1
|
Effects of ergotamine on the central nervous system using untargeted metabolomics analysis in a mouse model. Sci Rep 2021; 11:19542. [PMID: 34599239 PMCID: PMC8486802 DOI: 10.1038/s41598-021-98870-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/15/2021] [Indexed: 01/02/2023] Open
Abstract
The ergot alkaloid ergotamine is produced by Claviceps purpurea, a parasitic fungus that commonly infects crops and pastures of high agricultural and economic importance. In humans and livestock, symptoms of ergotism include necrosis and gangrene, high blood pressure, heart rate, thermoregulatory dysfunction and hallucinations. However, ergotamine is also used in pharmaceutical applications to treat migraines and stop post-partum hemorrhage. To define its effects, metabolomic profiling of the brain was undertaken to determine pathways perturbed by ergotamine treatment. Metabolomic profiling identified the brainstem and cerebral cortex as regions with greatest variation. In the brainstem, dysregulation of the neurotransmitter epinephrine, and the psychoactive compound 2-arachidonylglycerol was identified. In the cerebral cortex, energy related metabolites isobutyryl-L-carnitine and S-3-oxodecanoyl cysteamine were affected and concentrations of adenylosuccinate, a metabolite associated with mental retardation, were higher. This study demonstrates, for the first time, key metabolomic pathways involved in the behavioural and physiological dysfunction of ergot alkaloid intoxicated animals.
Collapse
|
2
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
3
|
Cowan VE, Neumann A, McKinnon J, Blakley BR, Grusie TJ, Singh J. Arterial Responses to Acute Low-Level Ergot Exposure in Hereford Cows. Front Vet Sci 2018; 5:240. [PMID: 30386784 PMCID: PMC6198079 DOI: 10.3389/fvets.2018.00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Ergot alkaloids are toxic secondary metabolites produced by the fungus Claviceps purpurea that contaminate cereal grains. Current Canadian standards allow 2 to 3 parts per million of ergot alkaloids in animal feed. The purpose of this study was to determine whether hemodynamic parameters were altered when beef cows were fed permissible levels of ergot alkaloids (i.e., <3 ppm) on a short-term basis. A dose-response relationship between ergot alkaloid concentration and hemodynamic changes in caudal (coccygeal), median sacral, and internal iliac arteries was hypothesized. Beef cows were randomly allocated to: Control (<15 μg total ergot alkaloids/kg dry matter), Low (132 μg/kg), Medium (529 μg/kg), and High (2115 μg/kg) groups (n = 4 per group). Animals were fed 8.8 kg of dry matter daily for 4 days (pre-treatment), 7 days (treatment), and 4 days (post-treatment). The caudal, median sacral, and internal iliac arteries were examined daily using ultrasonography in B-mode and Doppler (color and spectral) mode and hemodynamics endpoints were analyzed by repeated measures mixed model analyses. Caudal artery diameter decreased in the Medium (p = 0.004) and High (p < 0.001) groups compared to pre-treatment values and the pulsatility index increased (p ≤ 0.033) in all ergot treatments during the post-exposure period compared to the Control group. Blood volume per pulse (mL) and blood flow (mL/min) through the caudal artery during the treatment period were reduced in the Medium (-1.0 mL reduction; p ≤ 0.004) and High (-1.1 mL p ≤ 0.006) groups compared to pre-treatment values. The median sacral artery diameter decreased in the Medium (p = 0.006) and High (p = 0.017) treatments compared to the Control group. No differences were detected in any hemodynamic endpoints for the internal iliac artery except changes in pulse rate (p = 0.011). There was no treatment (p > 0.554) or Treatment*Time interaction (p > 0.471) for plasma prolactin concentration or body temperature. In conclusion, alterations in caudal artery hemodynamics were detected when cows were fed 529 and 2115 μg ergot alkaloids per kg dry matter per day for 1 week. The caudal artery was more sensitive to ergot alkaloids than the median sacral and internal iliac arteries. Our results partially support the hypothesis of a dose-response effect of ergot alkaloids in feed on hemodynamics.
Collapse
Affiliation(s)
- Vanessa Elizabeth Cowan
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Neumann
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John McKinnon
- Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Barry Raymond Blakley
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Taylor Jayne Grusie
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jaswant Singh
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Abstract
Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.
Collapse
|
5
|
Yuan H, Guo Z, Luo T. Synthesis of (+)-Lysergol and Its Analogues To Assess Serotonin Receptor Activity. Org Lett 2017; 19:624-627. [DOI: 10.1021/acs.orglett.6b03779] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haosen Yuan
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
Ministry of Education, Beijing National Laboratory for Molecular Science,
College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences,
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhixian Guo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
Ministry of Education, Beijing National Laboratory for Molecular Science,
College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences,
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering,
Ministry of Education, Beijing National Laboratory for Molecular Science,
College of Chemistry and Molecular Engineering, and ‡Peking-Tsinghua Center for Life Sciences,
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Steiner U, Leibner S, Schardl CL, Leuchtmann A, Leistner E. Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia 2017; 103:1133-45. [DOI: 10.3852/11-031] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sarah Leibner
- Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES)-Phytomedizin, Rheinische Friedrich Wilhelms-Universität Bonn, Nussallee 9, D-53115 Bonn, Germany
| | - Christopher Lewis Schardl
- Department of Plant Pathology, 201F Plant Sciences Building, 1405 Veterans Drive, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Adrian Leuchtmann
- Plant Ecological Genetics, Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| | - Eckhard Leistner
- Institut für Pharmazeutische Biologie, Rheinische Friedrich Wilhelms-Universität Bonn, Nussallee 6, D-53115 Bonn, Germany
| |
Collapse
|
7
|
Gerhards N, Li SM. A bifunctional old yellow enzyme from Penicillium roqueforti is involved in ergot alkaloid biosynthesis. Org Biomol Chem 2017; 15:8059-8071. [DOI: 10.1039/c7ob02095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bifunctional FgaOx3Pr3catalyses the formation of festuclavine in the presence of EasG or FgaFS and enhances the activity of several chanoclavine-I dehydrogenases tremendously.
