1
|
Dai F, Guo M, Shao Y, Li C. Novel secreted STPKLRR from Vibrio splendidus AJ01 promotes pathogen internalization via mediating tropomodulin phosphorylation dependent cytoskeleton rearrangement. PLoS Pathog 2023; 19:e1011419. [PMID: 37216400 DOI: 10.1371/journal.ppat.1011419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
We previously demonstrated that the flagellin of intracellular Vibrio splendidus AJ01 could be specifically identified by tropomodulin (Tmod) and further mediate p53-dependent coelomocyte apoptosis in the sea cucumber Apostichopus japonicus. In higher animals, Tmod serves as a regulator in stabilizing the actin cytoskeleton. However, the mechanism on how AJ01 breaks the AjTmod-stabilized cytoskeleton for internalization remains unclear. Here, we identified a novel AJ01 Type III secretion system (T3SS) effector of leucine-rich repeat-containing serine/threonine-protein kinase (STPKLRR) with five LRR domains and a serine/threonine kinase (STYKc) domain, which could specifically interact with tropomodulin domain of AjTmod. Furthermore, we found that STPKLRR directly phosphorylated AjTmod at serine 52 (S52) to reduce the binding stability between AjTmod and actin. After AjTmod dissociated from actin, the F-actin/G-actin ratio decreased to induce cytoskeletal rearrangement, which in turn promoted the internalization of AJ01. The STPKLRR knocked out strain could not phosphorylated AjTmod and displayed lower internalization capacity and pathogenic effect compared to AJ01. Overall, we demonstrated for the first time that the T3SS effector STPKLRR with kinase activity was a novel virulence factor in Vibrio and mediated self-internalization by targeting host AjTmod phosphorylation dependent cytoskeleton rearrangement, which provided a candidate target to control AJ01 infection in practice.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
2
|
Hung YL, Jiang I, Lee YZ, Wen CK, Sue SC. NMR Study Reveals the Receiver Domain of Arabidopsis ETHYLENE RESPONSE1 Ethylene Receptor as an Atypical Type Response Regulator. PLoS One 2016; 11:e0160598. [PMID: 27486797 PMCID: PMC4972365 DOI: 10.1371/journal.pone.0160598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/21/2016] [Indexed: 11/26/2022] Open
Abstract
The gaseous plant hormone ethylene, recognized by plant ethylene receptors, plays a pivotal role in various aspects of plant growth and development. ETHYLENE RESPONSE1 (ETR1) is an ethylene receptor isolated from Arabidopsis and has a structure characteristic of prokaryotic two-component histidine kinase (HK) and receiver domain (RD), where the RD structurally resembles bacteria response regulators (RRs). The ETR1 HK domain has autophosphorylation activity, and little is known if the HK can transfer the phosphoryl group to the RD for receptor signaling. Unveiling the correlation of the receptor structure and phosphorylation status would advance the studies towards the underlying mechanisms of ETR1 receptor signaling. In this study, using the nuclear magnetic resonance technique, our data suggested that the ETR1-RD is monomeric in solution and the rigid structure of the RD prevents the conserved aspartate residue phosphorylation. Comparing the backbone dynamics with other RRs, we propose that backbone flexibility is critical to the RR phosphorylation. Besides the limited flexibility, ETR1-RD has a unique γ loop conformation of opposite orientation, which makes ETR1-RD unfavorable for phosphorylation. These two features explain why ETR1-RD cannot be phosphorylated and is classified as an atypical type RR. As a control, phosphorylation of the ETR1-RD was also impaired when the sequence was swapped to the fragment of the bacterial typical type RR, CheY. Here, we suggest a molecule insight that the ETR1-RD already exists as an active formation and executes its function through binding with the downstream factors without phosphorylation.
Collapse
Affiliation(s)
- Yi-Lin Hung
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Instrumentation Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ingjye Jiang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
3
|
Nilgiriwala KS, Jiménez J, Rivera PM, Del Vecchio D. Synthetic tunable amplifying buffer circuit in E. coli. ACS Synth Biol 2015; 4:577-84. [PMID: 25279430 DOI: 10.1021/sb5002533] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
While predictable design of a genetic circuit's output is a major goal of synthetic biology, it remains a significant challenge because DNA binding sites in the cell affect the concentration of available transcription factors (TF). To mitigate this problem, we propose to use a TF that results from the (reversible) phosphorylation of protein substrate as a circuit's output. We demonstrate that by comparatively increasing the amounts of substrate and phosphatase, the TF concentration becomes robust to the presence of DNA binding sites and can be kept at a desired value. The circuit's input/output gain can, in turn, be tuned by changing the relative amounts of the substrate and phosphatase, realizing an amplifying buffer circuit with tunable gain. In our experiments in E. coli, we employ phospho-NRI as the output TF, phosphorylated by the NRII kinase, and dephosphorylated by the NRII phosphatase. Amplifying buffer circuits such as ours could be used to insulate a circuit's output from the context, bringing synthetic biology one step closer to modular design.
Collapse
Affiliation(s)
- Kayzad Soli Nilgiriwala
- Department of Mechanical
Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - José Jiménez
- Department of Mechanical
Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Phillip Michael Rivera
- Department of Mechanical
Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Domitilla Del Vecchio
- Department of Mechanical
Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
4
|
Canova MJ, Molle V. Bacterial serine/threonine protein kinases in host-pathogen interactions. J Biol Chem 2014; 289:9473-9. [PMID: 24554701 DOI: 10.1074/jbc.r113.529917] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.
