2024; 82:5. [PMID: 39680066 DOI: 10.1007/s00018-024-05531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation. Beyond histone-tails as substrates, dynamic methylation of transcription factors has been described. The focus of this review is on these non-histone substrates providing a detailed discussion of what is currently known about methylation of hypoxia-inducible factor (HIF), P53, nuclear receptors (NRs) and RELA. The role of methylation in regulating protein stability and function by acting as docking sites for methyl-reader proteins and via their crosstalk with other PTMs is explored.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
5
|
Li Y, Xu Y, Li R, Huang S, Wu Q, Yan J, Jiang Z, Wu X, Li F, Wang Y, Li Y, Fan X, Yuan W. Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Drosophila Development. Metabolites 2024; 14:680. [PMID: 39728461 DOI: 10.3390/metabo14120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Background: General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in Drosophila. Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In Drosophila, Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development. However, the functional mechanisms of Gcn5 after the depletion of maternal deposits remain unclear. Methods: Our study employed the Gal4/UAS-RNAi system to achieve whole-body or heart-specific Gcn5 knockdown in Drosophila and selected 96-hour-old surviving larvae for transcriptomic and metabolomic analyses. Results: Omics results revealed that Gcn5 knockdown significantly impacts various metabolic pathways, as well as lysosomes, non-homologous end-joining, Toll and Imd signaling pathways, and circadian rhythms, among others. Furthermore, defects in chitin synthesis may be associated with impaired pupation. Additionally, heart-specific Gcn5 knockdown affected cardiac physiology but appeared to have a potential protective effect against age-related cardiac decline. Conclusions: These findings deepen our understanding of Gcn5's roles in Drosophila development and provide valuable insights for developing Gcn5-targeted therapies, particularly considering its involvement in various human diseases.
Collapse
Affiliation(s)
- Youfeng Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yue Xu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ruike Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Sirui Huang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Qiong Wu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jing Yan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhigang Jiang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xiushan Wu
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Fang Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuequn Wang
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yongqing Li
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xiongwei Fan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wuzhou Yuan
- The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
6
|
Abdalla M, Abdelkhalig SM, Edet UO, Zothantluanga JH, Umoh EA, Moglad E, Nkang NA, Hader MM, Alanazi TMR, AlShouli S, Al-Shouli S. Molecular dynamics-based computational investigations on the influence of tumor suppressor p53 binding protein against other proteins/peptides. Sci Rep 2024; 14:29871. [PMID: 39622863 PMCID: PMC11612205 DOI: 10.1038/s41598-024-81499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
The tumor-suppressing p-53 binding protein is a crucial protein that is involved in the prevention of cancer via its regulatory effect on a number of cellular processes. Recent evidence indicates that it interacts with a number of other proteins involved in cancer in ways that are not fully understood. An understanding of such interactions could provide insights into novel ways p53 further exerts its tumour prevention role via its interactions with diverse proteins. Thus, this study aimed to examine the interactions of the p53 protein with other proteins (peptides and histones) using molecular simulation dynamics. We opted for a total of seven proteins, namely 2LVM, 2MWO, 2MWP, 4CRI, 4 × 34, 5Z78, and 6MYO (control), and had their PBD files retrieved from the protein database. These proteins were then docked against the p-53 protein and the resulting interactions were examined using molecular docking simulations run at 500 ns. The result of the interactions revealed the utilisation of various amino acids in the process. The peptide that interacted with the highest number of amino acids was 5Z78 and these were Lys10, Gly21, Trp24, Pro105, His106, and Arg107, indicating a stronger interaction. The RMSD and RMSF values indicate that the complexes formed were stable, with 4CRI, 6MYO, and 2G3R giving the most stable values (less than 2.5 Å). Other parameters, including the SASA, Rg, and number of hydrogen bonds, all indicated the formation of fairly stable complexes. Our study indicates that overall, the interactions of 53BP1 with p53K370me2, p53K382me2, methylated K810 Rb, p53K381acK382me2, and tudor-interacting repair regulator protein indicated interactions that were not as strong as those with the histone protein. Thus, it could be that P53 may mediate its tumour suppressing effect via interactions with amino acids and histone.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China.
| | - Sozan M Abdelkhalig
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Uwem O Edet
- Department of Biological (Microbiology), Faculty of Natural and Applied Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria.
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Ekementeabasi Aniebo Umoh
- Department of Human Physiology, Faculty of Basic Medical Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj, 11942, Saudi Arabia
| | - Nkoyo Ani Nkang
- Science Laboratory Department, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Meshari M Hader
- Dietary Department, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | | | - Sawsan AlShouli
- Pharmacy Department, Security Forces Hospital, Riyadh, 11481, Saudi Arabia
| | - Samia Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
7
|
Chen LY, Singha Roy SJ, Jadhav AM, Wang WW, Chen PH, Bishop T, Erb MA, Parker CG. Functional Investigations of p53 Acetylation Enabled by Heterobifunctional Molecules. ACS Chem Biol 2024; 19:1918-1929. [PMID: 39250704 PMCID: PMC11421428 DOI: 10.1021/acschembio.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation. We recently developed a heterobifunctional small molecule system, AceTAG, to direct the acetyltransferase p300/CBP for targeted protein acetylation in cells. Here, we expand AceTAG to leverage the acetyltransferase PCAF/GCN5 and apply these tools to investigate the functional consequences of targeted p53 acetylation in human cancer cells. We demonstrate that the recruitment of p300/CBP or PCAF/GCN5 to p53 results in distinct acetylation events and differentiated transcriptional activities. Further, we show that chemically induced acetylation of multiple hotspot p53 mutants results in increased stabilization and enhancement of transcriptional activity. Collectively, these studies demonstrate the utility of AceTAG for functional investigations of protein acetylation.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Soumya Jyoti Singha Roy
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Appaso M. Jadhav
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Wesley W. Wang
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Timothy Bishop
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael A. Erb
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher G. Parker
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Gonnella R, Collura F, Corrado V, Di Crosta M, Santarelli R, Cirone M. EZH2 Inhibition by DS3201 Triggers the Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycle and Potentiates the Effects Induced by SAHA in Primary Effusion Lymphoma Cells. Viruses 2024; 16:1490. [PMID: 39339966 PMCID: PMC11437442 DOI: 10.3390/v16091490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Primary Effusion Lymphoma (PEL) cells carry Kaposi's sarcoma-associated herpesvirus (KSHV) in a latent state, except for a small number of cells in which the virus replicates to ensure its persistence into the infected host. However, the lytic cycle can be reactivated in vitro by exposing these lymphoma cells to various treatments, leading to cell lysis. To restrict viral antigen expression, KSHV induces repressive epigenetic changes, including DNA methylation and histone modifications. Among the latter, histone deacetylation and tri-methylation of Histone H3 lisyne-27 (H3K27me3) have been reported to play a role. Here, we found that the inhibition of H3K27 tri-methylation by valemetostat DS3201 (DS), a small molecule that inhibits Enhancer of Zeste Homolog 2 (EZH2) methyltransferase, induced the KSHV lytic cycle in PEL cells, and that this effect involved the activation of the wtp53-p21 axis and autophagic dysregulation. DS also potentiated the lytic cycle activation mediated by the Histone deacetylases (HDAC) inhibitor Suberoylanilide hydroxamic acid (SAHA) and reinforced its cytotoxic effect, suggesting that such a combination could be used to unbalance the latent/lytic cycle and further impair the survival of PEL cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (R.G.); (F.C.); (V.C.); (M.D.C.); (R.S.)