Collapse
Affiliation(s)
- Nina Gerhards
- Institut für Pharmazeutische Biologie und Biotechnologie
- Philipps-Universität Marburg
- D-35037 Marburg
- Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie
- Philipps-Universität Marburg
- D-35037 Marburg
- Germany
| |
Collapse
|
8
|
Kishimoto S, Sato M, Tsunematsu Y, Watanabe K. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids. Molecules 2016; 21:E1078. [PMID: 27548127 PMCID: PMC6274189 DOI: 10.3390/molecules21081078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023] Open
Abstract
Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
9
|
The key role of peltate glandular trichomes in symbiota comprising clavicipitaceous fungi of the genus periglandula and their host plants. Toxins (Basel) 2015; 7:1355-73. [PMID: 25894995 PMCID: PMC4417971 DOI: 10.3390/toxins7041355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 01/07/2023] Open
Abstract
Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant.
Collapse
|
10
|
Gerhards N, Matuschek M, Wallwey C, Li SM. Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production. Arch Microbiol 2015; 197:701-13. [DOI: 10.1007/s00203-015-1105-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/07/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022]
|
11
|
Wallwey C, Li SM. Production, detection, and purification of clavine-type ergot alkaloids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 944:121-31. [PMID: 23065612 DOI: 10.1007/978-1-62703-122-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Ergot alkaloids are indole derivatives with diverse structures and biological activities. This chapter describes the procedure from fungal cultivation to purified ergot alkaloids, as exemplified by fumigaclavine A in Penicillium commune. Furthermore, useful notes for working with purified ergot alkaloids are given.
Collapse
|
12
|
Wallwey C, Heddergott C, Xie X, Brakhage AA, Li SM. Genome mining reveals the presence of a conserved gene cluster for the biosynthesis of ergot alkaloid precursors in the fungal family Arthrodermataceae. MICROBIOLOGY-SGM 2012; 158:1634-1644. [PMID: 22403186 DOI: 10.1099/mic.0.056796-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genome sequence analysis of different fungi of the family Arthrodermataceae revealed the presence of a gene cluster consisting of five genes with high sequence similarity to those involved in the early common steps of ergot alkaloid biosynthesis in Aspergillus fumigatus and Claviceps purpurea. To provide evidence that this cluster is involved in ergot alkaloid biosynthesis, the gene ARB_04646 of the fungus Arthroderma benhamiae was cloned into pQE60 and expressed in Escherichia coli. Enzyme assays with the soluble tetrameric His(6)-tagged protein proved unequivocally that the deduced gene product, here termed ChaDH, catalysed the oxidation of chanoclavine-I in the presence of NAD(+), resulting in the formation of chanoclavine-I aldehyde. The enzyme product was unequivocally proven by NMR and MS analyses. Therefore, ChaDH functions as a chanoclavine-I dehydrogenase. K(m) values for chanoclavine-I and NAD(+) were 0.09 and 0.36 mM, respectively. Turnover number was 0.76 s(-1).
Collapse
Affiliation(s)
- Christiane Wallwey
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstraße 17a, 35037 Marburg, Germany
| | - Christoph Heddergott
- Abteilung für Molekulare und Angewandte Mikrobiologie, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V.-Hans-Knöll-Institut (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Xiulan Xie
- Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Axel A Brakhage
- Institut für Mikrobiologie, Friedrich-Schiller-Universität Jena, Philosophenweg 12, 07743 Jena, Germany
- Abteilung für Molekulare und Angewandte Mikrobiologie, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V.-Hans-Knöll-Institut (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Shu-Ming Li
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstraße 17a, 35037 Marburg, Germany
| |
Collapse
|
13
|
Matuschek M, Wallwey C, Wollinsky B, Xie X, Li SM. In vitro conversion of chanoclavine-I aldehyde to the stereoisomers festuclavine and pyroclavine controlled by the second reduction step. RSC Adv 2012. [DOI: 10.1039/c2ra20104f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Matuschek M, Wallwey C, Xie X, Li SM. New insights into ergot alkaloid biosynthesis in Claviceps purpurea: An agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 2011; 9:4328-35. [DOI: 10.1039/c0ob01215g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 2009; 192:127-34. [PMID: 20039019 DOI: 10.1007/s00203-009-0536-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaDH has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaDH comprises 261 amino acids with a molecular mass of about 27.8 kDa and contains the conserved motifs of classical short-chain dehydrogenases/reductases (SDRs), but shares no worth mentioning sequence similarity with SDRs and other known proteins. The coding region of fgaDH consisting of two exons was amplified by PCR from a cDNA library of Aspergillus fumigatus, cloned into pQE60 and overexpressed in E. coli. The soluble tetrameric His(6)-FgaDH was purified to apparent homogeneity and characterized biochemically. It has been shown that FgaDH catalyzes the oxidation of chanoclavine-I in the presence of NAD(+) resulting in the formation of chanoclavine-I aldehyde, which was unequivocally identified by NMR and MS analyzes. Therefore, FgaDH functions as a chanoclavine-I dehydrogenase and represents a new group of short-chain dehydrogenases. K (M) values for chanoclavine-I and NAD(+) were determined at 0.27 and 1.1 mM, respectively. The turnover number was 0.38 s(-1).
Collapse
|