Collapse
Affiliation(s)
- Marc J Canova
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, 34095 Montpellier Cedex 05, France
| | | |
Collapse
|
5
|
Burnside K, Rajagopal L. Regulation of prokaryotic gene expression by eukaryotic-like enzymes. Curr Opin Microbiol 2012; 15:125-31. [PMID: 22221896 DOI: 10.1016/j.mib.2011.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
A growing body of evidence indicates that serine/threonine kinases (STKs) and phosphatases (STPs) regulate gene expression in prokaryotic organisms. As prokaryotic STKs and STPs are not DNA binding proteins, regulation of gene expression is accomplished through post-translational modification of their targets. These include two-component response regulators, DNA binding proteins and proteins that mediate transcription and translation. This review summarizes our current understanding of how STKs and STPs mediate gene expression in prokaryotes. Further studies to identify environmental signals that trigger the signaling cascade and elucidation of mechanisms that regulate crosstalk between eukaryotic-like signaling enzymes, two-component systems, and components of the transcriptional and translational machinery will facilitate a greater understanding of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Hospital Research Institute, Seattle, WA 98101-1304, United States
| | | |
Collapse
|
6
|
Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol 2011; 6:747-61. [PMID: 21797690 DOI: 10.2217/fmb.11.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Living organisms adapt to the dynamic external environment for their survival. Environmental adaptation in prokaryotes is thought to be primarily accomplished by signaling events mediated by two-component systems, consisting of histidine kinases and response regulators. However, eukaryotic-like serine/threonine kinases (STKs) have recently been described to regulate growth, antibiotic resistance and virulence of pathogenic bacteria. This article summarizes the role of STKs and their cognate phosphatases (STPs) in Gram-positive cocci that cause invasive infections in humans. Given that a large number of inhibitors to eukaryotic STKs are approved for use in humans, understanding how serine/threonine phosphorylation regulates virulence and antibiotic resistance will be beneficial for the development of novel therapeutic strategies against bacterial infections.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-1304, USA
| | | |
Collapse
|
7
|
Abstract
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a β-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster.
Collapse
|
8
|
Transcription antitermination by a phosphorylated response regulator and cobalamin-dependent termination at a B₁₂ riboswitch contribute to ethanolamine utilization in Enterococcus faecalis. J Bacteriol 2011; 193:2575-86. [PMID: 21441515 DOI: 10.1128/jb.00217-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ability of bacteria to utilize ethanolamine (EA) as a carbon and nitrogen source may confer an advantage for survival, colonization, and pathogenicity in the human intestinal tract. Enterococcus faecalis, a Gram-positive human commensal organism, depends on a two-component signaling system (TCS-17) for sensing EA and regulating the expression of the ethanolamine utilization genes. Multiple promoters participate in eut gene expression in the presence of EA as the sole carbon source and cobalamin (CoB12), an essential cofactor in the enzymatic degradation process. By means of in vivo and in vitro approaches, this study characterized the transcriptional activity identified in the eutT-eutG intergenic region of the E. faecalis eut cluster. Two novel promoters in this region were shown to be active in vivo. The distal P2-1 promoter was associated with a B12 riboswitch that terminated transcription in the presence of CoB12. Transcription elongation from the proximal P2-2 promoter was regulated by antitermination mediated by the phosphorylated form of the response regulator of TCS-17 (RR17). 3'-Rapid amplification of cDNA ends (RACE) analyses of the terminated RNA products allowed precise identification of the hairpin loop structures involved in termination/antitermination. The results uncovered the role of the B12 riboswitch and RR17 in eut gene expression, adding to the complexity of this regulatory pathway and extending the knowledge of possible means of transcription regulation in Gram-positive organisms.
Collapse
|
9
|
Identification of YsrT and evidence that YsrRST constitute a unique phosphorelay system in Yersinia enterocolitica. J Bacteriol 2010; 192:5887-97. [PMID: 20870771 DOI: 10.1128/jb.00745-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCS) and phosphorelay systems are mechanisms used by bacteria and fungi to quickly adapt to environmental changes to produce proteins necessary for survival in new environments. Bacterial pathogens use TCS and phosphorelay systems to regulate genes necessary to establish infection within their hosts, including type III secretion systems (T3SS). The Yersinia enterocolitica ysa T3SS is activated in response to NaCl by YsrS and YsrR, a putative hybrid sensor kinase and a response regulator, respectively. Hybrid TCS consist of a sensor kinase that typically has three well-conserved sites of phosphorylation: autophosphorylation site H1, D1 within a receiver domain, and H2 in the histidine phosphotransferase (HPt) domain. From H2, the phosphoryl group is transferred to D2 on the response regulator. A curious feature of YsrS is that it lacks the terminal HPt domain. We report here the identification of the HPt-containing protein (YsrT) that provides this activity for the Ysr system. YsrT is an 82-residue protein predicted to be cytosolic and α-helical in nature and is encoded by a gene adjacent to ysrS. To demonstrate predicted functions of YsrRST as a phosphorelay system, we introduced alanine substitutions at H1, D1, H2, and D2 and tested the mutant proteins for the ability to activate a ysaE-lacZ reporter. As expected, substitutions at H1, H2, and D2 resulted in a loss of activation of ysaE expression. This indicates an interruption of normal protein function, most likely from loss of phosphorylation. A similar result was expected for D1; however, an intriguing "constitutive on" phenotype was observed. In addition, the unusual feature of a separate HPt domain led us to compare the sequences surrounding the ysrS-ysrT junction in several Yersinia strains. In every strain examined, ysrT is a separate gene, leading to speculation that there is a functional advantage to YsrT being an independent protein.
