1
|
Shalaby W, Kandyel R, Abumandour M, Al-Ghamdi FA, Gewily D. Comparison of anatomical visual features of the eyeball, lens, and retina the diurnal common kestrel (Falco tinnunculus rupicilaeformis) and the nocturnal little owl (Athene noctua glaux). BMC Vet Res 2024; 20:541. [PMID: 39614225 DOI: 10.1186/s12917-024-04371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
Our study aimed to compare the anatomical features of the eyeball, lens, and retina between the two raptor birds of different visual active clock hours: the diurnal common kestrel (Falco tinnunculus rupicilaeformis) and the nocturnal little owl (Athene noctua glaux) using gross, morphometric analysis, histological, and scanning and transmission electron microscopy techniques. The semi-spherical eyeball of the kestrel had less convexity on the anterior surface than on the posterior surface; meanwhile, it was relatively larger in the owl. There is a relationship between the corneal diameter (CD) and the eye axial length (AL). There were significant differences in the retinal layer thickness between the two raptors, in which the diurnal kestrel had a thinner pigmented epithelium and photoreceptor layers compared to the nocturnal owl. Moreover, the inner nuclear and outer nuclear, inner plexiform, and outer plexiform layers in the diurnal kestrel were larger than those in the nocturnal owl. The differences in the pigmented epithelium layer lead to the higher visual acuity and better color vision of the diurnal kestrel compared to the nocturnal owl. The photoreceptor layer in diurnal kestrel was composed of single large and double cones, which are composed of chief cones and accessory cones; meanwhile, the photoreceptor layer in nocturnal owl had only single elongated rods. We concluded that the lens and retina of the two raptors revealed great variations in reflecting the adaptation of each bird to different modes of life. The statistical analysis found a strong positive correlation between the axial length of the eye and the corneal diameter in both birds, as indicated by the Pearson correlation coefficient.
Collapse
Affiliation(s)
- Walaa Shalaby
- Zoology Department, Faculty of Science (girls), Al-Azhar University, Cairo, Egypt
| | - Ramadan Kandyel
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Mohamed Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, Egypt.
| | - Fawzyah A Al-Ghamdi
- Department of Biological Science, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Doaa Gewily
- Zoology Department, Faculty of Science (girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Zhao C, Bo J, Li T, Tian J, Long T, He Y, Chen S, Liu C. Blue light-driven cell cycle arrest in thyroid cancer via Retinal-OPN3 complex. Cell Commun Signal 2024; 22:530. [PMID: 39487504 PMCID: PMC11531186 DOI: 10.1186/s12964-024-01908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, with a rising incidence. Traditional treatments, such as thyroidectomy and radiotherapy, often lead to significant side effects, including impaired thyroid function. Therefore, there is an urgent need for non-invasive therapeutic approaches. This study aims to explore the potential of photobiomodulation therapy (PBMT), a non-invasive treatment using specific wavelengths of light, in the management of PTC. METHODS We investigated the effects of blue light PBMT on PTC cells, focusing on the Retinal-OPSIN 3 (OPN3) complex's role in mediating cellular responses. Blue light exposure was applied to PTC cells, and subsequent changes in cellular proliferation, cell cycle progression, and protein expression were analyzed. Statistical tests, including one-way ANOVA and t-tests, were used to evaluate the significance of the findings. RESULTS Blue light exposure led to the dissociation of 11-cis-retinal from OPN3, resulting in the accumulation of all-trans retinal. This accumulation disrupted cellular proliferation pathways and induced G0/G1 cell cycle arrest in PTC cells. The Retinal-OPN3 complex was found to be a key mediator in these processes, demonstrating that thyroid cells can respond to specific light wavelengths and utilize their photoreceptive potential for therapeutic purposes. CONCLUSIONS Our findings suggest that PBMT, through the modulation of the Retinal-OPN3 complex, offers a promising non-invasive approach for treating PTC. This study highlights the therapeutic potential of light signal transduction in non-ocular tissues and opens new avenues for non-invasive cancer therapies.
Collapse
Affiliation(s)
- Changrui Zhao
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaqiang Bo
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianyu Li
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiameng Tian
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Long
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying He
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyu Chen
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases (China Pharmaceutical University), Nanjing, China.
| |
Collapse
|
3
|
Krishnamoorthi A, Salom D, Wu A, Palczewski K, Rentzepis PM. Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2024; 121:e2414037121. [PMID: 39356673 PMCID: PMC11474067 DOI: 10.1073/pnas.2414037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA92697
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| |
Collapse
|
4
|
Kane JS, Gaspich M, Gold A, Pichardo H, Kane SA. Relative foveal dark adaptation: a potential method for assessing macular health. Eye (Lond) 2024; 38:2976-2980. [PMID: 38918567 PMCID: PMC11461673 DOI: 10.1038/s41433-024-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND/OBJECTIVE Dark adaptation measures photoreceptor recovery following intense light stimulation. Time to recovery reflects retinal function. We describe a novel method of relative foveal dark adaptation using an iPhone. Data from a small number of healthy subjects were studied to assess reproducibility, effects of age, and consider potential clinical utility. METHODS Relative foveal dark adaption was studied in 6 normal subjects across ages from 20 to 81 years and across differing testing conditions. Foveal bleaching is produced by fixating a bright white circle on an iPhone for variable times. After foveal bleaching an annular surround appears to complete a bullseye stimulus with surround initially brighter than centre. As the fovea recovers the centre regains brightness. Relative foveal dark adaptation, the time for the visual anchor to shift from surround to centre, was studied across a range of bleaching times, ages, and testing conditions. RESULTS Dispersion of dark adaptation times grows with increasing age. Foveal bleaching for 30 s was as effective as longer times. Testing times with a 30 s bleach were less than 1 min. Foveal dark adaptation was reproducible within each subject and was unaffected by ambient room lighting, pupil size, and light attenuation. Repeat, immediately sequential testing was similarly reproducible except after long bleaching. CONCLUSIONS This method of dark adaptation is intuitive, repeatable, and relatively unaffected by testing condition. Testing times are brief, requiring only an iPhone screen positioned at reading distance. Relative foveal dark adaptation may be a useful tool to assess macular health.
Collapse
Affiliation(s)
- Julia S Kane
- Boston University School of Public Health, Boston, MA, USA
| | | | - Avery Gold
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Steven A Kane
- The Edward S. Harkness Eye Institute, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Gregory-Evans K, Kolawole OU, Molday RS, Gregory-Evans CY. Novel Variants in ABCA4-Related Retinopathies with Structural Re-Assessment of Variants of Uncertain Significance. Ophthalmologica 2024; 247:231-240. [PMID: 39043154 DOI: 10.1159/000540361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Conclusive molecular genetic diagnoses in inherited retinal diseases remains a major challenge due to the large number of variants of uncertain significance (VUS) identified in genetic testing. Here, we determined the genotypic and phenotypic spectrum of ABCA4 gene variants in a cohort of Canadian inherited retinal dystrophy subjects. METHODS This retrospective study evaluated 64 subjects with an inherited retinal dystrophy diagnosis with variants in the ABCA4 gene. Pathogenicity of variants was assessed by comparison to genetic databases and in silico modelling. ABCA4 variants classified as VUS were further evaluated using a cryo-electron structural model of the ABCA4 protein to predict impact on protein function and were also assessed for evolutionary conservation. RESULTS Conclusive disease-causing biallelic ABCA4 variants were detected in 52 subjects with either Stargardt's disease, cone-rod dystrophy, macular dystrophy, or pattern dystrophy. A further 14 variants were novel comprising 1 nonsense, 1 frameshift, 3 splicing, and 9 missense variants. Based on in silico modelling, protein modelling and evolutionary conservation from human to zebrafish, we re-classified 5 of these as pathogenic and a further 3 as likely pathogenic. We also added to the ABCA4 phenotypic spectrum seen with four known pathogenic variants (c.2161-2A>G; Leu296Cysfs*4; Arg1640Gln; and Pro1380Leu). CONCLUSIONS This study expands the genotypic and phenotypic spectrum of ABCA4 disease-associated variants. By panel-based genetic testing, we identified 14 novel ABCA4 variants of which 8 were determined to be disease-causing or likely disease-causing. These methodologies could circumvent somewhat the need for labour intensive in vitro and in vivo assessments of novel ABCA4 variants.