| |
Collapse
|
9
|
Yang P, Wu S, Li Y, Lou Y, Xiong J, Wang Y, Geng Z, Zhang B. LARP7 overexpression alleviates aortic senescence and atherosclerosis. J Cell Mol Med 2024; 28:e18388. [PMID: 38818612 PMCID: PMC11140237 DOI: 10.1111/jcmm.18388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of lipid plaques on the inner walls of arteries, is the leading cause of heart attack, stroke and severe ischemic injuries. Senescent cells have been found to accumulate within atherosclerotic lesions and contribute to the progression of atherosclerosis. In our previous study, we discovered that suppressing Larp7 accelerates senescence by inhibiting Sirt1 activity, resulting in increased atherosclerosis in high-fat diet (HFD) fed and ApoE deficient (ApoEKO) mice. However, there has been no direct evidence demonstrating Larp7 per se could attenuate atherosclerosis. To this end, we generated a tetO-controlled and Cre-activated Larp7 gain-of-function mouse. Through RT-PCR and western blotting, we confirmed Larp7 overexpression in the aortas of HFD-fed ApoEKO; Larp7tetO mice. Larp7 overexpression led to increased Sirt1 activity and decreased cellular senescence signals mediated by p53/p65 in the aortas. Additionally, Larp7 overexpression reduced the presence of p16-positive senescent cells in the aortic lesions. Furthermore, Larp7 overexpression resulted in a decrease in pro-inflammatory macrophages and SASP factors. Consequently, Larp7 overexpression led to a reduction in the area of atherosclerotic lesions in HFD-fed ApoEKO; Larp7tetO mice. In summary, our study provides evidence that Larp7 overexpression holds promise as an approach to inhibit cellular senescence and prevent atherosclerosis.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shuo Wu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yige Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yingmei Lou
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yuze Wang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Cardiovascular Surgery, Shanghai Chest Hospital, Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute for Developmental and Regenerative Medicine, Xin Hua Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Sun Y, Xie Z, Jin L, Qin T, Zhan C, Huang J. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability. THE PLANT CELL 2024; 36:1913-1936. [PMID: 38242836 PMCID: PMC11062455 DOI: 10.1093/plcell/koae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Low temperature is a major environmental factor limiting plant growth and crop production. Epigenetic regulation of gene expression is important for plant adaptation to environmental changes, whereas the epigenetic mechanism of cold signaling in rice (Oryza sativa) remains largely elusive. Here, we report that the histone deacetylase (HDAC) OsHDA716 represses rice cold tolerance by interacting with and deacetylating the transcription factor OsbZIP46. The loss-of-function mutants of OsHDA716 exhibit enhanced chilling tolerance, compared with the wild-type plants, while OsHDA716 overexpression plants show chilling hypersensitivity. On the contrary, OsbZIP46 confers chilling tolerance in rice through transcriptionally activating OsDREB1A and COLD1 to regulate cold-induced calcium influx and cytoplasmic calcium elevation. Mechanistic investigation showed that OsHDA716-mediated OsbZIP46 deacetylation in the DNA-binding domain reduces the DNA-binding ability and transcriptional activity as well as decreasing OsbZIP46 protein stability. Genetic evidence indicated that OsbZIP46 deacetylation mediated by OsHDA716 reduces rice chilling tolerance. Collectively, these findings reveal that the functional interplay between the chromatin regulator and transcription factor fine-tunes the cold response in plant and uncover a mechanism by which HDACs repress gene transcription through deacetylating nonhistone proteins and regulating their biochemical functions.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Park J, Lee HJ, Han YK, Kang K, Yi JM. Identification of DNA methylation biomarkers for evaluating cardiovascular disease risk from epigenome profiles altered by low-dose ionizing radiation. Clin Epigenetics 2024; 16:19. [PMID: 38303056 PMCID: PMC10835887 DOI: 10.1186/s13148-024-01630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Environmental exposure, medical diagnostic and therapeutic applications, and industrial utilization of radionuclides have prompted a growing focus on the risks associated with low-dose radiation (< 100 mGy). Current evidence suggests that such radiation can induce epigenetic changes. Nevertheless, whether exposure to low-dose radiation can disrupt endothelial cell function at the molecular level is unclear. Because endothelial cells play crucial roles in cardiovascular health and disease, we aimed to investigate whether low-dose radiation could lead to differential DNA methylation patterns at the genomic level in endothelial cell (EC) lines. METHODS We screened for changes in DNA methylation patterns in primary human aortic (HAECs) and coronary artery endothelial cells following exposure to low-dose ionizing radiation. Using a subset of genes altered via DNA methylation by low-dose irradiation, we performed gene ontology (GO) analysis to predict the possible biological network mediating the effect of low-dose radiation. In addition, we performed comprehensive validation using methylation and gene expression analyses, and ChIP assay to identify useful biomarkers among candidate genes for use in detecting low-dose radiation exposure in human primary normal ECs. RESULTS Low-dose radiation is sufficient to induce global DNA methylation alterations in normal EC lines. GO analysis demonstrated that these hyper- or hypo-methylated genes were linked to diverse biological pathways. Our findings indicated a robust correlation between promoter hypermethylation and transcriptional downregulation of four genes (PGRMC1, UNC119B, RERE, and FNDC3B) in response to low-dose ionizing radiation in HAECs. CONCLUSIONS Based on these findings, the identified genes can serve as potential DNA methylation biomarkers for the assessment of cardiovascular risk upon exposure to low-dose radiation.
Collapse
Affiliation(s)
- Jihye Park
- Department of Microbiology, Dankook University, Cheonan, 31116, South Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, South Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
12
|
Huang L, Wen X, Jin L, Han H, Guo H. HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote autophagy during nutrient starvation in Arabidopsis. THE PLANT CELL 2023; 36:136-157. [PMID: 37823521 PMCID: PMC10734606 DOI: 10.1093/plcell/koad252] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Acetylation is an important posttranslational modification (PTM) that regulates almost all core processes of autophagy in yeast and mammals. However, the role of protein acetylation in plant autophagy and the underlying regulatory mechanisms remain unclear. Here, we show the essential role of the putative acetyltransferase HOOKLESS1 (HLS1) in acetylation of the autophagy-related protein ATG18a, a key autophagy component that regulates autophagosome formation in Arabidopsis (Arabidopsis thaliana). Loss of HLS1 function suppressed starvation-induced autophagy and increased plant susceptibility to nutrient deprivation. We discovered that HLS1 physically interacts with and directly acetylates ATG18a both in vitro and in vivo. In contrast, mutating putative active sites in HLS1 inhibited ATG18a acetylation and suppressed autophagy upon nutrient deprivation. Accordingly, overexpression of ATG18a mutant variants with lower acetylation levels inhibited the binding activity of ATG18a to PtdIns(3)P and autophagosome formation under starvation conditions. Moreover, HLS1-modulated autophagy was uncoupled from its function in hook development. Taken together, these findings shed light on a key regulator of autophagy and further elucidate the importance of PTMs in modulating autophagy in plants.
Collapse
Affiliation(s)
- Li Huang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xing Wen
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Lian Jin
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Huihui Han
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Park S, Oh S, Kim N, Kim EK. HMBA ameliorates obesity by MYH9- and ACTG1-dependent regulation of hypothalamic neuropeptides. EMBO Mol Med 2023; 15:e18024. [PMID: 37984341 DOI: 10.15252/emmm.202318024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The global epidemic of obesity remains a daunting problem. Here, we report hexamethylene bisacetamide (HMBA) as a potent anti-obesity compound. Peripheral and central administration of HMBA to diet-induced obese mice regulated the expression of hypothalamic neuropeptides critical for energy balance, leading to beneficial metabolic effects such as anorexia and weight loss. We found that HMBA bound to MYH9 and ACTG1, which were required for the anti-obesity effects of HMBA in both NPY-expressing and POMC-expressing neurons. The binding of HMBA to MYH9 and ACTG1 elevated the expression of HEXIM1 and enhanced its interaction with MDM2, resulting in the dissociation of the HEXIM1-p53 complex in hypothalamic cells. Subsequently, the free HEXIM1 and p53 translocated to the nucleus, where they downregulated the transcription of orexigenic NPY, but p53 and acetylated histone 3 upregulated that of anorexigenic POMC. Our study points to a previously unappreciated efficacy of HMBA and reveals its mechanism of action in metabolic regulation, which may propose HMBA as a potential therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Sungjoon Oh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Nayoun Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Eun-Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| |
Collapse
|
14
|
Lo Cigno I, Calati F, Girone C, Borgogna C, Venuti A, Boldorini R, Gariglio M. SIRT1 is an actionable target to restore p53 function in HPV-associated cancer therapy. Br J Cancer 2023; 129:1863-1874. [PMID: 37838812 PMCID: PMC10667542 DOI: 10.1038/s41416-023-02465-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Our aim was to evaluate the efficacy and anti-cancer action of a precision medicine approach involving a novel SIRT1-dependent pathway that, when disrupted, leads to the restoration of a functional p53 in human papillomavirus (HPV)-transformed cells. METHODS The anticancer potential of inhibiting SIRT1 was evaluated by examining the effects of the specific SIRT1 inhibitor EX527 (also known as Selisistat) or genetic silencing, either individually or in conjunction with standard chemotherapeutic agents, on a range of HPV+ cancer cells and a preclinical mouse model of HPV16-induced cancer. RESULTS We show that SIRT1 inhibition restores a transcriptionally active K382-acetylated p53 in HPV+ but not HPV- cell lines, which in turn promotes G0/G1 cell cycle arrest and inhibits clonogenicity specifically in HPV+ cells. Additionally, EX527 treatment increases the sensitivity of HPV+ cells to sublethal doses of standard genotoxic agents. The enhanced sensitivity to cisplatin as well as p53 restoration were also observed in an in vivo tumorigenicity assay using syngeneic C3.43 cells harbouring an integrated HPV16 genome, injected subcutaneously into C57BL/6J mice. CONCLUSIONS Our findings uncover an essential role of SIRT1 in HPV-driven oncogenesis, which may have direct translational implications for the treatment of this type of cancer.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Aldo Venuti
- HPV Unit, UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy.