Collapse
|
10
|
Buelow DR, Raivio TL. Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases. Mol Microbiol 2009; 75:547-66. [PMID: 19943903 DOI: 10.1111/j.1365-2958.2009.06982.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-component signal transduction (TCST) is the most prevalent mechanism employed by microbes to sense and respond to environmental changes. It is characterized by the signal-induced transfer of phosphate from a sensor histidine kinase (HK) to a response regulator (RR), resulting in a cellular response. An emerging theme in the field of TCST signalling is the discovery of auxiliary factors, distinct from the HK and RR, which are capable of influencing phosphotransfer. One group of TCST auxiliary proteins accomplishes this task by acting on HKs. Auxiliary regulators of HKs are widespread and have been identified in all cellular compartments, where they can influence HK activity through interactions with the sensing, transmembrane or enzymatic domains of the HK. The effects of an auxiliary regulator are controlled by its regulated expression, modification and/or through ligand binding. Ultimately, auxiliary regulators can connect a given TCST system to other regulatory networks in the cell or result in regulation of the TCST system in response to an expanded range of stimuli. The studies highlighted in this review draw attention to an emerging view of bacterial TCST systems as core signalling units upon which auxiliary factors act.
Collapse
Affiliation(s)
- Daelynn R Buelow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
11
|
Silvestroni A, Jewell KA, Lin WJ, Connelly JE, Ivancic MM, Tao WA, Rajagopal L. Identification of serine/threonine kinase substrates in the human pathogen group B streptococcus. J Proteome Res 2009; 8:2563-74. [PMID: 19309132 PMCID: PMC2863997 DOI: 10.1021/pr900069n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All living organisms respond to changes in their internal and external environment for their survival and existence. Signaling is primarily achieved through reversible phosphorylation of proteins in both prokaryotes and eukaryotes. A change in the phosphorylation state of a protein alters its function to enable the control of cellular responses. A number of serine/threonine kinases regulate the cellular responses of eukaryotes. Although common in eukaryotes, serine/threonine kinases have only recently been identified in prokaryotes. We have described that the human pathogen Group B Streptococcus (GBS, Streptococcus agalactiae) encodes a single membrane-associated, serine/threonine kinase (Stk1) that is important for virulence of this bacterium. In this study, we used a combination of phosphopeptide enrichment and mass spectrometry to enrich and identify serine (S) and threonine (T) phosphopeptides of GBS. A comparison of S/T phosphopeptides identified from the Stk1 expressing strains to the isogenic stk1 mutant indicates that 10 proteins are potential substrates of the GBS Stk1 enzyme. Some of these proteins are phosphorylated by Stk1 in vitro and a site-directed substitution of the phosphorylated threonine to an alanine abolished phosphorylation of an Stk1 substrate. Collectively, these studies provide a novel approach to identify serine/threonine kinase substrates for insight into their signaling in human pathogens like GBS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lakshmi Rajagopal
- Corresponding author. Mailing address: Seattle Children’s Hospital Research Institute, 1900 Ninth Ave., Seattle, WA 98101-1304. Phone: (206) 884-7336. Fax: (206) 884-7311.
| |
Collapse
|
12
|
The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect Immun 2008; 77:374-86. [PMID: 18936184 DOI: 10.1128/iai.01081-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the role of the PmrA/PmrB two-component system (TCS) of Legionella pneumophila in global gene regulation and in intracellular infection, we constructed pmrA and pmrB isogenic mutants by allelic exchange. Genome-wide microarray gene expression analyses of the pmrA and pmrB mutants at both the exponential and the postexponential phases have shown that the PmrA/PmrB TCS has a global effect on the expression of 279 genes classified into nine groups of genes encoding eukaryotic-like proteins, Dot/Icm apparatus and secreted effectors, type II-secreted proteins, regulators of the postexponential phase, stress response genes, flagellar biosynthesis genes, metabolic genes, and genes of unknown function. Forty-one genes were differentially regulated in the pmrA or pmrB mutant, suggesting a possible cross talk with other TCSs. The pmrB mutant is more sensitive to low pH than the pmrA mutant and the wild-type strain, suggesting that acidity may trigger this TCS. The pmrB mutant exhibits a significant defect in intracellular proliferation within human macrophages, Acanthamoeba polyphaga, and the ciliate Tetrahymena pyriformis. In contrast, the pmrA mutant is defective only in the ciliate. Despite the intracellular growth defect within human macrophages, phagosomes harboring the pmrB mutant exclude late endosomal and lysosomal markers and are remodeled by the rough endoplasmic reticulum. Similar to the dot/icm mutants, the intracellular growth defect of the pmrB mutant is totally rescued in cis within communal phagosomes harboring the wild-type strain. We conclude that the PmrA/PmrB TCS has a global effect on gene expression and is required for the intracellular proliferation of L. pneumophila within human macrophages and protozoa. Differences in gene regulation and intracellular growth phenotypes between the pmrA and pmrB mutant suggests a cross talk with other TCSs.