Collapse
Affiliation(s)
- Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olubayo U Kolawole
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Neto MV, De Rossi G, Berkowitz BA, Seabra MC, Luthert PJ, Futter CE, Burgoyne T. Daily Light Onset and Plasma Membrane Tethers Regulate Mitochondria Redistribution within the Retinal Pigment Epithelium. Cells 2024; 13:1100. [PMID: 38994953 PMCID: PMC11240580 DOI: 10.3390/cells13131100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an essential component of the retina that plays multiple roles required to support visual function. These include light onset- and circadian rhythm-dependent tasks, such as daily phagocytosis of photoreceptor outer segments. Mitochondria provide energy to the highly specialized and energy-dependent RPE. In this study, we examined the positioning of mitochondria and how this is influenced by the onset of light. We identified a population of mitochondria that are tethered to the basal plasma membrane pre- and post-light onset. Following light onset, mitochondria redistributed apically and interacted with melanosomes and phagosomes. In a choroideremia mouse model that has regions of the RPE with disrupted or lost infolding of the plasma membrane, the positionings of only the non-tethered mitochondria were affected. This provides evidence that the tethering of mitochondria to the plasma membrane plays an important role that is maintained under these disease conditions. Our work shows that there are subpopulations of RPE mitochondria based on their positioning after light onset. It is likely they play distinct roles in the RPE that are needed to fulfil the changing cellular demands throughout the day.
Collapse
Affiliation(s)
- Matilde V Neto
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Giulia De Rossi
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Miguel C Seabra
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Philip J Luthert
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Clare E Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
7
|
Brandis A, Roy D, Das I, Sheves M, Eisenbach M. Uncommon opsin's retinal isomer is involved in mammalian sperm thermotaxis. Sci Rep 2024; 14:10699. [PMID: 38729974 PMCID: PMC11087470 DOI: 10.1038/s41598-024-61488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extracts-tri-cis retinal, different from the photosensitive 11-cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri-cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri-cis retinal is involved in the thermosensing activity of spermatozoa.
Collapse
Affiliation(s)
- Alexander Brandis
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Debarun Roy
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001, Rehovot, Israel.
| | - Michael Eisenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
8
|
Bassetto M, Zaluski J, Li B, Zhang J, Badiee M, Kiser PD, Tochtrop GP. Tuning the Metabolic Stability of Visual Cycle Modulators through Modification of an RPE65 Recognition Motif. J Med Chem 2023; 66:8140-8158. [PMID: 37279401 PMCID: PMC10824489 DOI: 10.1021/acs.jmedchem.3c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the eye, the isomerization of all-trans-retinal to 11-cis-retinal is accomplished by a metabolic pathway termed the visual cycle that is critical for vision. RPE65 is the essential trans-cis isomerase of this pathway. Emixustat, a retinoid-mimetic RPE65 inhibitor, was developed as a therapeutic visual cycle modulator and used for the treatment of retinopathies. However, pharmacokinetic liabilities limit its further development including: (1) metabolic deamination of the γ-amino-α-aryl alcohol, which mediates targeted RPE65 inhibition, and (2) unwanted long-lasting RPE65 inhibition. We sought to address these issues by more broadly defining the structure-activity relationships of the RPE65 recognition motif via the synthesis of a family of novel derivatives, which were tested in vitro and in vivo for RPE65 inhibition. We identified a potent secondary amine derivative with resistance to deamination and preserved RPE65 inhibitory activity. Our data provide insights into activity-preserving modifications of the emixustat molecule that can be employed to tune its pharmacological properties.
Collapse
Affiliation(s)
- Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bowen Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jianye Zhang
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
| | - Mohsen Badiee
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, California 92697, United States
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Radzin S, Wiśniewska-Becker A, Markiewicz M, Bętkowski S, Furso J, Waresiak J, Grolik J, Sarna T, Pawlak AM. Structural Impact of Selected Retinoids on Model Photoreceptor Membranes. MEMBRANES 2023; 13:575. [PMID: 37367779 DOI: 10.3390/membranes13060575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Photoreceptor membranes have a unique lipid composition. They contain a high level of polyunsaturated fatty acids including the most unsaturated fatty acid in nature, docosahexaenoic acid (22:6), and are enriched in phosphatidylethanolamines. The phospholipid composition and cholesterol content of the subcellular components of photoreceptor outer segments enables to divide photoreceptor membranes into three types: plasma membranes, young disc membranes, and old disc membranes. A high degree of lipid unsaturation, extended exposure to intensive irradiation, and high respiratory demands make these membranes sensitive to oxidative stress and lipid peroxidation. Moreover, all-trans retinal (AtRAL), which is a photoreactive product of visual pigment bleaching, accumulates transiently inside these membranes, where its concentration may reach a phototoxic level. An elevated concentration of AtRAL leads to accelerated formation and accumulation of bisretinoid condensation products such as A2E or AtRAL dimers. However, a possible structural impact of these retinoids on the photoreceptor-membrane properties has not yet been studied. In this work we focused just on this aspect. The changes induced by retinoids, although noticeable, seem not to be significant enough to be physiologically relevant. This is, however, an positive conclusion because it can be assumed that accumulation of AtRAL in photoreceptor membranes will not affect the transduction of visual signals and will not disturb the interaction of proteins engaged in this process.
Collapse
Affiliation(s)
- Szymon Radzin
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Wiśniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał Markiewicz
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, Jagiellonian University, 30-387 Krakow, Poland
| | - Sebastian Bętkowski
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, Jagiellonian University, 30-387 Krakow, Poland
| | - Justyna Furso
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Waresiak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jarosław Grolik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna M Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
12
|
Chen Y, Coorey NJ, Zhang M, Zeng S, Madigan MC, Zhang X, Gillies MC, Zhu L, Zhang T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants (Basel) 2022; 11:antiox11050942. [PMID: 35624805 PMCID: PMC9137684 DOI: 10.3390/antiox11050942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
The human retina, which is part of the central nervous system, has exceptionally high energy demands that requires an efficient metabolism of glucose, lipids, and amino acids. Dysregulation of retinal metabolism disrupts local energy supply and redox balance, contributing to the pathogenesis of diverse retinal diseases, including age-related macular degeneration, diabetic retinopathy, inherited retinal degenerations, and Macular Telangiectasia. A better understanding of the contribution of dysregulated metabolism to retinal diseases may provide better therapeutic targets than we currently have.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | | | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China;
- Macular Disease Research Laboratory, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (M.Z.); (T.Z.)
| | - Shaoxue Zeng
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Michele C. Madigan
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China;
- Beijing Retinal and Choroidal Vascular Study Group, Beijing 100073, China
| | - Mark C. Gillies
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia; (S.Z.); (M.C.M.); (M.C.G.); (L.Z.)
- Correspondence: (M.Z.); (T.Z.)
| |
Collapse
|
13
|
Ortega JT, Parmar T, Carmena-Bargueño M, Pérez-Sánchez H, Jastrzebska B. Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice. J Neurosci Res 2022; 100:1063-1083. [PMID: 35165923 PMCID: PMC9615108 DOI: 10.1002/jnr.25021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022]
Abstract
The balanced homeostasis of the G protein-coupled receptor (GPCR), rhodopsin (Rho), is required for vision. Misfolding mutations in Rho cause photoreceptor death, leading to retinitis pigmentosa (RP) and consequently blindness. With no cure currently available, the development of efficient therapy for RP is an urgent need. Pharmacological supplementation with molecular chaperones, including flavonoids, improves stability, folding, and membrane targeting of the RP Rho mutants in vitro. Thus, we hypothesized that flavonoids by binding to P23H Rho and enhancing its conformational stability could mitigate detrimental effects of this mutation on retinal health. In this work, we evaluated the pharmacological potential of two model flavonoids, quercetin and myricetin, by using in silico, in vitro, and in vivo models of P23H Rho. Our computational analysis showed that quercetin could interact within the orthosteric binding pocket of P23H Rho and shift the conformation of its N-terminal loop toward the wild type (WT)-like state. Quercetin added to the NIH-3T3 cells stably expressing P23H Rho increased the stability of this receptor and improved its function. Systemic administration of quercetin to P23H Rho knock-in mice substantially improved retinal morphology and function, which was associated with an increase in levels of Rho and cone opsins. In addition, treatment with quercetin resulted in downregulation of the UPR signaling and oxidative stress-related markers. This study unravels the pharmacological potential of quercetin to slow down the progression of photoreceptor death in Rho-related RP and highlights its prospective as a lead compound to develop a novel therapeutic remedy to counter RP pathology.