| |
Collapse
|
15
|
Yi JM, Kang T, Han YK, Park HY, Yang JH, Bae J, Suh J, Kim T, Kim J, Cui Y, Suzuki H, Kumegawa K, Kim SJ, Zhao Y, Park IJ, Hong S, Chung J, Lee S. Human Neuralized is a novel tumour suppressor targeting Wnt/β-catenin signalling in colon cancer. EMBO Rep 2023; 24:e56335. [PMID: 37341560 PMCID: PMC10398657 DOI: 10.15252/embr.202256335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/β-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic β-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic β-catenin, and reducing its cytoplasmic levels in a GSK3β- and β-TrCP-independent manner, indicating that NEURL-β-catenin interactions can lead to a disruption of the canonical Wnt/β-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Joo Mi Yi
- Department of Microbiology and Immunology, College of MedicineInje UniversityBusanSouth Korea
| | - Tae‐Hong Kang
- Department of Biological ScienceDong‐A UniversityBusanSouth Korea
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, College of MedicineInje UniversityBusanSouth Korea
| | - Ha Young Park
- Department of Pathology, College of MedicineInje UniversityBusanSouth Korea
| | - Ju Hwan Yang
- Department of Physiology and Convergence Medical Science, Institute of Health SciencesGyeongsang National University Medical SchoolJinjuSouth Korea
| | - Jin‐Han Bae
- Department of Integrated Biological Science, College of Natural SciencesPusan National UniversityBusanSouth Korea
| | - Jung‐Soo Suh
- Department of Integrated Biological Science, College of Natural SciencesPusan National UniversityBusanSouth Korea
| | - Tae‐Jin Kim
- Department of Integrated Biological Science, College of Natural SciencesPusan National UniversityBusanSouth Korea
| | - Joong‐Gook Kim
- Research CenterDongnam Institute of Radiological and Medical SciencesBusanSouth Korea
| | - Yan‐Hong Cui
- Department of Life Science, Research Institute for Natural SciencesHanyang UniversitySeoulSouth Korea
- Section of Dermatology, Department of MedicineUniversity of ChicagoChicagoILUSA
| | - Hiromu Suzuki
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT‐Ganken ProgramJapanese Foundation for Cancer ResearchTokyoJapan
| | - Sung Joo Kim
- Department of Pathology, Kyung Hee University Hospital at GangdongKyung Hee University School of MedicineSeoulSouth Korea
| | - Yi Zhao
- Institute for Translation Medicine, Qingdao UniversityQingdaoChina
| | - In Ja Park
- Department of Colon and Rectal Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Joon‐Yong Chung
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Su‐Jae Lee
- Fibrosis & Cancer Targeting BiotechnologySeoulSouth Korea
| |
Collapse
|
16
|
Guo L, Xia Y, Li H, Wang Z, Xu H, Dai X, Zhang Y, Zhang H, Fan W, Wei F, Li Q, Zhang L, Cao L, Zhang S, Hu W, Gu H. FIT links c-Myc and P53 acetylation by recruiting RBBP7 during colorectal carcinogenesis. Cancer Gene Ther 2023; 30:1124-1133. [PMID: 37225855 DOI: 10.1038/s41417-023-00624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/07/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Colorectal cancer (CRC) poses one of the most serious threats to human health worldwide, and abnormally expressed c-Myc and p53 are deemed the pivotal driving forces of CRC progression. In this study, we discovered that the lncRNA FIT, which was downregulated in CRC clinical samples, was transcriptionally suppressed by c-Myc in vitro and promoted CRC cell apoptosis by inducing FAS expression. FAS is a p53 target gene, and we found that FIT formed a trimer with RBBP7 and p53 that facilitated p53 acetylation and p53-mediated FAS gene transcription. Moreover, FIT was capable of retarding CRC growth in a mouse xenograft model, and FIT expression was positively correlated with FAS expression in clinical samples. Thus, our study elucidates the role of the lncRNA FIT in human colorectal cancer growth and provides a potential target for anti-CRC drugs.
Collapse
Affiliation(s)
- Lili Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yang Xia
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zifei Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xiangyu Dai
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaqin Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenhu Fan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Feng Wei
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Limian Cao
- Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangxin Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Wanglai Hu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Kim HM, Zheng X, Lee E. Experimental Insights into the Interplay between Histone Modifiers and p53 in Regulating Gene Expression. Int J Mol Sci 2023; 24:11032. [PMID: 37446210 PMCID: PMC10342072 DOI: 10.3390/ijms241311032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Chromatin structure plays a fundamental role in regulating gene expression, with histone modifiers shaping the structure of chromatin by adding or removing chemical changes to histone proteins. The p53 transcription factor controls gene expression, binds target genes, and regulates their activity. While p53 has been extensively studied in cancer research, specifically in relation to fundamental cellular processes, including gene transcription, apoptosis, and cell cycle progression, its association with histone modifiers has received limited attention. This review explores the interplay between histone modifiers and p53 in regulating gene expression. We discuss how histone modifications can influence how p53 binds to target genes and how this interplay can be disrupted in cancer cells. This review provides insights into the complex mechanisms underlying gene regulation and their implications for potential cancer therapy.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | | | | |
Collapse
|
18
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
19
|
Ghate NB, Kim S, Mehmood R, Shin Y, Kim K, An W. VprBP/DCAF1 regulates p53 function and stability through site-specific phosphorylation. Oncogene 2023; 42:1405-1416. [PMID: 37041410 PMCID: PMC10121470 DOI: 10.1038/s41388-023-02685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023]
Abstract
VprBP (also known as DCAF1) is a recently identified kinase that is overexpressed in cancer cells and serves as a major determinant for epigenetic gene silencing and tumorigenesis. The role of VprBP in driving target gene inactivation has been largely attributed to its ability to mediate histone H2A phosphorylation. However, whether VprBP also phosphorylates non-histone proteins and whether these phosphorylation events drive oncogenic signaling pathways have not been explored. Here we report that serine 367 phosphorylation (S367p) of p53 by VprBP is a key player in attenuating p53 transcriptional and growth suppressive activities. VprBP catalyzes p53S367p through a direct interaction with the C-terminal domain of p53. Mechanistically, VprBP-mediated S367p inhibits p53 function in the wake of promoting p53 proteasomal degradation, because blocking p53S367p increases p53 protein levels, thereby enhancing p53 transactivation. Furthermore, abrogation of VprBP-p53 interaction by p53 acetylation is critical for preventing p53S367p and potentiating p53 function in response to DNA damage. Together, our findings establish VprBP-mediated S367p as a negative regulator of p53 function and identify a previously uncharacterized mechanism by which S367p modulates p53 stability.
Collapse
Affiliation(s)
- Nikhil Baban Ghate
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sungmin Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Roasa Mehmood
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kyunghwan Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
20
|
Resnick-Silverman L, Zhou R, Campbell MJ, Leibling I, Parsons R, Manfredi JJ. In vivo RNA-seq and ChIP-seq analyses show an obligatory role for the C terminus of p53 in conferring tissue-specific radiation sensitivity. Cell Rep 2023; 42:112216. [PMID: 36924496 DOI: 10.1016/j.celrep.2023.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
Thymus and spleen, in contrast to liver, are radiosensitive tissues in which p53-dependent apoptosis is triggered after whole-body radiation in vivo. Combined RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses of radiation-treated mouse organs identifies both shared and tissue-specific p53 transcriptional responses. As expected, the p53 targets shared among thymus and spleen are enriched in apoptotic targets. The inability to upregulate these genes in the liver is not due to reduced gene occupancy. Use of an engineered mouse model shows that deletion of the C terminus of p53 can confer radiation-induced expression of p53 apoptotic targets in the liver with concomitant increased cell death. Global RNA-seq analysis reveals that an additional role of the C terminus is also needed for transcriptional activation of liver-specific p53 targets. It is hypothesized that both suppression of apoptotic gene expression combined with enhanced activation of liver-specific targets confers tissue-specific radio-resistance.