Collapse
|
13
|
Nguyen TVA, Hong SH. Whole genome-based phylogenetic analysis of bacterial two-component systems. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0017-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Antón N, Santos-Aberturas J, Mendes MV, Guerra SM, Martín JF, Aparicio JF. PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. MICROBIOLOGY-SGM 2007; 153:3174-3183. [PMID: 17768260 DOI: 10.1099/mic.0.2007/009126-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sequencing of the DNA region on the left fringe of the pimaricin gene cluster revealed the presence of a 579 bp gene, pimM, whose deduced product (192 aa) was found to have amino acid sequence homology with bacterial regulatory proteins. Database comparisons revealed that PimM combines an N-terminal PAS domain with a C-terminal helix-turn-helix (HTH) motif of the LuxR type. Gene replacement of pimM from the Streptomyces natalensis chromosome with a mutant version lacking the HTH DNA-binding domain resulted in complete loss of pimaricin production, suggesting that PimM is a positive regulator of pimaricin biosynthesis. Complementation of the DeltapimM mutant with a single copy of pimM integrated into the chromosome restored pimaricin production. The insertion of a single copy of pimM, with its own promoter, into the S. natalensis wild-type strain boosted pimaricin production. Gene expression analyses in S. natalensis wild-type and DeltapimM by reverse transcriptase PCR (RT-PCR) of the pimaricin gene cluster revealed the targets for the PimM regulatory protein. According to these analyses, the genes responsible for initiation and first elongation cycles of polyketide chain extension are among the major targets for regulation. Other pim genes are differentially affected. Interestingly, our results indicate that PimM plays its regulatory role independently of PimR, the first pathway-specific regulator of pimaricin biosynthesis.
Collapse
Affiliation(s)
- Nuria Antón
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real no 1, 24006 León, Spain
| | - Javier Santos-Aberturas
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real no 1, 24006 León, Spain
| | - Marta V Mendes
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real no 1, 24006 León, Spain
| | - Susana M Guerra
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real no 1, 24006 León, Spain
| | - Juan F Martín
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real no 1, 24006 León, Spain
| | - Jesús F Aparicio
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, Spain
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Avda. Real no 1, 24006 León, Spain
| |
Collapse
|
15
|
Planchon S, Chambon C, Desvaux M, Chafsey I, Leroy S, Talon R, Hébraud M. Proteomic Analysis of Cell Envelope fromStaphylococcusxylosusC2a, a Coagulase-Negative Staphylococcus. J Proteome Res 2007; 6:3566-80. [PMID: 17636987 DOI: 10.1021/pr070139+] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcus xylosus is a saprophytic bacterium commonly found on skin of mammals but also used for its organoleptic properties in manufacturing of fermented meat products. This bacterium is able to form biofilms and to colonize biotic or abiotic surfaces, processes which are mediated, to a certain extent, by cell-envelope proteins. Thus, the present investigation aimed at evaluating and adapting different existing methods for cell-envelope subproteome analyses of the strain S. xylosus C2a. The protocol selected consisted initially of a lysostaphin treatment producing protoplasts and giving a fraction I enriched in cell wall proteins. A second fraction enriched in membrane proteins was then efficiently recovered by a procedure involving delipidation with a mixture of tributyl phosphate, methanol, and acetone and solubilization with a buffer containing ASB14. Proteins were separated using two-dimensional gel electrophoresis (2-DE) and identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A total of 168 protein spots was identified corresponding to 90 distinct proteins. To categorize and analyze these proteomic data, a rational bioinformatic approach was carried out on proteins identified within cell envelope of S. xylosus C2a. Thirty-four proteins were predicted as membrane-associated with 91% present, as expected, within fraction II enriched in membrane proteins: 24 proteins were predicted as membranal, 3 as lipoproteins, and 7 as components of membrane protein complex. Eighteen out of 25 (72%) proteins predicted as secreted were indeed identified in fraction I enriched in cell wall proteins: 6 proteins were predicted as secreted via Sec translocon, and the remaining 19 proteins were predicted as secreted via unknown secretion system. Eighty-one percent (25/31) of proteins predicted as cytoplasmic were found in fraction II: 8 were clearly predicted as interacting temporarily with membrane components. By coupling conventional 2-DE and bioinformatic analysis, the approach developed allows fractionating, resolving, and analyzing a significant and important set of cell envelope proteins from a coagulase-negative staphylococcus, that is, S. xylosus C2a.
Collapse
Affiliation(s)
- Stella Planchon
- INRA Centre de Clermont-Ferrand/Theix, UR454 Microbiologie, Equipe Qualité et Sécurité des Aliments, and Plate-Forme Protéomique, 63122 Saint-Genès Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Busch A, Lacal J, Martos A, Ramos JL, Krell T. Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci U S A 2007; 104:13774-9. [PMID: 17693554 PMCID: PMC1959458 DOI: 10.1073/pnas.0701547104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The TodS/TodT two-component system controls expression of the toluene dioxygenase (TOD) pathway for the metabolism of toluene in Pseudomonas putida DOT-T1E. TodS is a sensor kinase that ultimately controls tod gene expression through its cognate response regulator, TodT. We used isothermal titration calorimetry to study the binding of different compounds to TodS and related these findings to their capacity to induce gene expression in vivo. Agonistic compounds bound to TodS and induced gene expression in vivo. Toluene was a powerful agonist, but ortho-substitutions of toluene reduced or abolished in vivo responses, although TodS recognized o-xylene with high affinity. These compounds were called antagonists. We show that agonists and antagonists compete for binding to TodS both in vitro and in vivo. The failure of antagonists to induce gene expression in vivo correlated with their inability to stimulate TodS autophosphorylation in vitro. We propose intramolecular TodS signal transmission, not molecular recognition of compounds by TodS, to be the phenomenon that determines whether a given compound will lead to activation of expression of the tod genes. Molecular modeling identified residues F46, I74, F79, and I114 as being potentially involved in the binding of effector molecules. Alanine substitution mutants of these residues reduced affinities (2- to 345-fold) for both agonistic and antagonistic compounds. Our data indicate that determining the inhibitory activity of antagonists is a potentially fruitful alternative to design specific two-component system inhibitors for the development of new drugs to inhibit processes regulated by two-component systems.