Collapse
Affiliation(s)
- Joseph Thomas Ortega
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tanu Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Trifonov L, Rothstein A, Korshin EE, Viskind O, Afri M, Leitus G, Palczewski K, Gruzman A. Straightforward Access to Terminally Disubstituted Electron‐Deficient Alkylidene Cyclopent‐2‐en‐4‐ones through Olefination with α‐Carbonyl and α‐Cyano Secondary Alkyl Sulfones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lena Trifonov
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Ayelet Rothstein
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Edward E. Korshin
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Olga Viskind
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Michal Afri
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| | - Gregory Leitus
- Department of Chemical Research Support the Weizmann Institute of Science Rehovot 76100 Israel
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute Department of Ophthalmology and Departments of Physiology and Biophysics and Chemistry and Molecular Biology and Biochemistry, University of California Irvine CA 92697 USA
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University Max and Anna Webb St. Ramat-Gan 5290002 Israel
| |
Collapse
|
15
|
Guérin DMA, Digilio A, Branda MM. Dimeric Rhodopsin R135L Mutant-Transducin-like Complex Sheds Light on Retinitis Pigmentosa Misfunctions. J Phys Chem B 2021; 125:12958-12971. [PMID: 34793169 DOI: 10.1021/acs.jpcb.1c06348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin (RHO) is a light-sensitive pigment in the retina and the main prototypical protein of the G-protein-coupled receptor (GCPR) family. After receiving a light stimulus, RHO and its cofactor retinylidene undergo a series of structural changes that initiate an intricate transduction mechanism. Along with RHO, other partner proteins play key roles in the signaling pathway. These include transducin, a GTPase, kinases that phosphorylate RHO, and arrestin (Arr), which ultimately stops the signaling process and promotes RHO regeneration. A large number of RHO genetic mutations may lead to very severe retinal dysfunction and eventually to impaired dark adaptation disease called autosomal dominant retinitis pigmentosa (adRP). In this study, we used molecular dynamics (MD) simulations to evaluate the different behaviors of the dimeric form of wild-type RHO (WT dRHO) and its mutant at position 135 of arginine to leucine (dR135L), both in the free (noncomplexed) and in complex with the transducin-like protein (Gtl). Gtl is a heterotrimeric model composed of a mixture of human and bovine G proteins. Our calculations allow us to explain how the mutation causes structural changes in the RHO dimer and how this can affect the signal that transducin generates when it is bound to RHO. Moreover, the structural modifications induced by the R135L mutation can also account for other misfunctions observed in the up- and downstream signaling pathways. The mechanism of these dysfunctions, together with the transducin activity reduction, provides structure-based explanations of the impairment of some key processes that lead to adRP.
Collapse
Affiliation(s)
- Diego M A Guérin
- Department of Biochemistry and Molecular Biology, University of the Basque Country (EHU) and Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Ayelen Digilio
- Department of Physics, National University of San Luis (UNSL), Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - María Marta Branda
- Institute of Applied Physics (CONICET-UNSL), Av. Ejercito de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
16
|
Al-Khuzaei S, Broadgate S, Foster CR, Shah M, Yu J, Downes SM, Halford S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes (Basel) 2021; 12:1241. [PMID: 34440414 PMCID: PMC8392661 DOI: 10.3390/genes12081241] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stargardt disease (STGD1) and ABCA4 retinopathies (ABCA4R) are caused by pathogenic variants in the ABCA4 gene inherited in an autosomal recessive manner. The gene encodes an importer flippase protein that prevents the build-up of vitamin A derivatives that are toxic to the RPE. Diagnosing ABCA4R is complex due to its phenotypic variability and the presence of other inherited retinal dystrophy phenocopies. ABCA4 is a large gene, comprising 50 exons; to date > 2000 variants have been described. These include missense, nonsense, splicing, structural, and deep intronic variants. Missense variants account for the majority of variants in ABCA4. However, in a significant proportion of patients with an ABCA4R phenotype, a second variant in ABCA4 is not identified. This could be due to the presence of yet unknown variants, or hypomorphic alleles being incorrectly classified as benign, or the possibility that the disease is caused by a variant in another gene. This underlines the importance of accurate genetic testing. The pathogenicity of novel variants can be predicted using in silico programs, but these rely on databases that are not ethnically diverse, thus highlighting the need for studies in differing populations. Functional studies in vitro are useful towards assessing protein function but do not directly measure the flippase activity. Obtaining an accurate molecular diagnosis is becoming increasingly more important as targeted therapeutic options become available; these include pharmacological, gene-based, and cell replacement-based therapies. The aim of this review is to provide an update on the current status of genotyping in ABCA4 and the status of the therapeutic approaches being investigated.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | | | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| |
Collapse
|
17
|
De Zaeytijd J, Van Cauwenbergh C, De Bruyne M, Van Heetvelde M, De Baere E, Coppieters F, Leroy BP. ISOLATED MACULOPATHY AND MODERATE ROD-CONE DYSTROPHY REPRESENT THE MILDER END OF THE RDH12-RELATED RETINAL DYSTROPHY SPECTRUM. Retina 2021; 41:1346-1355. [PMID: 34001834 DOI: 10.1097/iae.0000000000003028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe an isolated maculopathy and an intermediate rod-cone dystrophy phenotype as the milder end of the RDH12-related retinal dystrophy spectrum. METHODS Seven patients (17-34 years of age) underwent an extensive ophthalmic workup including psychophysical and electrophysiological testing and multimodal imaging. RESULTS Three patients have isolated macular disease. Best-corrected visual acuity (BCVA) ranges from 20/125 to 20/40 with normal visual fields or only limited central, relative scotomata, and normal full-field ERGs. Both optical coherence tomography scans and autofluorescent imaging hint at relatively better-preserved foveal quality initially. An intermediate rod-cone phenotype in four patients is characterized by a central retinal dystrophy extending just beyond the vascular arcades, characteristic peripapillary sparing, and additional scattered atrophic patches. Again, foveal quality is initially better on optical coherence tomography scans. Best-corrected visual acuity ranges from counting fingers to 20/32. Goldmann visual fields vary from central scotomata to severe generalized abnormalities. ERGs range between mild and severe rod-cone dysfunction. Nine distinct RDH12 pathogenic variants, two of which are novel, are identified. CONCLUSION The classic phenotype of RDH12-related early-onset retinal dystrophy is expanded to include an isolated maculopathy and intermediate dystrophy phenotype, characterized by its later onset and milder course with a fair visual potential until much later in life, emphasizing the phenotypic heterogeneity of RDH12-related retinopathy.
Collapse
Affiliation(s)
- Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mattias Van Heetvelde
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Muthiah MN, Kalitzeos A, Oprych K, Singh N, Georgiou M, Wright GA, Robson AG, Arno G, Khan K, Michaelides M. Novel disease-causing variant in RDH12 presenting with autosomal dominant retinitis pigmentosa. Br J Ophthalmol 2021; 106:1274-1281. [PMID: 34031043 PMCID: PMC9411907 DOI: 10.1136/bjophthalmol-2020-318034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022]
Abstract
Aim To describe the clinical and molecular features of a novel, autosomal dominant RDH12-retinopathy. Methods Retrospective cross-sectional study. Twelve individuals from a four-generation British pedigree underwent ophthalmic examination, genotyping using next generation sequencing, including whole genome sequencing and multimodal retinal imaging including fundus photography, optical coherence tomography (OCT), autofluorescence imaging and adaptive optics (AO) scanning light ophthalmoscopy were performed. Visual electrophysiology was performed in a subset. Results Eight family members were confirmed as affected by genotyping heterozygous for RDH12 c.763delG. Visual acuity ranged from −0.1 to 0.2 logMAR. Affected individuals had constricted visual fields. A parafoveal and peripapillary ring of hyper-autofluorescence was seen initially, and with progression the area of perifoveal hypo-autofluorescence increased to involve the parafoveal area. Mild retinal thinning was identified on OCT imaging with reduction in both foveal total retinal and outer nuclear layer thickness. Cone densities along the temporal meridian were reduced in affected individuals compared with normative values at all temporal eccentricities studied. One individual with incomplete penetrance, was identified as clinically affected primarily on the basis of AO imaging. Full-field electroretinography demonstrated a rod-cone pattern of dysfunction and large-field pattern electroretinography identified peripheral macular dysfunction. Conclusions This novel heterozygous variant RDH12 c.763delG is associated with a rod-cone dystrophy with variable expression. Determination of the degree of penetrance may depend on the modality employed to phenotypically characterise an individual. This rare and specific heterozygous (dominant) variant is predicted to result in a gain of function, that causes disease in a gene typically associated with biallelic (recessive) variants.