Collapse
Affiliation(s)
- Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Royce Zhou
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Moray J Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy at The Ohio State University, Columbus, OH 43210, USA
| | - Ian Leibling
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
21
|
Park SS, Lee YK, Park SH, Lim SB, Choi YW, Shin JS, Kim YH, Kim JH, Park TJ. p15 INK4B is an alternative marker of senescent tumor cells in colorectal cancer. Heliyon 2023; 9:e13170. [PMID: 36785830 PMCID: PMC9918768 DOI: 10.1016/j.heliyon.2023.e13170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Senescent tumor cells are nonproliferating tumor cells which are closely related to cancer progression by secreting senescence-related molecules, called senescence-associated secreting phenotypes. Therefore, the presence of senescent tumor cells is considered a prognostic factor in various cancer types. Although senescence-associated β-galactosidase staining is considered the best marker for detection of senescent tumor cells, it can only be performed in fresh-frozen tissues. p16INK4A, a cyclin-dependent inhibitor, has been used as an alternative marker to detect senescent tumor cells in formalin-fixed paraffin-embedded tissues. However, other reliable markers to detect senescent tumor cells is still lacking. In the present study, using public single-cell RNA-sequencing data, we found that p15INK4B, a cyclin-dependent kinase inhibitor, is a novel marker for detection of senescent tumor cells. Moreover, p15INK4B expression was positively correlated with that of p16INK4A in colorectal cancer tissues. In in vitro studies, mRNA expression of p15INK4B was increased together with that of p16INK4A in H2O2- and therapy-induced cancer senescence models. However, the mRNA level of p15INK4B did not increase in the oncogene-induced senescence model in primary colonic epithelial cells. In conclusion, p15INK4B is a potential alternative marker for detection of senescent tumor cells together with conventional markers in advanced stages of colorectal cancer.
Collapse
Key Words
- CDK, cyclin dependent kinase
- CRC, colorectal cancer
- Cellular senescence
- Colorectal cancer
- FBS, fetal bovine serum
- FFPE, formalin-fixed paraffin-embedded
- GSEA, gene set enrichent analysis
- H3K9me3, histone H3 lysine 9 trimethylation
- IHC, immunohistochemistry
- SA-β-Gal, senescence-associated β-galactosidase
- STC, senescent tumor cell
- Senescence marker
- Senescent tumor cells
- p15INK4B
- p16INK4A
- scRNA-seq, single cell RNA sequencing
Collapse
Affiliation(s)
- Soon Sang Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Young-Kyoung Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - So Hyun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Yong Won Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Hematology and Oncology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jun Sang Shin
- Department of Surgery, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Department of Pathology, Ajou University School of Medicine, Suwon, 16499, South Korea,Corresponding author. Department of Pathology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, South Korea,Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, South Korea,Corresponding author. Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499 South Korea.
| |
Collapse
|
22
|
Peng BY, Singh AK, Chan CH, Deng YH, Li PY, Su CW, Wu CY, Deng WP. AGA induces sub-G1 cell cycle arrest and apoptosis in human colon cancer cells through p53-independent/p53-dependent pathway. BMC Cancer 2023; 23:1. [PMID: 36597025 PMCID: PMC9808967 DOI: 10.1186/s12885-022-10466-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Despite the advancement in chemotherapeutic drugs for colon cancer treatment, it is still a life-threatening disease worldwide due to drug resistance. Therefore, an urgently needed to develop novel drugs for colon cancer therapies. AGA is a combination of traditional Chinese medicine Antler's extract (A), Ganoderma lucidum (G), and Antrodia camphorata (A); it contains a lot of biomolecules like polysaccharides, fatty acids, and triterpenoids that are known to exerting anti-oxidative, anti-inflammatory, anti-microbial and anti-tumor activities in oral cancer. In this study, we investigate AGA anti-proliferative, anti-metastatic and apoptotic activity to explore its anti-cancer activity against colon cancer cells and its underlying mechanism. METHOD Here, in-vitro studies were performed to determine the antiproliferative activity of AGA through MTT and colony formation assays. Wound healing and transwell migration assay were used to evaluate the metastasis. Flow cytometry and protein expression were used to investigate the involved molecular mechanism by evaluating the cell cycle and apoptosis. The in-vivo anti-cancerous activity of AGA was assessed by xenograft mice model of colon cancer cells. RESULTS We found that AGA significantly inhibited the proliferative capacity and metastasis of colon cancer cells in-vitro. In addition, AGA induced cell cycle arrest in the sub-G1 phase through upregulating p21 and downregulating CDK2, CDK6 in SW620, and CDK4 in SW480 and HT29, respectively. Annexin-v assay indicated that colon cancer cells had entered early and late apoptosis after treatment with AGA. Furthermore, a mechanistic protein expressions study revealed that AGA in p53-dependent and independent regulated the apoptosis of colon cancer by downregulating the p53 protein expression in SW620 and SW480 cells but upregulating in a dose-dependent manner in HT29 cells and increasing the expression of Bax and caspase-9 to inhibit the colon cancer cells. In vivo study, we found that AGA significantly reduced the xenograft tumor growth in NOD/SCID mice with no adverse effect on the kidney and liver. CONCLUSION Collectively, AGA has the potential to inhibit colon cancer through inhibiting proliferation, migration, and cell cycle kinase by upregulating p21 protein expression and promoting the apoptotic protein in a p53-dependent and independent manner.
Collapse
Affiliation(s)
- Bou-Yue Peng
- grid.412897.10000 0004 0639 0994Department of Dentistry, Taipei Medical University Hospital, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Abhinay Kumar Singh
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Chun-Hao Chan
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Yue-Hua Deng
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Pin-Ying Li
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Chun-Wei Su
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan
| | - Chia-Yu Wu
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412897.10000 0004 0639 0994Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, 110301 Taipei, Taiwan
| | - Win-Ping Deng
- grid.412896.00000 0000 9337 0481School of Dentistry, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, 110301 Taipei, Taiwan ,grid.256105.50000 0004 1937 1063Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, 242062 Taipei, Taiwan ,grid.265231.10000 0004 0532 1428Department of Life Science, Tunghai University, 407224 Taichung, Taiwan
| |
Collapse
|
23
|
Shanmukha KD, Paluvai H, Lomada SK, Gokara M, Kalangi SK. Histone deacetylase (HDACs) inhibitors: Clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:119-152. [DOI: 10.1016/bs.pmbts.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Yin BK, Lázaro D, Wang ZQ. TRRAP-mediated acetylation on Sp1 regulates adult neurogenesis. Comput Struct Biotechnol J 2022; 21:472-484. [PMID: 36618986 PMCID: PMC9804013 DOI: 10.1016/j.csbj.2022.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The adult hippocampal neurogenesis plays a vital role in the function of the central nervous system (CNS), including memory consolidation, cognitive flexibility, emotional function, and social behavior. The deficiency of adult neural stem cells (aNSCs) in maintaining the quiescence and entering cell cycle, self-renewal and differentiation capacity is detrimental to the functional integrity of neurons and cognition of the adult brain. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) have been shown to modulate brain functionality and are important for embryonic neurogenesis via regulation of gene transcription. We showed previously that Trrap, an adapter for several HAT complexes, is required for Sp1 transcriptional control of the microtubule dynamics in neuronal cells. Here, we find that Trrap deletion compromises self-renewal and differentiation of aNSCs in mice and in cultures. We find that the acetylation status of lysine residues K16, K19, K703 and K639 all fail to overcome Trrap-deficiency-incurred instability of Sp1, indicating a scaffold role of Trrap. Interestingly, the deacetylation of Sp1 at K639 and K703 greatly increases Sp1 binding to the promoter of target genes, which antagonizes Trrap binding, and thereby elevates Sp1 activity. However, only deacetylated K639 is refractory to Trrap deficiency and corrects the differentiation defects of Trrap-deleted aNSCs. We demonstrate that the acetylation pattern at K639 by HATs dictates the role of Sp1 in the regulation of adult neurogenesis.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstrasse 18k, 07743 Jena, Germany,Corresponding author at: Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,.