Collapse
Affiliation(s)
- Andreas Busch
- *Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda, 1, 18008 Granada, Spain; and
| | - Jesús Lacal
- *Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda, 1, 18008 Granada, Spain; and
| | - Ariadna Martos
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, C/Ramiro de Maetzu, 9, 28040 Madrid, Spain
| | - Juan L. Ramos
- *Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda, 1, 18008 Granada, Spain; and
- To whom correspondence should be addressed. E-mail:
| | - Tino Krell
- *Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda, 1, 18008 Granada, Spain; and
| |
Collapse
|
17
|
Shulami S, Zaide G, Zolotnitsky G, Langut Y, Feld G, Sonenshein AL, Shoham Y. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Appl Environ Microbiol 2006; 73:874-84. [PMID: 17142383 PMCID: PMC1800775 DOI: 10.1128/aem.02367-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacillus stearothermophilus T-6 utilizes an extensive and highly regulated hemicellulolytic system. The genes comprising the xylanolytic system are clustered in a 39.7-kb chromosomal segment. This segment contains a 6-kb transcriptional unit (xynDCEFG) coding for a potential two-component system (xynDC) and an ATP-binding cassette (ABC) transport system (xynEFG). The xynD promoter region contains a 16-bp inverted repeat resembling the operator site for the xylose repressor, XylR. XylR was found to bind specifically to this sequence, and binding was efficiently prevented in vitro in the presence of xylose. The ABC transport system was shown to comprise an operon of three genes (xynEFG) that is transcribed from its own promoter. The nonphosphorylated fused response regulator, His6-XynC, bound to a 220-bp fragment corresponding to the xynE operator. DNase I footprinting analysis showed four protected zones that cover the -53 and the +34 regions and revealed direct repeat sequences of a GAAA-like motif. In vitro transcriptional assays and quantitative reverse transcription-PCR demonstrated that xynE transcription is activated 140-fold in the presence of 1.5 microM XynC. The His6-tagged sugar-binding lipoprotein (XynE) of the ABC transporter interacted with different xylosaccharides, as demonstrated by isothermal titration calorimetry. The change in the heat capacity of binding (DeltaCp) for XynE with xylotriose suggests a stacking interaction in the binding site that can be provided by a single Trp residue and a sugar moiety. Taken together, our data show that XynEFG constitutes an ABC transport system for xylo-oligosaccharides and that its transcription is negatively regulated by XylR and activated by the response regulator XynC, which is part of a two-component sensing system.
Collapse
Affiliation(s)
- Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL. Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. PLANT PHYSIOLOGY 2006; 142:380-97. [PMID: 16891544 PMCID: PMC1586034 DOI: 10.1104/pp.106.086371] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The two-component system (TCS), which works on the principle of histidine-aspartate phosphorelay signaling, is known to play an important role in diverse physiological processes in lower organisms and has recently emerged as an important signaling system in plants. Employing the tools of bioinformatics, we have characterized TCS signaling candidate genes in the genome of Oryza sativa L. subsp. japonica. We present a complete overview of TCS gene families in O. sativa, including gene structures, conserved motifs, chromosome locations, and phylogeny. Our analysis indicates a total of 51 genes encoding 73 putative TCS proteins. Fourteen genes encode 22 putative histidine kinases with a conserved histidine and other typical histidine kinase signature sequences, five phosphotransfer genes encoding seven phosphotransfer proteins, and 32 response regulator genes encoding 44 proteins. The variations seen between gene and protein numbers are assumed to result from alternative splicing. These putative proteins have high homology with TCS members that have been shown experimentally to participate in several important physiological phenomena in plants, such as ethylene and cytokinin signaling and phytochrome-mediated responses to light. We conclude that the overall architecture of the TCS machinery in O. sativa and Arabidopsis thaliana is similar, and our analysis provides insights into the conservation and divergence of this important signaling machinery in higher plants.