Collapse
Affiliation(s)
- Manickam Nick Muthiah
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK .,Vitreoretinal Research, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Angelos Kalitzeos
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Kate Oprych
- Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - Navjit Singh
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Michalis Georgiou
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Genevieve Ann Wright
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, Greater London, UK
| | - Anthony G Robson
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, Greater London, UK.,Electrophysiology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gavin Arno
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK.,Great Ormond Street Hospital For Children NHS Trust, London, UK
| | - Kamron Khan
- Department of Ophthalmology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Ophthalmology, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, West Yorkshire, UK
| | - Michel Michaelides
- Cell and Gene Therapy, University College London Institute of Ophthalmology, London, UK .,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
20
|
Chen C, Chen J, Wang Y, Liu Z, Wu Y. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance. J Biol Chem 2020; 296:100187. [PMID: 33334878 PMCID: PMC7948481 DOI: 10.1074/jbc.ra120.015779] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
The death of photoreceptor cells in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1) is closely associated with disruption in all-trans-retinal (atRAL) clearance in neural retina. In this study, we reveal that the overload of atRAL leads to photoreceptor degeneration through activating ferroptosis, a nonapoptotic form of cell death. Ferroptosis of photoreceptor cells induced by atRAL resulted from increased ferrous ion (Fe2+), elevated ACSL4 expression, system Xc- inhibition, and mitochondrial destruction. Fe2+ overload, tripeptide glutathione (GSH) depletion, and damaged mitochondria in photoreceptor cells exposed to atRAL provoked reactive oxygen species (ROS) production, which, together with ACSL4 activation, promoted lipid peroxidation and thereby evoked ferroptotic cell death. Moreover, exposure of photoreceptor cells to atRAL activated COX2, a well-accepted biomarker for ferroptosis onset. In addition to GSH supplement, inhibiting either Fe2+ by deferoxamine mesylate salt (DFO) or lipid peroxidation with ferrostatin-1 (Fer-1) protected photoreceptor cells from ferroptosis caused by atRAL. Abca4-/-Rdh8-/- mice exhibiting defects in atRAL clearance is an animal model for dry AMD and STGD1. We observed that ferroptosis was indeed present in neural retina of Abca4-/-Rdh8-/- mice after light exposure. More importantly, photoreceptor atrophy and ferroptosis in light-exposed Abca4-/-Rdh8-/- mice were effectively alleviated by intraperitoneally injected Fer-1, a selective inhibitor of ferroptosis. Our study suggests that ferroptosis is one of the important pathways of photoreceptor cell death in retinopathies arising from excess atRAL accumulation and should be pursued as a novel target for protection against dry AMD and STGD1.
Collapse
Affiliation(s)
- Chao Chen
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen City, Fujian, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen City, Fujian, China
| | - Yan Wang
- Department of Ophthalmology, Shenzhen Hospital, Southern Medical University, Shenzhen City, Guangdong, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen City, Fujian, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen City, Fujian, China; Xiamen Eye Center of Xiamen University, Xiamen City, Fujian, China; Shenzhen Research Institute of Xiamen University, Shenzhen City, Guangdong, China.
| |
Collapse
|
21
|
Wu H, Scholten A, Einwich A, Mouritsen H, Koch KW. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Sci Rep 2020; 10:7364. [PMID: 32355203 PMCID: PMC7193638 DOI: 10.1038/s41598-020-64429-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/16/2020] [Indexed: 11/15/2022] Open
Abstract
Migratory birds can sense the Earth’s magnetic field and use it for orientation over thousands of kilometres. A light-dependent radical-pair mechanism associated with the visual system is currently discussed as the underlying mechanism of the magnetic compass sense. The blue light receptor cryptochrome 4 (Cry4) is considered as the most likely primary sensory protein that detects the geomagnetic field. Since the protein interaction partners of Cry4 are completely unknown at present, here, we aim to identify potential candidate interaction partners of Cry4 in the avian retina. We used the yeast-two-hybrid system to screen avian cDNA libraries for possible interaction partners of Cry4 in the European robin. The UAS-GAL yeast two hybrid system was applied to confirm a group of candidate Cry4 interaction partners. Six proteins were found to be particularly promising candidates for interacting with European robin Cry4. The identified genes code for guanine nucleotide-binding protein G(t) subunit alpha-2 (GNAT2), long-wavelength-sensitive opsin (LWS, also called iodopsin), guanine nucleotide-binding protein subunit gamma 10 (GNG10), potassium voltage-gated channel subfamily V member 2 (KCNV2), retinol binding protein 1 (RBP1) and retinal G protein-coupled receptor (RGR). All genes are known to be expressed in vertebrate retinae of different species. We conclude by discussing putative signalling pathways that could connect cryptochrome 4 to one or more of these 6 candidates.
Collapse
Affiliation(s)
- Haijia Wu
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Alexander Scholten
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Angelika Einwich
- Department of Biology and Environmental Sciences, Neurosensorics/Animal Navigation, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Henrik Mouritsen
- Department of Biology and Environmental Sciences, Neurosensorics/Animal Navigation, University of Oldenburg, D-26111, Oldenburg, Germany.,Research Center for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, D-26111, Oldenburg, Germany. .,Research Center for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
22
|
Shrestha R, Wen YT, Tsai RK. Induced pluripotent stem cells and derivative photoreceptor precursors as therapeutic cells for retinal degenerations. Tzu Chi Med J 2020; 32:101-112. [PMID: 32269941 PMCID: PMC7137374 DOI: 10.4103/tcmj.tcmj_147_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 12/25/2022] Open
Abstract
The visual impairment associated with inherited retinal degeneration and age-related degeneration of photoreceptors is causing substantial challenges in finding effective therapies. However, induced pluripotent stem cell (iPSC)-derived therapeutic cells such as photoreceptor and retinal pigment epithelium (RPE) cells provide the ultimate options in the rescue of lost photoreceptors to improve the visual function in end-stage degeneration. Retinal cells derived from iPSC are therapeutic cells that could be promising in the field of cell replacement therapy and regenerative medicine. This review presents an overview of the photoreceptor degeneration, methods of iPSC generation, iPSC in retinal disease modeling, summarizes the photoreceptor differentiation protocols, and challenges remained with photoreceptor cell replacement for the treatment of retinal diseases. Thus, the burden and increased incidence of visual impairment emphasizes the need of novel therapy, where iPSC-derived photoreceptor and RPE cells proved to be promising for curing the retinal dysfunction and act as renovation in approach to improve visual function.
Collapse
Affiliation(s)
- Rupendra Shrestha
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Rong-Kung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
23
|
Flesher JL, Paterson-Coleman EK, Vasudeva P, Ruiz-Vega R, Marshall M, Pearlman E, MacGregor GR, Neumann J, Ganesan AK. Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Pigment Cell Melanoma Res 2020; 33:279-292. [PMID: 31562697 PMCID: PMC7822220 DOI: 10.1111/pcmr.12828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF-A and MITF-M. The expression of MITF-A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF-A promoter. Mitf-A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf-M-null mice have enlarged kidneys, lack neural crest-derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF-M in melanocytes, a minor role for MITF-A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF-M in size control of the kidney.