| |
Collapse
|
25
|
Zhuo C, Ruan Q, Zhao X, Shen Y, Lin R. CXCL1 promotes colon cancer progression through activation of NF-κB/P300 signaling pathway. Biol Direct 2022; 17:34. [PMID: 36434686 PMCID: PMC9701058 DOI: 10.1186/s13062-022-00348-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The upregulated expression of CXCL1 has been validated in colorectal cancer patients. As a potential biotherapeutic target for colorectal cancer, the mechanism by which CXCL1 affects the development of colorectal cancer is not clear. METHODS Expression data of CXCL1 in colorectal cancer were obtained from the GEO database and verified using the GEPIA database and the TIMER 2.0 database. Knockout and overexpression of CXCL1 in colorectal cancer cells by CRISPR/Cas and "Sleeping Beauty" transposon-mediated gene editing techniques. Cell biological function was demonstrated by CCK-8, transwell chamber and Colony formation assay. RT-qPCR and Western Blot assays measured RNA and protein expression. Protein localization and expression were measured by immunohistochemistry and immunofluorescence. RESULTS Bioinformatics analysis showed significant overexpression of CXCL1 in the colorectal cancer tissues compared to normal human tissues, and identified CXCL1 as a potential therapeutic target for colorectal cancer. We demonstrate that CXCL1 promotes the proliferation and migration of colon cancer cells and has a facilitative effect on tumor angiogenesis. Furthermore, CXCL1 elevation promoted the migration of M2-tumor associated macrophages (TAMs) while disrupting the aggregation of CD4+ and CD8+ T cells at tumor sites. Mechanistic studies suggested that CXCL1 activates the NF-κB pathway. In the in vivo colon cancer transplantation tumor model, treatment with the P300 inhibitor C646 significantly inhibited the growth of CXCL1-overexpressing colon cancer. CONCLUSION CXCL1 promotes colon cancer development through activation of NF-κB/P300, and that CXCL1-based therapy is a potential novel strategy to prevent colon cancer development.
Collapse
Affiliation(s)
- Changhua Zhuo
- grid.415110.00000 0004 0605 1140Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014 People’s Republic of China ,grid.411604.60000 0001 0130 6528Fuzhou University, College of Chemistry, Fuzhou, 350108 People’s Republic of China ,Fujian Key Laboratory of Translational Cancer Medicine and Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian 350014 People’s Republic of China
| | - Qiang Ruan
- grid.411604.60000 0001 0130 6528Fuzhou University, College of Chemistry, Fuzhou, 350108 People’s Republic of China
| | - Xiangqian Zhao
- grid.411503.20000 0000 9271 2478Fujian Normal University Qishan Campus, College of Life Science, Biomedical Research Center of South China, Fuzhou, 350117 People’s Republic of China
| | - Yangkun Shen
- grid.411503.20000 0000 9271 2478Fujian Normal University Qishan Campus, College of Life Science, Biomedical Research Center of South China, Fuzhou, 350117 People’s Republic of China
| | - Ruirong Lin
- grid.415110.00000 0004 0605 1140Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014 People’s Republic of China ,grid.411604.60000 0001 0130 6528Fuzhou University, College of Chemistry, Fuzhou, 350108 People’s Republic of China ,Fujian Key Laboratory of Translational Cancer Medicine and Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian 350014 People’s Republic of China
| |
Collapse
|
26
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
27
|
Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol 2022; 85:209-218. [PMID: 33705871 PMCID: PMC8423867 DOI: 10.1016/j.semcancer.2021.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Acetylation represents one of the major post-translational protein modifications, which introduces an acetyl functional group into amino acids such as the lysine residue to yield an acetate ester bond, neutralizing its positive charge. Regulation of protein functions by acetylation occurs in multiple ways, such as affecting protein stability, activity, localization, and interaction with other proteins or DNA. It has been well documented that the recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery can modulate histone acetylation status, which is directly involved in the dynamic regulation of genes controlling cell proliferation and division. Dysregulation of gene expression is involved in tumorigenesis and aberrant activation of histone deacetylases has been reported in several types of cancer. Moreover, there is growing body of evidence showing that acetylation is widely involved in non-histone proteins to impact their roles in various cellular processes including tumorigenesis. As such, small molecular compounds inhibiting HAT or HDAC enzymatic activities have been developed and investigated for therapeutic purpose. Here we review the recent progress in our understanding of protein acetylation and discuss the therapeutic potential of targeting the acetylation signaling pathway in cancer.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
28
|
Hai R, Yang D, Zheng F, Wang W, Han X, Bode AM, Luo X. The emerging roles of HDACs and their therapeutic implications in cancer. Eur J Pharmacol 2022; 931:175216. [PMID: 35988787 DOI: 10.1016/j.ejphar.2022.175216] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/25/2022]
Abstract
Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.
Collapse
Affiliation(s)
- Rihan Hai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Deyi Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Feifei Zheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Weiqin Wang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xing Han
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
29
|
An C, Deng L, Zhai H, You Y, Wu F, Zhai Q, Goossens A, Li C. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. MOLECULAR PLANT 2022; 15:1329-1346. [PMID: 35780296 DOI: 10.1016/j.molp.2022.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone jasmonate (JA) regulates plant immunity and adaptive growth by orchestrating a genome-wide transcriptional program. Key regulators of JA-responsive gene expression include the master transcription factor MYC2, which is repressed by the conserved Groucho/Tup1-like corepressor TOPLESS (TPL) in the resting state. However, the mechanisms underlying TPL-mediated transcriptional repression of MYC2 activity and hormone-dependent switching between repression and de-repression remain enigmatic. Here, we report the regulation of TPL activity and JA signaling by reversible acetylation of TPL. We found that the histone acetyltransferase GCN5 could mediate TPL acetylation, which enhances its interaction with the NOVEL-INTERACTOR-OF-JAZ (NINJA) adaptor and promotes its recruitment to MYC2 target promoters, facilitating transcriptional repression. Conversely, TPL deacetylation by the histone deacetylase HDA6 weakens TPL-NINJA interaction and inhibits TPL recruitment to MYC2 target promoters, facilitating transcriptional activation. In the resting state, the opposing activities of GCN5 and HDA6 maintain TPL acetylation homeostasis, promoting transcriptional repression activity of TPL. In response to JA elicitation, HDA6 expression is transiently induced, resulted in decreased TPL acetylation and repressor activity, thereby transcriptional activation of MYC2 target genes. Thus, the GCN5-TPL-HDA6 module maintains the homeostasis of acetylated TPL, thereby determining the transcriptional state of JA-responsive genes. Our findings uncovered a mechanism by which the TPL corepressor activity in JA signaling is actively tuned in a rapid and reversible manner.
Collapse
Affiliation(s)
- Chunpeng An
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanrong You
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
30
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
31
|
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022; 41:3039-3050. [PMID: 35487975 PMCID: PMC9149126 DOI: 10.1038/s41388-022-02331-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Although it is well established that p53-mediated tumor suppression mainly acts through its ability in transcriptional regulation, the molecular mechanisms of this regulation are not completely understood. Among a number of regulatory modes, acetylation of p53 attracts great interests. p53 was one of the first non-histone proteins found to be functionally regulated by acetylation and deacetylation, and subsequent work has established that reversible acetylation is a general mechanism for regulation of non-histone proteins. Unlike other types of post-translational modifications occurred during stress responses, the role of p53 acetylation has been recently validated in vivo by using the knockin mice with both acetylation-defective and acetylation-mimicking p53 mutants. Here, we review the role of acetylation in p53-mediated activities, with a focus on which specific acetylation sites are critical for p53-dependent transcription regulation during tumor suppression and how acetylation of p53 recruits specific “readers” to execute its promoter-specific regulation of different targets. We also discuss the role of p53 acetylation in differentially regulating its classic activities in cell cycle arrest, senescence and apoptosis as well as newly identified unconventional functions such as cell metabolism and ferroptosis.
Collapse
|
32
|
Clark JS, Kayed R, Abate G, Uberti D, Kinnon P, Piccirella S. Post-translational Modifications of the p53 Protein and the Impact in Alzheimer's Disease: A Review of the Literature. Front Aging Neurosci 2022; 14:835288. [PMID: 35572126 PMCID: PMC9096077 DOI: 10.3389/fnagi.2022.835288] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Our understanding of Alzheimer's disease (AD) pathogenesis has developed with several hypotheses over the last 40 years, including the Amyloid and Tau hypotheses. More recently, the p53 protein, well-known as a genome guardian, has gained attention for its potential role in the early evolution of AD. This is due to the central involvement of p53's in the control of oxidative stress and potential involvement in the Amyloid and Tau pathways. p53 is commonly regulated by post-translational modifications (PTMs), which affect its conformation, increasing its capacity to adopt multiple structural and functional states, including those that can affect brain processes, thus contributing to AD development. The following review will explore the impact of p53 PTMs on its function and consequential involvement in AD pathogenesis. The greater understanding of the role of p53 in the pathogenesis of AD could result in more targeted therapies benefiting the many patients of this debilitating disease.