Collapse
Affiliation(s)
- Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | | | |
Collapse
|
19
|
Rajagopal L, Vo A, Silvestroni A, Rubens CE. Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae. Mol Microbiol 2006; 62:941-57. [PMID: 17005013 PMCID: PMC2593684 DOI: 10.1111/j.1365-2958.2006.05431.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Signal transducing mechanisms are essential for regulation of gene expression in both prokaryotic and eukaryotic organisms. Regulation of gene expression in eukaryotes is accomplished by serine/threonine and tyrosine kinases and cognate phosphatases. In contrast, gene expression in prokaryotes is controlled by two-component systems that comprise a sensor histidine kinase and a cognate DNA binding response regulator. Pathogenic bacteria utilize two-component systems to regulate expression of their virulence factors and for adaptive responses to the external environment. We have previously shown that the human pathogen Streptococcus agalactiae (Group B Streptococci, GBS) encodes a single eukaryotic-type serine/threonine kinase Stk1, which is important for virulence of the organism. In this study, we aimed to understand how Stk1 contributes to virulence of GBS. Our results indicate that Stk1 expression is important for resistance of GBS to human blood, neutrophils and oxidative stress. Consistent with these observations, Stk1 positively regulates transcription of a cytotoxin, beta-haemolysin/cytolysin (beta-H/C) that is critical for survival of GBS in the bloodstream and for resistance to oxidative stress. Interestingly, positive regulation of beta-H/C by Stk1 requires the two-component regulator CovR. Further, we show that Stk1 can negatively regulate transcription of CAMP factor in a CovR-dependent manner. As Stk1 phosphorylates CovR in vitro, these data suggest that serine/threonine phosphorylation impacts CovR-mediated regulation of GBS gene expression. In summary, our studies provide novel information that a eukaryotic-type serine/threonine kinase regulates two-component-mediated expression of GBS cytotoxins.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Division of Infectious Diseases and Department of Pediatrics, Children's Hospital and Regional Medical Center and University of Washington, Suite 300, 307 Westlake Avenue North, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
20
|
Cai Z, Mao X, Li S, Wei L. Genome comparison using Gene Ontology (GO) with statistical testing. BMC Bioinformatics 2006; 7:374. [PMID: 16901353 PMCID: PMC1569881 DOI: 10.1186/1471-2105-7-374] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 08/11/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Automated comparison of complete sets of genes encoded in two genomes can provide insight on the genetic basis of differences in biological traits between species. Gene ontology (GO) is used as a common vocabulary to annotate genes for comparison. Current approaches calculate the fold of unweighted or weighted differences between two species at the high-level GO functional categories. However, to ensure the reliability of the differences detected, it is important to evaluate their statistical significance. It is also useful to search for differences at all levels of GO. RESULTS We propose a statistical approach to find reliable differences between the complete sets of genes encoded in two genomes at all levels of GO. The genes are first assigned GO terms from BLAST searches against genes with known GO assignments, and for each GO term the abundance of genes in the two genomes is compared using a chi-squared test followed by false discovery rate (FDR) correction. We applied this method to find statistically significant differences between two cyanobacteria, Synechocystis sp. PCC6803 and Anabaena sp. PCC7120. We then studied how the set of identified differences vary when different BLAST cutoffs are used. We also studied how the results vary when only subsets of the genes were used in the comparison of human vs. mouse and that of Saccharomyces cerevisiae vs. Schizosaccharomyces pombe. CONCLUSION There is a surprising lack of statistical approaches for comparing complete genomes at all levels of GO. With the rapid increase of the number of sequenced genomes, we hope that the approach we proposed and tested can make valuable contribution to comparative genomics.
Collapse
Affiliation(s)
- Zhaotao Cai
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Xizeng Mao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Songgang Li
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Liping Wei
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
21
|
McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, Brinkman FSL, Hancock REW. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 2006; 188:3995-4006. [PMID: 16707691 PMCID: PMC1482896 DOI: 10.1128/jb.00053-06] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When grown in divalent cation-limited medium, Pseudomonas aeruginosa becomes resistant to cationic antimicrobial peptides and polymyxin B. This resistance is regulated by the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems. To further characterize Mg(2+) regulation in P. aeruginosa, microarray transcriptional profiling was conducted to compare wild-type P. aeruginosa grown under Mg(2+)-limited and Mg(2+)-replete conditions to isogenic phoP and pmrA mutants grown under Mg(2+)-limited conditions. Under Mg(2+)-limited conditions (0.02 mM Mg(2+)), approximately 3% of the P. aeruginosa genes were differentially expressed compared to the expression in bacteria grown under Mg(2+)-replete conditions (2 mM Mg(2+)). Only a modest subset of the Mg(2+)-regulated genes were regulated through either PhoP or PmrA. To determine which genes were directly regulated, a bioinformatic search for conserved binding motifs was combined with confirmatory reverse transcriptase PCR and gel shift promoter binding assays, and the results indicated that very few genes were directly regulated by these response regulators. It was found that in addition to the previously known oprH-phoP-phoQ operon and the pmrHFIJKLM-ugd operon, the PA0921 and PA1343 genes, encoding small basic proteins, were regulated by Mg(2+) in a PhoP-dependent manner. The number of known PmrA-regulated genes was expanded to include the PA1559-PA1560, PA4782-PA4781, and feoAB operons, in addition to the previously known PA4773-PA4775-pmrAB and pmrHFIJKLM-ugd operons.