Collapse
Affiliation(s)
- Jessica L. Flesher
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
| | | | - Priya Vasudeva
- Department of Dermatology, University of California, Irvine, CA, USA
| | - Rolando Ruiz-Vega
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Michaela Marshall
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Eric Pearlman
- Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Grant R. MacGregor
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Irvine Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, Universitiy of California, Irvine, CA, USA
| | - Jonathan Neumann
- Irvine Transgenic Mouse Facility, University Laboratory Animal Resources, Office of Research, Universitiy of California, Irvine, CA, USA
| | - Anand K. Ganesan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Cancer Systems Biology, University of California, Irvine, CA, USA
- Department of Dermatology, University of California, Irvine, CA, USA
| |
Collapse
|
24
|
Song Q, Zhao Y, Li Q, Han X, Duan J. Puerarin protects against iron overload-induced retinal injury through regulation of iron-handling proteins. Biomed Pharmacother 2019; 122:109690. [PMID: 31786468 DOI: 10.1016/j.biopha.2019.109690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Excess iron content can build up in the retina and lead to iron-mediated retinal injury. An important isoflavone C-glucoside, puerarin, has been reported to be involved in retinal protection. In this experiment, we studied the effects and potential mechanisms of puerarin on retinal injury in vivo and in vitro. We found that puerarin reduced serum and retinal iron content, attenuated the pathophysiological changes and retinal iron deposition, and partially prevented the decrease of rhodopsin and retinal pigment epithelium-specific 65 kDa protein expression in retinas of iron-overload mice. Puerarin rescued the abnormal expression of iron-handling proteins in the mouse retina and suppressed the oxidative stress induced by iron overload, as evident from the enhanced activity of superoxide dismutase, catalase, and glutathione peroxidase and decreased content of malondialdehyde. Moreover, puerarin inhibited the phosphorylation of p38 and ERK mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription 3 (STAT3), thereby protecting the retinal cells from apoptosis by suppressing cytochrome c release, caspase activation, and poly (ADP-ribose) polymerase cleavage in vivo. Also, the ability of puerarin to regulate iron-handling proteins, decrease intracellular Fe2+, and inhibit cell apoptosis was further confirmed in ARPE-19 cells. The experimental data verify the protective role of puerarin in the treatment of retinal injury caused by iron overload; its possible mechanisms might be associated with regulation of iron-handling proteins, enhancement of the antioxidant capacity, and the inhibition of MAPK and STAT3 activation and the apoptotic pathways under iron overload conditions.
Collapse
Affiliation(s)
- Qiongtao Song
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Ying Zhao
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Qiang Li
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Xue Han
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Junguo Duan
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China.
| |
Collapse
|
25
|
Ma X, Li H, Chen Y, Yang J, Chen H, Arnheiter H, Hou L. The transcription factor MITF in RPE function and dysfunction. Prog Retin Eye Res 2019; 73:100766. [DOI: 10.1016/j.preteyeres.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
|
26
|
Peddie V, Abell AD. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Terao R, Honjo M, Ueta T, Obinata H, Izumi T, Kurano M, Yatomi Y, Koso H, Watanabe S, Aihara M. Light Stress-Induced Increase of Sphingosine 1-Phosphate in Photoreceptors and Its Relevance to Retinal Degeneration. Int J Mol Sci 2019; 20:ijms20153670. [PMID: 31357484 PMCID: PMC6696268 DOI: 10.3390/ijms20153670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent lipid mediator that modulates inflammation and angiogenesis. In this study, we investigated the possible involvement of S1P in the pathology of light-induced retinal degeneration in vivo and in vitro. The intracellular S1P and sphingosine kinase (SphK) activity in a photoreceptor cell line (661W cells) was significantly increased by exposure to light. The enhancement of SphK1 expression was dependent on illumination, and all-trans-retinal significantly promoted SphK1 expression. S1P treatment reduced protein kinase B (Akt) phosphorylation and increased the protein expression of cleaved caspase-3, and induced photoreceptor cell apoptosis. In vivo, light exposure enhanced the expression of SphK1 in the outer segments of photoreceptors. Intravitreal injection of a SphK inhibitor significantly suppressed the thinning of the outer nuclear layer and ameliorated the attenuation of the amplitudes of a-waves and b-waves of electroretinograms during light-induced retinal degeneration. These findings imply that light exposure induces the synthesis of S1P in photoreceptors by upregulating SphK1, which is facilitated by all-trans-retinal, causing retinal degeneration. Inhibition of this enhancement may be a therapeutic target of outer retinal degeneration, including age-related macular degeneration.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, Tokyo 113-8654, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, Tokyo 113-8654, Japan
| | - Takashi Ueta
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, Tokyo 113-8654, Japan
| | - Hideru Obinata
- Gunma University Initiative for Advanced Research (GIAR), 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hideto Koso
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, Tokyo University, Tokyo 113-8654, Japan.
| |
Collapse
|
28
|
Getter T, Suh S, Hoang T, Handa JT, Dong Z, Ma X, Chen Y, Blackshaw S, Palczewski K. The selective estrogen receptor modulator raloxifene mitigates the effect of all- trans-retinal toxicity in photoreceptor degeneration. J Biol Chem 2019; 294:9461-9475. [PMID: 31073029 DOI: 10.1074/jbc.ra119.008697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
The retinoid cycle is a metabolic process in the vertebrate retina that continuously regenerates 11-cis-retinal (11-cisRAL) from the all-trans-retinal (atRAL) isomer. atRAL accumulation can cause photoreceptor degeneration and irreversible visual dysfunction associated with incurable blinding retinal diseases, such as Stargardt disease, retinitis pigmentosa (RP), and atrophic age-related macular degeneration (AMD). The underlying cellular mechanisms leading to retinal degeneration remain uncertain, although previous studies have shown that atRAL promotes calcium influx associated with cell apoptosis. To identify compounds that mitigate the effects of atRAL toxicity, here we developed an unbiased and robust image-based assay that can detect changes in intracellular calcium levels in U2OS cells. Using our assay in a high-throughput screen of 2,400 compounds, we noted that selective estrogen receptor modulators (SERMs) potently stabilize intracellular calcium and thereby counteract atRAL-induced toxicity. In a light-induced retinal degeneration mouse model (Abca4 -/- Rdh8 -/-), raloxifene (a benzothiophene-type scaffold SERM) prevented the onset of photoreceptor apoptosis and thus protected the retina from degeneration. The minor structural differences between raloxifene and one of its derivatives (Y 134) had a major impact on calcium homeostasis after atRAL exposure in vitro, and we verified this differential impact in vivo In summary, the SERM raloxifene has structural and functional neuroprotective effects in the retina. We propose that the highly sensitive image-based assay developed here could be applied for the discovery of additional drug candidates preventing photoreceptor degeneration.
Collapse
Affiliation(s)
- Tamar Getter
- From the Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697, .,the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Susie Suh
- From the Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697.,the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thanh Hoang
- the Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - James T Handa
- the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | | - Xiuli Ma
- Polgenix Inc., Irvine, California 92617
| | - Yuanyuan Chen
- the Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and.,the McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Seth Blackshaw
- the Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Krzysztof Palczewski
- From the Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697, .,the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
29
|
Tsin A, Betts-Obregon B, Grigsby J. Visual cycle proteins: Structure, function, and roles in human retinal disease. J Biol Chem 2018; 293:13016-13021. [PMID: 30002120 DOI: 10.1074/jbc.aw118.003228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we seek to summarize the current understanding of the biochemical and molecular events mediated by visual cycle molecules in the eye. The structures and functions of selected visual cycle proteins and their roles in human retinal diseases are also highlighted. Genetic mutations and malfunctions of these proteins provide etiological evidence that many ocular diseases arise from anomalies of retinoid (vitamin A) metabolism and related visual processes. Genetic retinal disorders such as retinitis pigmentosa, Leber's congenital amaurosis, and Stargardt's disease are linked to structural changes in visual cycle proteins. Moreover, recent reports suggest that visual cycle proteins may also play a role in the development of diabetic retinopathy. Basic science has laid the groundwork for finding a cure for many of these blindness-causing afflictions, but much work remains. Some translational research projects have advanced to the clinical trial stage, while many others are still in progress, and more are at the ideas stage and remain yet to be tested. Some examples of these studies are discussed. Recent and future progress in our understanding of the visual cycle will inform intervention strategies to preserve human vision and prevent blindness.