Collapse
Affiliation(s)
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurology, Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Giulia Abate
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | |
Collapse
|
33
|
Jan YH, Heck DE, An Y, Laskin DL, Laskin JD. Nitrogen Mustard Alkylates and Cross-Links p53 in Human Keratinocytes. Chem Res Toxicol 2022; 35:636-650. [PMID: 35312310 PMCID: PMC9491701 DOI: 10.1021/acs.chemrestox.1c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytotoxic blistering agents such as sulfur mustard and nitrogen mustard (HN2) were synthesized for chemical warfare. Toxicity is due to reactive chloroethyl side chains that modify and damage cellular macromolecules including DNA and proteins. In response to DNA damage, cells initiate a DNA damage response directed at the recruitment and activation of repair-related proteins. A central mediator of the DNA damage response is p53, a protein that plays a critical role in regulating DNA repair. We found that HN2 causes cytosolic and nuclear accumulation of p53 in HaCaT keratinocytes; HN2 also induced post-translational modifications on p53 including S15 phosphorylation and K382 acetylation, which enhance p53 stability, promote DNA repair, and mediate cellular metabolic responses to stress. HN2 also cross-linked p53, forming dimers and high-molecular-weight protein complexes in the cells. Cross-linked multimers were also modified by K48-linked ubiquitination indicating that they are targets for proteasome degradation. HN2-induced modifications transiently suppressed the transcriptional activity of p53. Using recombinant human p53, HN2 alkylation was found to be concentration- and redox status-dependent. Dithiothreitol-reduced protein was more efficiently cross-linked indicating that p53 cysteine residues play a key role in protein modification. LC-MS/MS analysis revealed that HN2 directly alkylated p53 at C124, C135, C141, C176, C182, C275, C277, H115, H178, K132, and K139, forming both monoadducts and cross-links. The formation of intermolecular complexes was a consequence of HN2 cross-linked cysteine residues between two molecules of p53. Together, these data demonstrate that p53 is a molecular target for mustard vesicants. Modification of p53 likely mediates cellular responses to HN2 including DNA repair and cell survival contributing to vesicant-induced cytotoxicity.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, New York 10595, United States
| | - Yunqi An
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, New Jersey 08854, United States
| |
Collapse
|
34
|
Duan Y, Cao L, Yuan C, Suo X, Kong X, Gao Y, Li X, Zheng H, Wang X, Wang Q. Novel Function of Avian p53 in Binding to ALV-J LTR Contributes to Its Antiviral Roles. mBio 2022; 13:e0328721. [PMID: 35038897 PMCID: PMC8764537 DOI: 10.1128/mbio.03287-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence suggests that p53 is involved in viral infection. However, it remains elusive whether avian p53 orchestrates avian leukosis virus (ALV) replication. We showed that p53 recruits the histone deacetylase 1 and 2 (HDAC1/2) complex to the ALV promoter to shut off ALV's promoter activity and viral replication. HDAC1/2 binding to the ALV promoter was abolished in the absence of p53. Moreover, we collected samples in ALV-infected chickens and found that the acetylation status of ALV-bound H3 and H4 histones correlated with ALV viremia. HDAC inhibitors (HDACi) potently increase ALV replication, but HDACi-promoted viral replication is dramatically reduced in cells with p53 depletion. These data demonstrate that p53 is critical for inhibition ALV replication and suggest that future studies of ALV replication need to account for the potential effects of p53 activity. IMPORTANCE Rous sarcoma virus (RSV)/ALV was the first retrovirus to be discovered, which was really the first hint that cancer, or a tumor, could be transmitted by a virus. The specific mechanisms that regulate ALV replication during infection remain poorly understood. Here, we show that avian p53 and HDAC complex inhibit ALV promoter activity and replication, and p53 inhibits ALV replication through binding to the ALV promoter. We demonstrated that the acetylation status of ALV-bound H3 and H4 histones correlates with ALV viremia level using clinical samples collected from commercial poultry. These findings identify both p53-mediated inhibition on ALV replication and a potential role for virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Yueyue Duan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xuepeng Suo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yulong Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiangtong Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaomei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qi Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
35
|
Addicks GC, Zhang H, Ryu D, Vasam G, Green AE, Marshall PL, Patel S, Kang BE, Kim D, Katsyuba E, Williams EG, Renaud JM, Auwerx J, Menzies KJ. GCN5 maintains muscle integrity by acetylating YY1 to promote dystrophin expression. J Cell Biol 2022; 221:e202104022. [PMID: 35024765 PMCID: PMC8931935 DOI: 10.1083/jcb.202104022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.
Collapse
Affiliation(s)
- Gregory C Addicks
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexander E Green
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Philip L Marshall
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sonia Patel
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Doyoun Kim
- Division of Therapeutics and Biotechnology, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology and the Éric Poulin Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Fusi L, Paudel R, Meder K, Schlosser A, Schrama D, Goebeler M, Schmidt M. Interaction of transcription factor FoxO3 with histone acetyltransferase complex subunit TRRAP Modulates Gene Expression and Apoptosis. J Biol Chem 2022; 298:101714. [PMID: 35151693 PMCID: PMC8914384 DOI: 10.1016/j.jbc.2022.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/28/2021] [Accepted: 01/19/2022] [Indexed: 11/01/2022] Open
Abstract
Forkhead box O (FoxO) transcription factors are conserved proteins involved in the regulation of life span and age-related diseases, such as diabetes and cancer. Stress stimuli or growth factor deprivation promotes nuclear localization and activation of FoxO proteins, which—depending on the cellular context—can lead to cell cycle arrest or apoptosis. In endothelial cells (ECs), they further regulate angiogenesis and may promote inflammation and vessel destabilization implicating a role of FoxOs in vascular diseases. In several cancers, FoxOs exert a tumor-suppressive function by regulating proliferation and survival. We and others have previously shown that FoxOs can regulate these processes via two different mechanisms: by direct binding to forkhead-responsive elements at the promoter of target genes or by a poorly understood alternative process that does not require direct DNA binding and regulates key targets in primary human ECs. Here, we performed an interaction study in ECs to identify new nuclear FoxO3 interaction partners that might contribute to FoxO-dependent gene regulation. Mass spectrometry analysis of FoxO3-interacting proteins revealed transformation/transcription domain–associated protein (TRRAP), a member of multiple histone acetyltransferase complexes, as a novel binding partner of FoxO family proteins. We demonstrate that TRRAP is required to support FoxO3 transactivation and FoxO3-dependent G1 arrest and apoptosis in ECs via transcriptional activation of the cyclin-dependent kinase inhibitor p27kip1 and the proapoptotic B-cell lymphoma 2 family member, BIM. Moreover, FoxO–TRRAP interaction could explain FoxO-induced alternative gene regulation via TRRAP-dependent recruitment to target promoters lacking forkhead-responsive element sequences.
Collapse
|
37
|
Jin J, Zhang L, Li X, Xu W, Yang S, Song J, Zhang W, Zhan J, Luo J, Zhang H. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3817-3834. [PMID: 35349706 PMCID: PMC9023286 DOI: 10.1093/nar/gkac189] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are constantly produced in cells, an excess of which causes oxidative stress. ROS has been linked to regulation of the Hippo pathway; however, the underlying detailed mechanisms remain unclear. Here, we report that MOB1, a substrate of MST1/2 and co-activator of LATS1/2 in the canonical Hippo pathway, interacts with and is acetylated at lysine 11 by acetyltransferase CBP and deacetylated by HDAC6. MOB1-K11 acetylation stabilizes itself by reducing its binding capacity with E3 ligase Praja2 and subsequent ubiquitination. MOB1-K11 acetylation increases its phosphorylation and activates LATS1. Importantly, upstream oxidative stress signals promote MOB1 acetylation by suppressing CBP degradation, independent of MST1/2 kinase activity and HDAC6 deacetylation effect, thereby linking oxidative stress to activation of the Hippo pathway. Functionally, the acetylation-deficient mutant MOB1-K11R promotes lung cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo, compared to the wild-type MOB1. Clinically, acetylated MOB1 corresponds to better prediction of overall survival in patients with non-small cell lung cancer. Therefore, as demonstrated, an oxidative stress-CBP regulatory axis controls MOB1-K11 acetylation and activates LATS1, thereby activating the Hippo pathway and suppressing YAP/TAZ nuclear translocation and tumor progression.