Collapse
Affiliation(s)
- Joseph B McPhee
- Department of Microbiology and Immunology and Centre for Microbial Diseases and Immunity Research, University of British Columbia, 232-2259 Lower Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR. Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol 2005; 71:5794-804. [PMID: 16204490 PMCID: PMC1266013 DOI: 10.1128/aem.71.10.5794-5804.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 05/13/2005] [Indexed: 01/19/2023] Open
Abstract
Two-component regulatory systems are one primary mechanism for environmental sensing and signal transduction. Annotation of the complete genome sequence of the probiotic bacterium Lactobacillus acidophilus NCFM revealed nine two-component regulatory systems. In this study, the histidine protein kinase of a two-component regulatory system (LBA1524HPK-LBA1525RR), similar to the acid-related system lisRK from Listeria monocytogenes (P. D. Cotter et al., J. Bacteriol. 181:6840-6843, 1999), was insertionally inactivated. A whole-genome microarray containing 97.4% of the annotated genes of L. acidophilus was used to compare genome-wide patterns of transcription at various pHs between the control and the histidine protein kinase mutant. The expression pattern of approximately 80 genes was affected by the LBA1524HPK mutation. Putative LBA1525RR target loci included two oligopeptide-transport systems present in the L. acidophilus genome, other components of the proteolytic system, and a LuxS homolog, suspected of participating in synthesis of the AI-2 signaling compound. The mutant exhibited lower tolerance to acid and ethanol in logarithmic-phase cells and poor acidification rates in milk. Supplementation of milk with Casamino Acids essentially restored the acid-producing ability of the mutant, providing additional evidence for a role of this two component system in regulating proteolytic activity in L. acidophilus.
Collapse
Affiliation(s)
- M Andrea Azcarate-Peril
- Department of Food Science, North Carolina State University, Box 7624, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
23
|
O'Connor TJ, Nodwell JR. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. J Mol Biol 2005; 351:1030-47. [PMID: 16051268 DOI: 10.1016/j.jmb.2005.06.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/21/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
The response regulator RamR activates expression of the ramCSAB operon, the source of the morphogenetic peptide SapB, and is therefore important for morphogenesis of the bacterium Streptomyces coelicolor. Like most response regulators, RamR consists of an amino-terminal receiver domain and a carboxy-terminal DNA binding domain. Four of five highly conserved active site residues known to be important in other response regulators are present in RamR: D12, D56 (the predicted site of phosphorylation), T84 and K105. Here, we show that in spite of this, RamR did not demonstrate an ability to autophosphorylate in vitro in the presence of small molecule phosphodonors. The unphosphorylated protein behaved as a dimer and bound cooperatively to three sites in the ramC promoter, one with very high affinity and two with lower affinity. On its own, the RamR DNA binding domain could not bind DNA but was able to interfere with the action of full length RamR in a manner suggesting direct protein-protein contact. Surprisingly, substitution of residues D12 or T84 had no effect on RamR function in vivo. In contrast, D56A and K105A substitutions caused defects in both dimer formation and DNA binding while the more conservative substitution, D56N permitted dimer formation but not DNA binding. L102 in RamR corresponds to a well-conserved tyrosine (or aromatic) residue that is important for function in the other response regulators. While a L102Y variant, which introduced the aromatic side-chain usually found at this position, functioned normally, L102A and L102W substitutions blocked RamR function in vivo. We show that these substitutions specifically impaired cooperative DNA binding by RamR at the lower affinity recognition sequences. The biochemical properties of RamR therefore differ markedly from those of other well-characterized response regulators.
Collapse
Affiliation(s)
- Tamara J O'Connor
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, 1200 Main St W. Hamilton, Ont., Canada L8N 3Z5
| | | |
Collapse
|
24
|
|
25
|
El-Sharoud WM. Two-component signal transduction systems as key players in stress responses of lactic acid bacteria. Sci Prog 2005; 88:203-28. [PMID: 16961092 PMCID: PMC10361167 DOI: 10.3184/003685005783238381] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactic acid bacteria (LAB) continue as an important group of gram-positive bacteria that have been extensively exploited in food industries and various biotechnological applications. Some LAB species are, however, opportunistic pathogens and were reported to be associated with overwhelming number of human infections. During the use of LAB in industry or over the course of human infection, these bacteria are exposed to environmental stress. While LAB display adaptive mechanisms to cope with adverse conditions, the regulation of these mechanisms remains to be elucidated. Recent completion of genome sequencing of various LAB strains combined with the development of advanced molecular techniques have enabled the identification of a number of putative two-component signal transduction systems, also known as two-component regulatory systems (2CRS), in LAB. Examining the effect of deleting genes specifying putative 2CRS proteins in these organisms has revealed the involvement of 2CRS in the responses of LAB to different stresses. There are lines of evidence indicating that certain 2CRS may mediate a general stress response in Enterococcus faecalis and Streptococcus pyogenes. This review highlights the influence of 2CRS on the physiology of LAB during optimal growth and survival/growth on exposure to environmental stress.
Collapse
Affiliation(s)
- Walid M El-Sharoud
- Dairy Science and Technology Department, Faculty of Agriculture, Mansoura University, Egypt.
| |
Collapse
|
26
|
Koenig RL, Ray JL, Maleki SJ, Smeltzer MS, Hurlburt BK. Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J Bacteriol 2004; 186:7549-55. [PMID: 15516566 PMCID: PMC524880 DOI: 10.1128/jb.186.22.7549-7555.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of virulence gene expression in the human pathogen Staphylococcus aureus is under the partial control of the two-component quorum-sensing system encoded by genes of the agr locus. The product of the agrA gene has been shown by amino acid sequence similarity to be the putative response regulator; however, binding of AgrA to promoters under its control has not yet been demonstrated. In this study, we isolated and purified soluble AgrA by expression under osmotic shock conditions and ion-exchange chromatography. Purified AgrA showed high-affinity binding to the RNAIII-agr intergenic region by electrophoretic mobility shift assays. Binding was localized by DNase I protection assays to a pair of direct repeats in the P2 and P3 promoter regions of the agr locus. We found that this binding was enhanced by the addition of the small phosphoryl donor, acetyl phosphate. The difference in binding affinity between these two promoters was found to result from a 2-bp difference between the downstream direct repeats of the P2 and P3 sites. Mutation of these base pairs in the P3 site to match those found in the P2 site increased the affinity of AgrA for the P3 site relative to that for the P2 site. These results are consistent with the function of AgrA as a response regulator with recognition sites in the promoter regions of RNAIII and the agr locus.