Collapse
Affiliation(s)
- Andrew Tsin
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541,
| | - Brandi Betts-Obregon
- From the Department of Biomedical Sciences, University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas 78541
| | - Jeffery Grigsby
- Vision Health Specialties, Midland, Texas 79707.,the College of Optometry, University of Houston, Houston, Texas 77204, and.,the Department of Laboratory Science and Primary Care, School of Health Professions, Texas Tech University Health Science Center, Midland, Texas 79705
| |
Collapse
|
30
|
Liu YH, Corbett C, Klaska IP, Makinen K, Nickerson JM, Cornall RJ, Kuffova L, Forrester JV. Partial retinal photoreceptor loss in a transgenic mouse model associated with reduced levels of interphotoreceptor retinol binding protein (IRBP, RBP3). Exp Eye Res 2018; 172:54-65. [PMID: 29571629 DOI: 10.1016/j.exer.2018.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Organ-specific transgenic membrane expression of hen egg lysozyme (HEL) as a "neo-self antigen" has been used in several models to study immunological tolerance. In this study we report the changes which occur in the B10.BR mouse retina when membrane-bound HEL is expressed in photoreceptors under the control of the promoter for interphotoreceptor retinoid binding protein (IRBP, RBP3). On direct clinical examination of the single transgenic (sTg-IRBP:HEL) mouse fundus, a low-level increase in retinal degeneration compared to non-transgenic controls was observed, presenting as drusenoid deposits and occasional small patches of atrophy. On histological examination, there was an overall shortening of outer segments and loss of photoreceptor nuclei in sTg-IRBP:HEL mice, which was more pronounced in the retinal periphery, particularly inferiorly. The fundoscopically observed lesions did not correlate with the photoreceptor shortening/loss but appeared to be located at the level of the retinal pigment epithelium/choriocapillaris layer and were an exaggeration in size and number of similar age-related changes found in wild type (WT) mice. In addition, neither the atrophic lesions nor the photoreceptor shortening were associated with common retinal degeneration genes, nor were they caused by exposure to light damage since mice housed at both high and low ambient light levels had similar degrees of retinal degeneration. Instead, sTg-IRBP:HEL mice expressed reduced levels of soluble retinal IRBP compared to WT mice which were present from postnatal day16 (P16) and preceded development of photoreceptor shortening (onset P21). We propose that insertion of the HEL transgene in the photoreceptor membrane disrupted normal photoreceptor function and led to reduced levels of soluble IRBP and retinal thinning. A similar phenotype has been observed in IRBP deficient mice. Despite the retinal thinning, the amount of HEL expressed in the retina was sufficient to act as an autoantigenic target when the mice were crossed to the HEL T cell receptor Tg mouse, since double transgenic (dTg-IRBP:HEL) mice spontaneously developed a severe uveoretinitis with onset at weaning. We suggest that, although membrane expression of foreign transgene products is likely to modify the structure and function of tissues and cells, the technology provides useful models to investigate mechanisms of antigen-specific immunological tolerance.
Collapse
Affiliation(s)
- Yi-Hsia Liu
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Clare Corbett
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Izabela P Klaska
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Institute of Ophthalmology, University College London, London, UK
| | - Kimmo Makinen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Human Health, Novozymes A/S, Bagsvaerd, Denmark
| | | | | | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; Department of Ophthalmology, NHS Grampian, Aberdeen, UK
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; University of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia.
| |
Collapse
|
31
|
Macias-Muñoz A, McCulloch KJ, Briscoe AD. Copy Number Variation and Expression Analysis Reveals a Nonorthologous Pinta Gene Family Member Involved in Butterfly Vision. Genome Biol Evol 2017; 9:3398-3412. [PMID: 29136137 PMCID: PMC5739039 DOI: 10.1093/gbe/evx230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Vertebrate (cellular retinaldehyde-binding protein) and Drosophila (prolonged depolarization afterpotential is not apparent [PINTA]) proteins with a CRAL-TRIO domain transport retinal-based chromophores that bind to opsin proteins and are necessary for phototransduction. The CRAL-TRIO domain gene family is composed of genes that encode proteins with a common N-terminal structural domain. Although there is an expansion of this gene family in Lepidoptera, there is no lepidopteran ortholog of pinta. Further, the function of these genes in lepidopterans has not yet been established. Here, we explored the molecular evolution and expression of CRAL-TRIO domain genes in the butterfly Heliconius melpomene in order to identify a member of this gene family as a candidate chromophore transporter. We generated and searched a four tissue transcriptome and searched a reference genome for CRAL-TRIO domain genes. We expanded an insect CRAL-TRIO domain gene phylogeny to include H. melpomene and used 18 genomes from 4 subspecies to assess copy number variation. A transcriptome-wide differential expression analysis comparing four tissue types identified a CRAL-TRIO domain gene, Hme CTD31, upregulated in heads suggesting a potential role in vision for this CRAL-TRIO domain gene. RT-PCR and immunohistochemistry confirmed that Hme CTD31 and its protein product are expressed in the retina, specifically in primary and secondary pigment cells and in tracheal cells. Sequencing of eye protein extracts that fluoresce in the ultraviolet identified Hme CTD31 as a possible chromophore binding protein. Although we found several recent duplications and numerous copy number variants in CRAL-TRIO domain genes, we identified a single copy pinta paralog that likely binds the chromophore in butterflies.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine.,FAS Center for Systems Biology, Harvard University
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| |
Collapse
|
32
|
Guha Mazumder A, Chatterjee S, Chatterjee S, Gonzalez JJ, Bag S, Ghosh S, Mukherjee A, Chatterjee J. Spectropathology-corroborated multimodal quantitative imaging biomarkers for neuroretinal degeneration in diabetic retinopathy. Clin Ophthalmol 2017; 11:2073-2089. [PMID: 29200821 PMCID: PMC5703157 DOI: 10.2147/opth.s140110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction Image-based early detection for diabetic retinopathy (DR) needs value addition due to lack of well-defined disease-specific quantitative imaging biomarkers (QIBs) for neuroretinal degeneration and spectropathological information at the systemic level. Retinal neurodegeneration is an early event in the pathogenesis of DR. Therefore, development of an integrated assessment method for detecting neuroretinal degeneration using spectropathology and QIBs is necessary for the early diagnosis of DR. Methods The present work explored the efficacy of intensity and textural features extracted from optical coherence tomography (OCT) images after selecting a specific subset of features for the precise classification of retinal layers using variants of support vector machine (SVM). Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were also performed to confirm the spectropathological attributes of serum for further value addition to the OCT, fundoscopy, and fluorescein angiography (FA) findings. The serum metabolomic findings were also incorporated for characterizing retinal layer thickness alterations and vascular asymmetries. Results Results suggested that OCT features could differentiate the retinal lesions indicating retinal neurodegeneration with high sensitivity and specificity. OCT, fundoscopy, and FA provided geometrical as well as optical features. NMR revealed elevated levels of ribitol, glycerophosphocholine, and uridine diphosphate N-acetyl glucosamine, while the FTIR of serum samples confirmed the higher expressions of lipids and β-sheet-containing proteins responsible for neoangiogenesis, vascular fragility, vascular asymmetry, and subsequent neuroretinal degeneration in DR. Conclusion Our data indicated that disease-specific spectropathological alterations could be the major phenomena behind the vascular attenuations observed through fundoscopy and FA, as well as the variations in the intensity and textural features observed in OCT images. Finally, we propose a model that uses spectropathology corroborated with specific QIBs for detecting neuroretinal degeneration in early diagnosis of DR.
Collapse
Affiliation(s)
- Arpan Guha Mazumder
- Multimodal Imaging and Computing for Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, Kharagpur, West Bengal, India.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swarnadip Chatterjee
- Advanced Technology Development Centre, Indian Institute of Technology-Kharagpur, Kharagpur, West Bengal, India
| | - Saunak Chatterjee
- Multimodal Imaging and Computing for Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, Kharagpur, West Bengal, India
| | - Juan Jose Gonzalez
- Department of Computer and Electrical Engineering, Rice University, Houston, TX, USA
| | - Swarnendu Bag
- Department of Biotechnology, National Institute of Technology Sikkim, Ravangla Sub-Division, South Sikkim
| | - Sambuddha Ghosh
- Department of Ophthalmology, Calcutta National Medical College and Hospital, Kolkata, West Bengal
| | - Anirban Mukherjee
- Department of Electrical Engineering, Indian Institute of Technology-Kharagpur, Kharagpur, West Bengal, India
| | - Jyotirmoy Chatterjee
- Multimodal Imaging and Computing for Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
33
|
Orban T, Leinonen H, Getter T, Dong Z, Sun W, Gao S, Veenstra A, Heidari-Torkabadi H, Kern TS, Kiser PD, Palczewski K. A Combination of G Protein-Coupled Receptor Modulators Protects Photoreceptors from Degeneration. J Pharmacol Exp Ther 2017; 364:207-220. [PMID: 29162627 DOI: 10.1124/jpet.117.245167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
Degeneration of retinal photoreceptor cells can arise from environmental and/or genetic causes. Since photoreceptor cells, the retinal pigment epithelium (RPE), neurons, and glial cells of the retina are intimately associated, all cell types eventually are affected by retinal degenerative diseases. Such diseases often originate either in rod and/or cone photoreceptor cells or the RPE. Of these, cone cells located in the central retina are especially important for daily human activity. Here we describe the protection of cone cells by a combination therapy consisting of the G protein-coupled receptor modulators metoprolol, tamsulosin, and bromocriptine. These drugs were tested in Abca4-/-Rdh8-/- mice, a preclinical model for retinal degeneration. The specificity of these drugs was determined with an essentially complete panel of human G protein-coupled receptors. Significantly, the combination of metoprolol, tamsulosin, and bromocriptine had no deleterious effects on electroretinographic responses of wild-type mice. Moreover, putative G protein-coupled receptor targets of these drugs were shown to be expressed in human and mouse eyes by RNA sequencing and quantitative polymerase chain reaction. Liquid chromatography together with mass spectrometry using validated internal standards confirmed that metoprolol, tamsulosin, and bromocriptine individually or together penetrate the eye after either intraperitoneal delivery or oral gavage. Collectively, these findings support human trials with combined therapy composed of lower doses of metoprolol, tamsulosin, and bromocriptine designed to safely impede retinal degeneration associated with certain genetic diseases (e.g., Stargardt disease). The same low-dose combination also could protect the retina against diseases with complex or unknown etiologies such as age-related macular degeneration.