Collapse
Affiliation(s)
- Jiaqi Jin
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Siyuan Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Wenhao Zhang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- To whom correspondence should be addressed. Tel: +86 10 82802424; Fax: +86 10 82802424;
| |
Collapse
|
38
|
Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y, Wu G, Zhuang T, Tian X, Liu Z, Liu J, Sun K, Chen F, Zhang Y, Zeng C, Huang Y, Zhang B. LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 2021; 37:110038. [PMID: 34818543 DOI: 10.1016/j.celrep.2021.110038] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is associated with pleiotropic physiopathological processes, including aging and age-related diseases. The persistent DNA damage is a major stress leading to senescence, but the underlying molecular link remains elusive. Here, we identify La Ribonucleoprotein 7 (LARP7), a 7SK RNA binding protein, as an aging antagonist. DNA damage-mediated Ataxia Telangiectasia Mutated (ATM) activation triggers the extracellular shuttling and downregulation of LARP7, which dampens SIRT1 deacetylase activity, enhances p53 and NF-κB (p65) transcriptional activity by augmenting their acetylation, and thereby accelerates cellular senescence. Deletion of LARP7 leads to senescent cell accumulation and premature aging in rodent model. Furthermore, we show this ATM-LARP7-SIRT1-p53/p65 senescence axis is active in vascular senescence and atherogenesis, and preventing its activation substantially alleviates senescence and atherogenesis. Together, this study identifies LARP7 as a gatekeeper of senescence, and the altered ATM-LARP7-SIRT1-p53/p65 pathway plays an important role in DNA damage response (DDR)-mediated cellular senescence and atherosclerosis.
Collapse
Affiliation(s)
- Pengyi Yan
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zixuan Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Weiting Wei
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Zhang
- Renji-Med Clinical Stem Cell Research Center, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Xiaoyu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology and Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Fengyuan Chen
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| |
Collapse
|
39
|
Tabrizi FB, Yarmohammadi F, Hayes AW, Karimi G. The modulation of SIRT1 and SIRT3 by natural compounds as a therapeutic target in doxorubicin-induced cardiotoxicity: A review. J Biochem Mol Toxicol 2021; 36:e22946. [PMID: 34747550 DOI: 10.1002/jbt.22946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Doxorubicin (DOX) is a potent antitumor agent with a broad spectrum of activity; however, irreversible cardiotoxicity resulting from DOX treatment is a major issue that limits its therapeutic use. Sirtuins (SIRTs) play an essential role in several physiological and pathological processes including oxidative stress, apoptosis, and inflammation. It has been reported that SIRT1 and SIRT3 can act as a protective molecular against DOX-induced myocardial injury through targeting numerous signaling pathways. Several natural compounds (NCs), such as resveratrol, sesamin, and berberine, with antioxidative, anti-inflammation, and antiapoptotic effects were evaluated for their potential to suppress the cardiotoxicity induced by DOX via targeting SIRT1 and SIRT3. Numerous NCs exerted their therapeutic effects on DOX-mediated cardiac damage via targeting different signaling pathways, including SIRT1/LKB1/AMPK, SIRT1/PGC-1α, SIRT1/NLRP3, and SIRT3/FoxO. SIRT3 also ameliorates cardiotoxicity by enhancing mitochondrial fusion.
Collapse
Affiliation(s)
- Fatemeh B Tabrizi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
40
|
Naxerova K, Di Stefano B, Makofske JL, Watson EV, de Kort MA, Martin TD, Dezfulian M, Ricken D, Wooten EC, Kuroda MI, Hochedlinger K, Elledge SJ. Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. Genes Dev 2021; 35:1527-1547. [PMID: 34711655 PMCID: PMC8559676 DOI: 10.1101/gad.349048.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
In this Resource/Methodology, Naxerova et al. describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. They identify a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance, and their results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks. Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.
Collapse
Affiliation(s)
- Kamila Naxerova
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jessica L Makofske
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Emma V Watson
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marit A de Kort
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mohammed Dezfulian
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dominik Ricken
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric C Wooten
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Takatsuka H, Shibata A, Umeda M. Genome Maintenance Mechanisms at the Chromatin Level. Int J Mol Sci 2021; 22:ijms221910384. [PMID: 34638727 PMCID: PMC8508675 DOI: 10.3390/ijms221910384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure “chromatin”. Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), 3-39-22, Showa-Machi, Maebashi 371-8511, Japan;
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Correspondence:
| |
Collapse
|
42
|
Xiong YJ, Zhu Y, Liu YL, Zhao YF, Shen X, Zuo WQ, Lin F, Liang ZQ. P300 Participates in Ionizing Radiation-Mediated Activation of Cathepsin L by Mutant p53. J Pharmacol Exp Ther 2021; 378:276-286. [PMID: 34253647 DOI: 10.1124/jpet.121.000639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have shown that cathepsin L (CTSL) is involved in the ability of tumors to resist ionizing radiation (IR), but the specific mechanisms responsible for this remain unknown. We report here that mutant p53 (mut-p53) is involved in IR-induced transcription of CTSL. We found that irradiation caused activation of CTSL in mut-p53 cell lines, whereas there was almost no activation in p53 wild-type cell lines. Additionally, luciferase reporter gene assay results demonstrated that IR induced the p53 binding region on the CTSL promoter. We further demonstrated that the expression of p300 and early growth response factor-1 (Egr-1) was upregulated in mut-p53 cell lines after IR treatment. Accordingly, the expression of Ac-H3, Ac-H4, AcH3K9 was upregulated after IR treatment in mut-p53 cell lines, whereas histone deacetylase (HDAC) 4 and HDAC6 were reciprocally decreased. Moreover, knockdown of either Egr-1 or p300 abolished the binding of mut-p53 to the promoter of CTSL. Chromatin immunoprecipitation assay results showed that the IR-activated transcription of CTSL was dependent on p300. To further delineate the clinical relevance of interactions between Egr-1/p300, mut-p53, and CTSL, we accessed primary tumor samples to evaluate the relationships between mut-p53, CTSL, and Egr-1/p300 ex vivo. The results support the notion that mut-p53 is correlated with CTSL transcription involving the Egr-1/p300 pathway. Taken together, the results of our study revealed that p300 is an important target in the process of IR-induced transcription of CTSL, which confirms that CTSL participates in mut-p53 gain-of-function. SIGNIFICANCE STATEMENT: Transcriptional activation of cathepsin L by ionizing radiation required the involvement of mutated p53 and Egr-1/p300. Interference with Egr-1 or p300 could inhibit the expression of cathepsin L induced by ionizing radiation. The transcriptional activation of cathepsin L by p300 may be mediated by p53 binding sites on the cathepsin L promoter.
Collapse
Affiliation(s)
- Ya-Jie Xiong
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| | - Ying Zhu
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| | - Ya-Li Liu
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| | - Yi-Fan Zhao
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| | - Xiao Shen
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| | - Wen-Qing Zuo
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| | - Fang Lin
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| | - Zhong-Qin Liang
- Department of Pharmacology, Soochow University, Suzhou, China (Y.X., Y.L., Y.Zha., X.S., Q.Z., F.L., Z.L.), and Department of Pharmacy, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China (Y.Zhu)
| |
Collapse
|
43
|
Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13164072. [PMID: 34439227 PMCID: PMC8394868 DOI: 10.3390/cancers13164072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) belongs to the most common tumor types, and half of all CRC harbor missense mutations in the TP53 tumor suppressor gene. In addition to genetically caused loss of function of p53, epigenetic alterations (DNA methylation, histone modifications, micro-RNAs) contribute to CRC development. In this review, we focused on epigenetic alterations related to the entire p53 signaling pathway upstream and downstream of p53. Methylation of genes which activate p53 function has been reported, and methylation of APC and MGMT was associated with increased mutation rates of TP53. The micro-RNA 34a activates TP53 and was methylated in CRC. Proteins that regulate TP53 DNA methylation, mutations, and acetylation of TP53-related histones were methylated in CRC. P53 regulates the activity of numerous downstream proteins. Even if TP53 is not mutated, the function of wildtype p53 may be compromised if corresponding downstream genes are epigenetically inactivated. Thus, the role of p53 for CRC development, therapy response, and survival prognosis of patients may be much more eminent than previously estimated. Therefore, we propose that novel diagnostic devices measuring the entirety of genetic and epigenetic changes in the "p53 signalome" have the potential to improve the predictive and prognostic power in CRC diagnostics and management.