Collapse
Affiliation(s)
- Robbin L Koenig
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | | | | | | | | |
Collapse
|
27
|
Benda C, Scheufler C, Tandeau de Marsac N, Gärtner W. Crystal structures of two cyanobacterial response regulators in apo- and phosphorylated form reveal a novel dimerization motif of phytochrome-associated response regulators. Biophys J 2004; 87:476-87. [PMID: 15240481 PMCID: PMC1304369 DOI: 10.1529/biophysj.103.033696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The structures of two response regulators (RRs) from the cyanobacterium Calothrix PCC7601, RcpA and RcpB, were solved to 1.9- and 1.75-A resolution, respectively. RcpA was found in phosphorylated and RcpB in nonphosphorylated form. Both RRs are members of phytochrome-associated, light-sensing two-component signal transduction pathways, based on histidine kinase-mediated receptor autophosphorylation and phosphorelay to a RR. Despite the overall folding similarity to CheY-type RRs ((beta/alpha)(5)-motif), RcpA and RcpB form homodimers, irrespective of their phosphorylation state, giving insight into a signal transduction putatively different from that of other known RRs. Dimerization is accomplished by a C-terminal extension of the RR polypeptide chain, and the surface formed by H4, beta 5, and H5, which constitute a hydrophobic contact area with distinct interactions between residues of either subunit. Sequence alignments reveal that the identified dimerization motif is archetypal for phytochrome-associated RRs, making them a novel subgroup of CheY-type RRs. The protein structures of RcpA and RcpB are compared to the recently presented protein structure of Rcp1 from Synechocystis.
Collapse
Affiliation(s)
- C Benda
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
28
|
Guillet V, Ohta N, Cabantous S, Newton A, Samama JP. Crystallographic and biochemical studies of DivK reveal novel features of an essential response regulator in Caulobacter crescentus. J Biol Chem 2002; 277:42003-10. [PMID: 12176983 DOI: 10.1074/jbc.m204789200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DivK is an essential response regulator in the Gram-negative bacterium Caulobacter crescentus and functions in a complex phosphorelay system that precisely controls the sequence of developmental events during the cell division cycle. Structure determinations of this single domain response regulator at different pH values demonstrated that the five-stranded alpha/beta fold of the DivK protein is fully defined only at acidic pH. The crystal structures of the apoprotein and of metal-bound DivK complexes at higher pH values revealed a synergistic pH- and cation binding-induced flexibility of the beta4-alpha4 loop and of the alpha4 helix. This motion increases the solvent accessibility of the single cysteine residue in the protein. Solution state studies demonstrated a 200-fold pH-dependent increase in the affinity of manganese for the protein between pH 6.0 and 8.5 that seems to involve deprotonation of an acido-basic couple. Taken together, these results suggest that flexibility of critical regions of the protein, ionization of the cysteine 99 residue and improved K(D) values for the catalytic metal ion are coupled events. We propose that the molecular events observed in the isolated protein may be required for DivK activation and that they may be achieved in vivo through the specific protein-protein interactions between the response regulator and its cognate kinases.
Collapse
Affiliation(s)
- Valérie Guillet
- Groupe de Cristallographie Biologique, IPBS-CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | |
Collapse
|
29
|
Ogawa T, Bao DH, Katoh H, Shibata M, Pakrasi HB, Bhattacharyya-Pakrasi M. A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J Biol Chem 2002; 277:28981-6. [PMID: 12039966 DOI: 10.1074/jbc.m204175200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elemental manganese is essential for the production of molecular oxygen by cyanobacteria, plants, and algae. In the cyanobacterium Synechocystis sp. PCC 6803, transcription of the mntCAB operon, encoding a high affinity Mn transporter, occurs under Mn starvation (nm Mn) conditions but not in Mn-sufficient (microm Mn) growth medium. Using a strain in which the promoter of this operon directs the transcription of the luxAB reporter genes, we determined that inactivation of the slr0640 gene, which encodes a histidine kinase sensor protein component of a two-component signal transduction system, resulted in constitutive high levels of lux luminescence. Systematic targeted inactivation mutagenesis also identified slr1837 as the gene encoding the corresponding response regulator protein. We have named these two genes manS (manganese-sensor) and manR (manganese-regulator), respectively. A polyhistidine-tagged form of the ManS protein was localized in the Synechocystis 6803 cell membrane. Directed replacement of the conserved catalytic His-205 residue of this protein by Leu abolished its activity, although the mutated protein was present in cyanobacterial membrane. This mutant also showed suboptimal rates of Mn uptake under either Mn-starved or Mn-sufficient growth condition. These data suggest that the ManS/ManR two-component system plays a central role in the homeostasis of manganese in Synechocystis 6803 cells.
Collapse
Affiliation(s)
- Teruo Ogawa
- Bioscience Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|