Collapse
Affiliation(s)
- Tivadar Orban
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Henri Leinonen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Tamar Getter
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Zhiqian Dong
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Wenyu Sun
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Songqi Gao
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Alexander Veenstra
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Hossein Heidari-Torkabadi
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Timothy S Kern
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (T.O., H.L., T.G., S.G., A.V., H.H.-T., T.S.K., P.D.K., K.P.); Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio (T.S.K., P.D.K.); and Polgenix Inc., Cleveland, Ohio (Z.D., W.S.)
| |
Collapse
|
34
|
Gonzalez-Fernandez F, Fornalik M, Garlipp MA, Gonzalez-Fernandez P, Sung D, Meyer A, Baier R. Pericellular interphotoreceptor matrix dictates outer retina critical surface tension. Exp Eye Res 2017; 167:163-173. [PMID: 29051013 DOI: 10.1016/j.exer.2017.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/30/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
Retinal detachments create two pathological surfaces, the surface of the outer neural retinal, and an apical retinal-pigmented epithelium (RPE) surface. The physicochemical properties of these two new surfaces are poorly understood. At a molecular level little is known how detachments form, how to optimize reattachment, or prevent extension of the detachment. A major limitation is lack of information about the biophysical consequences of the retina-RPE separation. The primary challenge is determining the molecular properties of the pathological interface surfaces. Here, using detached bovine retina, we show that this hurdle can be overcome through a combination of biophysical and ultrastructural approaches. The outer surface of freshly detached bovine neural retina, and isolated molecular components of the outer retina were subjected to: 1) Contact angle goniometry to determine the critical surface tension of the outer retinal surface, isolated insoluble interphotoreceptor matrix (IPM) and purified interphotoreceptor retinoid binding protein (IRBP); 2) Multiple attenuated internal reflectance infrared (MAIR-IR) spectroscopy was used to characterize the molecular composition of the retinal surface. MAIR-IR depth penetration was established through ellipsometric measurement of barium-stearate films. Light microscopy, immunohistochemistry and electron microscopy defined the structures probed spectroscopically. Furthermore, the data were correlated to IR spectra of docosahexaenoic acid, hyaluronan, chondroitin-6-sulfate and IRBP, and imaging by IR-microscopy. We found that the retinal critical surface tension is 24 mN/m, similar to isolated insoluble IPM and lower than IRBP. Barium-stearate calibration studies established that the MAIR-IR spectroscopy penetration depth was 0.2 μm. Ultrastructural observations and MAIR-IR studies of isolated outer retina components determined that the pericellular IPM coating the outer retinal surface is primarily responsible for these surface properties. The critical surface tension of detached bovine retina is dictated not by the outer segments, but by a pericellular IPM covering the outer segment tips.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, United States; Ophthalmology and Pathology, University of Mississippi Medical Center, Jackson, MS, United States; Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Pathology & Anatomic Sciences, SUNY, Buffalo, NY, United States.
| | - Mark Fornalik
- Center for Biosurfaces, SUNY, Buffalo, NY, United States
| | | | - Priscilla Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, United States; Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States
| | - Dongjin Sung
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States
| | - Anne Meyer
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Center for Biosurfaces, SUNY, Buffalo, NY, United States
| | - Robert Baier
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Center for Biosurfaces, SUNY, Buffalo, NY, United States
| |
Collapse
|
35
|
Sharma R, Schwarz C, Hunter JJ, Palczewska G, Palczewski K, Williams DR. Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy. Invest Ophthalmol Vis Sci 2017; 58:604-613. [PMID: 28129424 PMCID: PMC5283085 DOI: 10.1167/iovs.16-20061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Two-photon excited fluorescence (TPEF) imaging has potential as a functional tool for tracking visual pigment regeneration in the living eye. Previous studies have shown that all-trans-retinol is likely the chief source of time-varying TPEF from photoreceptors. Endogenous TPEF from retinol could provide the specificity desired for tracking the visual cycle. However, in vivo characterization of native retinol kinetics is complicated by visual stimulation from the imaging beam. We have developed an imaging scheme for overcoming these challenges and monitored the formation and clearance of retinol. Methods Three macaques were imaged by using an in vivo two-photon ophthalmoscope. Endogenous TPEF was excited at 730 nm and recorded through the eye's pupil for more than 90 seconds. Two-photon excited fluorescence increased with onset of light and plateaued within 40 seconds, at which point, brief incremental stimuli were delivered at 561 nm. The responses of rods to stimulation were analyzed by using first-order kinetics. Results Two-photon excited fluorescence resulting from retinol production corresponded to the fraction of rhodopsin bleached. The photosensitivity of rhodopsin was estimated to be 6.88 ± 5.50 log scotopic troland. The rate of retinol clearance depended on intensity of incremental stimulation. Clearance was faster for stronger stimuli and time constants ranged from 50 to 300 seconds. Conclusions This study demonstrates a method for rapidly measuring the rate of clearance of retinol in vivo. Moreover, TPEF generated due to retinol can be used as a measure of rhodopsin depletion, similar to densitometry. This enhances the utility of two-photon ophthalmoscopy as a technique for evaluating the visual cycle in the living eye.
Collapse
Affiliation(s)
- Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Christina Schwarz
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jennifer J Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 3Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | | | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - David R Williams
- Center for Visual Science, University of Rochester, Rochester, New York, United States 2Flaum Eye Institute, University of Rochester, Rochester, New York, United States 6The Institute of Optics, University of Rochester, Rochester, New York, United States
| |
Collapse
|
36
|
Sundermeier TR, Sakami S, Sahu B, Howell SJ, Gao S, Dong Z, Golczak M, Maeda A, Palczewski K. MicroRNA-processing Enzymes Are Essential for Survival and Function of Mature Retinal Pigmented Epithelial Cells in Mice. J Biol Chem 2017; 292:3366-3378. [PMID: 28104803 DOI: 10.1074/jbc.m116.770024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Indexed: 11/06/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible vision loss. The neovascular or "wet" form of AMD can be treated to varying degrees with anti-angiogenic drugs, but geographic atrophy (GA) is an advanced stage of the more prevalent "dry" form of AMD for which there is no effective treatment. Development of GA has been linked to loss of the microRNA (miRNA)-processing enzyme DICER1 in the mature retinal pigmented epithelium (RPE). This loss results in the accumulation of toxic transcripts of Alu transposable elements, which activate the NLRP3 inflammasome and additional downstream pathways that compromise the integrity and function of the RPE. However, it remains unclear whether the loss of miRNA processing and subsequent gene regulation in the RPE due to DICER1 deficiency also contributes to RPE cell death. To clarify the role of miRNAs in RPE cells, we used two different mature RPE cell-specific Cre recombinase drivers to inactivate either Dicer1 or DiGeorge syndrome critical region 8 (Dgcr8), thus removing RPE miRNA regulatory activity in mice by disrupting two independent and essential steps of miRNA biogenesis. In contrast with prior studies, we found that the loss of each factor independently led to strikingly similar defects in the survival and function of the RPE and retina. These results suggest that the loss of miRNAs also contributes to RPE cell death and loss of visual function and could affect the pathology of dry AMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcin Golczak
- Departments of Pharmacology; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Akiko Maeda
- Ophthalmology and Visual Sciences, School of Medicine
| | - Krzysztof Palczewski
- Departments of Pharmacology; Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
37
|
Coussa RG, Lopez Solache I, Koenekoop RK. Leber congenital amaurosis, from darkness to light: An ode to Irene Maumenee. Ophthalmic Genet 2017; 38:7-15. [PMID: 28095138 DOI: 10.1080/13816810.2016.1275021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is dedicated to Irene Hussels Maumenee, Professor of Human Genetics and Ophthalmology, Johns Hopkins' Wilmer Eye Institute, Ocular Genetics Fellowship director in 1994-1995. Leber congenital amaurosis (LCA) has almost come full circle, from a profound and molecularly uncharacterized form of congenital retinal blindness to one in which a large number of causative genes and disease pathways are known, and the world's first human retinal disease to be treated by gene therapy. Dr. Maumenee's insights, efforts, and leadership have contributed significantly to this remarkable scientific journey. In this manuscript, we present a short summary of the known LCA genes, LCA disease subtypes, and emerging treatment options. Our manuscript consolidates previous knowledge with current findings in an attempt to provide a more comprehensive understanding of LCA.