Collapse
Affiliation(s)
- Maja T. Tomicic
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany;
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-3925751; Fax: +49-6131-3923752
| |
Collapse
|
44
|
Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer 2021; 1876:188556. [PMID: 33932560 PMCID: PMC8730328 DOI: 10.1016/j.bbcan.2021.188556] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
TP53 is the most commonly mutated gene in human cancer with over 100,000 literature citations in PubMed. This is a heavily studied pathway in cancer biology and oncology with a history that dates back to 1979 when p53 was discovered. The p53 pathway is a complex cellular stress response network with multiple diverse inputs and downstream outputs relevant to its role as a tumor suppressor pathway. While inroads have been made in understanding the biology and signaling in the p53 pathway, the p53 family, transcriptional readouts, and effects of an array of mutants, the pathway remains challenging in the realm of clinical translation. While the role of mutant p53 as a prognostic factor is recognized, the therapeutic modulation of its wild-type or mutant activities remain a work-in-progress. This review covers current knowledge about the biology, signaling mechanisms in the p53 pathway and summarizes advances in therapeutic development.
Collapse
Affiliation(s)
- Liz J Hernández Borrero
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI 02912, United States of America; Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States of America.
| |
Collapse
|
45
|
A novel fusion protein TBLR1-RARα acts as an oncogene to induce murine promyelocytic leukemia: identification and treatment strategies. Cell Death Dis 2021; 12:607. [PMID: 34117212 PMCID: PMC8196070 DOI: 10.1038/s41419-021-03889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and its fusion partners. For decades, the advent of all-trans retinoic acid (ATRA) synergized with arsenic trioxide (As2O3) has turned most APL from highly fatal to highly curable. TBLR1-RARα (TR) is the tenth fusion gene of APL identified in our previous study, with its oncogenic role in the pathogenesis of APL not wholly unraveled. In this study, we found the expression of TR in mouse hematopoietic progenitors induces blockade of differentiation with enhanced proliferative capacity in vitro. A novel murine transplantable leukemia model was then established by expressing TR fusion gene in lineage-negative bone marrow mononuclear cells. Characteristics of primary TR mice revealed a rapid onset of aggressive leukemia with bleeding diathesis, which recapitulates human APL more accurately than other models. Despite the in vitro sensitivity to ATRA-induced cell differentiation, neither ATRA monotherapy nor combination with As2O3 confers survival benefit to TR mice, consistent with poor clinical outcome of APL patients with TR fusion gene. Based on histone deacetylation phenotypes implied by bioinformatic analysis, HDAC inhibitors demonstrated significant survival superiority in the survival of TR mice, yielding insights into clinical efficacy against rare types of APL.
Collapse
|
46
|
Chen J, Zhang J, Kong M, Freeman A, Chen H, Liu F. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. PLANT, CELL & ENVIRONMENT 2021; 44:1716-1727. [PMID: 33495996 DOI: 10.1111/pce.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via post-translational modifications and transcriptional regulation that were recently found. More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Jingyi Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Mengmeng Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Lab of Biocontrol & Bacterial Molecular Biology, Nanjing, China
| | - Andrew Freeman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
47
|
Margiola S, Gerecht K, Müller MM. Semisynthetic 'designer' p53 sheds light on a phosphorylation-acetylation relay. Chem Sci 2021; 12:8563-8570. [PMID: 34221338 PMCID: PMC8221199 DOI: 10.1039/d1sc00396h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor suppressor protein p53 is a master regulator of cell fate. The activity of p53 is controlled by a plethora of posttranslational modifications (PTMs). However, despite extensive research, the mechanisms of this regulation are still poorly understood due to a paucity of biochemical studies with p53 carrying defined PTMs. Here, we report a protein semi-synthesis approach to access site-specifically modified p53. We synthesized a set of chemically homogeneous full-length p53 carrying one (Ser20ph and Ser15ph) or two (Ser15,20ph) naturally occurring, damage-associated phosphoryl marks. Refolding and biochemical characterization of semisynthetic p53 variants confirmed their structural and functional integrity. Furthermore, we show that phosphorylation within the N-terminal domain directly enhances p300-dependent acetylation approximately twofold, consistent with the role of these marks in p53 activation. Given that the p53 N-terminus is a hotspot for PTMs, we believe that our approach will contribute greatly to a mechanistic understanding of how p53 is controlled by PTMs.
Collapse
Affiliation(s)
- Sofia Margiola
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Karola Gerecht
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Manuel M Müller
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
48
|
Timofeev O, Stiewe T. Rely on Each Other: DNA Binding Cooperativity Shapes p53 Functions in Tumor Suppression and Cancer Therapy. Cancers (Basel) 2021; 13:2422. [PMID: 34067731 PMCID: PMC8155944 DOI: 10.3390/cancers13102422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022] Open
Abstract
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, 35037 Marburg, Germany
| |
Collapse
|
49
|
Storchova R, Burdova K, Palek M, Medema RH, Macurek L. A novel assay for screening WIP1 phosphatase substrates in nuclear extracts. FEBS J 2021; 288:6035-6051. [PMID: 33982878 DOI: 10.1111/febs.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Upon exposure to genotoxic stress, cells activate DNA damage response (DDR) that coordinates DNA repair with a temporal arrest in the cell cycle progression. DDR is triggered by activation of ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related protein kinases that phosphorylate multiple targets including tumor suppressor protein tumor suppressor p53 (p53). In addition, DNA damage can activate parallel stress response pathways [such as mitogen-activated protein kinase p38 alpha (p38)/MAPK-activated protein kinase 2 (MK2) kinases] contributing to establishing the cell cycle arrest. Wild-type p53-induced phosphatase 1 (WIP1) controls timely inactivation of DDR and is needed for recovery from the G2 checkpoint by counteracting the function of p53. Here, we developed a simple in vitro assay for testing WIP1 substrates in nuclear extracts. Whereas we did not detect any activity of WIP1 toward p38/MK2, we confirmed p53 as a substrate of WIP1. Inhibition or inactivation of WIP1 in U2OS cells increased phosphorylation of p53 at S15 and potentiated its acetylation at K382. Further, we identified Deleted in breast cancer gene 1 (DBC1) as a new substrate of WIP1 but surprisingly, depletion of DBC1 did not interfere with the ability of WIP1 to regulate p53 acetylation. Instead, we have found that WIP1 activity suppresses p53-K382 acetylation by inhibiting the interaction between p53 and the acetyltransferase p300. Newly established phosphatase assay allows an easy comparison of WIP1 ability to dephosphorylate various proteins and thus contributes to identification of its physiological substrates.
Collapse
Affiliation(s)
- Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
50
|
The actin nucleation factors JMY and WHAMM enable a rapid Arp2/3 complex-mediated intrinsic pathway of apoptosis. PLoS Genet 2021; 17:e1009512. [PMID: 33872315 PMCID: PMC8084344 DOI: 10.1371/journal.pgen.1009512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/29/2021] [Accepted: 03/28/2021] [Indexed: 01/02/2023] Open
Abstract
The actin cytoskeleton is a well-known player in most vital cellular processes, but comparably little is understood about how the actin assembly machinery impacts programmed cell death pathways. In the current study, we explored roles for the human Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation factors in DNA damage-induced apoptosis. Inactivation of each WASP-family gene revealed that two of them, JMY and WHAMM, are necessary for rapid apoptotic responses. JMY and WHAMM participate in a p53-dependent cell death pathway by enhancing mitochondrial permeabilization, initiator caspase cleavage, and executioner caspase activation. JMY-mediated apoptosis requires actin nucleation via the Arp2/3 complex, and actin filaments are assembled in cytoplasmic territories containing clusters of cytochrome c and active caspase-3. The loss of JMY additionally results in significant changes in gene expression, including upregulation of the WHAMM-interacting G-protein RhoD. Depletion or deletion of RHOD increases cell death, suggesting that RhoD normally contributes to cell survival. These results give rise to a model in which JMY and WHAMM promote intrinsic cell death responses that can be opposed by RhoD.
Collapse
|