Collapse
Affiliation(s)
- Razek Georges Coussa
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Irma Lopez Solache
- b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| | - Robert K Koenekoop
- a Department of Paediatric Surgery, Montreal Children's Hospital , McGill University Health Centre , Montreal , Quebec , Canada.,b The McGill Ocular Genetics Laboratory, Paediatric Ophthalmology Division , Montreal Children's Hospital, McGill University Health Centre , Montreal , Quebec , Canada
| |
Collapse
|
38
|
Palczewska G, Maeda A, Golczak M, Arai E, Dong Z, Perusek L, Kevany B, Palczewski K. Receptor MER Tyrosine Kinase Proto-oncogene (MERTK) Is Not Required for Transfer of Bis-retinoids to the Retinal Pigmented Epithelium. J Biol Chem 2016; 291:26937-26949. [PMID: 27875314 DOI: 10.1074/jbc.m116.764563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
Accumulation of bis-retinoids in the retinal pigmented epithelium (RPE) is a hallmark of aging and retinal disorders such as Stargardt disease and age-related macular degeneration. These aberrant fluorescent condensation products, including di-retinoid-pyridinium-ethanolamine (A2E), are thought to be transferred to RPE cells primarily through phagocytosis of the photoreceptor outer segments. However, we observed by two-photon microscopy that mouse retinas incapable of phagocytosis due to a deficiency of the c-Mer proto-oncogene tyrosine kinase (Mertk) nonetheless contained fluorescent retinoid condensation material in their RPE. Primary RPE cells from Mertk-/- mice also accumulated fluorescent products in vitro Finally, quantification of A2E demonstrated the acquisition of retinal condensation products in Mertk-/- mouse RPE prior to retinal degeneration. In these mice, we identified activated microglial cells that likely were recruited to transport A2E-like condensation products to the RPE and dispose of the dying photoreceptor cells. These observations demonstrate a novel transport mechanism between photoreceptor cells and RPE that does not involve canonical Mertk-dependent phagocytosis.
Collapse
Affiliation(s)
| | - Akiko Maeda
- the Departments of Ophthalmology and Visual Sciences and
| | - Marcin Golczak
- Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Eisuke Arai
- the Departments of Ophthalmology and Visual Sciences and
| | | | | | - Brian Kevany
- Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
39
|
El-Tahawy MMT, Nenov A, Garavelli M. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. J Chem Theory Comput 2016; 12:4460-75. [DOI: 10.1021/acs.jctc.6b00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohsen M. T. El-Tahawy
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Chemistry
Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Artur Nenov
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Université
de Lyon, Université Claude Bernard Lyon 1, ENS Lyon, Centre
Nationale de Recherche Scientifique, 46 allée d’Italie, 69007 Lyon Cedex 07, France
| |
Collapse
|
40
|
Abstract
Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 ; Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
41
|
Rao KN, Li L, Zhang W, Brush RS, Rajala RVS, Khanna H. Loss of human disease protein retinitis pigmentosa GTPase regulator (RPGR) differentially affects rod or cone-enriched retina. Hum Mol Genet 2016; 25:1345-56. [PMID: 26908598 DOI: 10.1093/hmg/ddw017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/18/2016] [Indexed: 01/13/2023] Open
Abstract
It is unclear how genes, such as RPGR (retinitis pigmentosa guanine triphosphatase regulator) that are expressed in both rods and cones, cause variable disease pathogenesis. Using transcriptomic analysis, we show that loss of RPGR in a rod-dominant mouse retina (Rpgr(ko)) results in predominant alterations in genes involved in actin cytoskeletal dynamics, prior to onset of degeneration. We validated these findings and found an increase in activated RhoA-GTP levels and polymerized F-actin in the Rpgr(ko) mouse retina. To assess the effect of the loss of RPGR in the all-cone region of the human retina, we used Nrl(-/-) (neural retina leucine zipper) mice, to generate Rpgr(ko)::Nrl(-/-) double-knock-out (Rpgr-DKO) mice. These mice exhibited supranormal cone response to light and substantially retained retinal architecture. Transcriptomic analysis revealed predominant up-regulation of retinal pigmented epithelium (RPE)-specific genes associated with visual cycle, whereas fatty acid analysis showed mild decrease in docosahexaenoic acid in the retina of the Rpgr-DKO mice when compared with the Nrl(-/-) mice. Our data reveal new insights into distinct intracellular pathways that are involved in RPGR-associated rod and cone dysfunction and provide a platform to design new treatment modalities.
Collapse
Affiliation(s)
- Kollu N Rao
- Department of Ophthalmology, University of Massachusetts Medical School, 368 Plantation St, Albert Sherman Center AS6-2043, Worcester, MA 01605, USA and
| | - Linjing Li
- Department of Ophthalmology, University of Massachusetts Medical School, 368 Plantation St, Albert Sherman Center AS6-2043, Worcester, MA 01605, USA and
| | - Wei Zhang
- Department of Ophthalmology, University of Massachusetts Medical School, 368 Plantation St, Albert Sherman Center AS6-2043, Worcester, MA 01605, USA and
| | - Richard S Brush
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Raju V S Rajala
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hemant Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, 368 Plantation St, Albert Sherman Center AS6-2043, Worcester, MA 01605, USA and
| |
Collapse
|
42
|
Abstract
Visual systems detect light by monitoring the effect of photoisomerization of a chromophore on the release of a neurotransmitter from sensory neurons, known as rod and cone photoreceptor cells in vertebrate retina. In all known visual systems, the chromophore is 11-cis-retinal complexed with a protein, called opsin, and photoisomerization produces all-trans-retinal. In mammals, regeneration of 11-cis-retinal following photoisomerization occurs by a thermally driven isomerization reaction. Additional reactions are required during regeneration to protect cells from the toxicity of aldehyde forms of vitamin A that are essential to the visual process. Photochemical and phototransduction reactions in rods and cones are identical; however, reactions of the rod and cone visual pigment regeneration cycles differ, and perplexingly, rod and cone regeneration cycles appear to use different mechanisms to overcome the energy barrier involved in converting all-trans- to 11-cis-retinoid. Abnormal processing of all-trans-retinal in the rod regeneration cycle leads to retinal degeneration, suggesting that excessive amounts of the retinoid itself or its derivatives are toxic. This line of reasoning led to the development of various approaches to modifying the activity of the rod visual cycle as a possible therapeutic approach to delay or prevent retinal degeneration in inherited retinal diseases and perhaps in the dry form of macular degeneration (geographic atrophy). In spite of great progress in understanding the functioning of rod and cone regeneration cycles at a molecular level, resolution of a number of remaining puzzling issues will offer insight into the amelioration of several blinding retinal diseases.
Collapse
|
43
|
Necrosis-Induced Sterile Inflammation Mediated by Interleukin-1α in Retinal Pigment Epithelial Cells. PLoS One 2015; 10:e0144460. [PMID: 26641100 PMCID: PMC4671579 DOI: 10.1371/journal.pone.0144460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
Endogenous danger signals released from necrotic cells contribute to retinal inflammation. We have now investigated the effects of necrotic cell extracts prepared from ARPE-19 human retinal pigment epithelial cells (ANCE) on the release of proinflammatory cytokines and chemokines by healthy ARPE-19 cells. ANCE were prepared by subjection of ARPE-19 cells to freeze-thaw cycles. The release of various cytokines and chemokines from ARPE-19 cells was measured with a multiplex assay system or enzyme-linked immunosorbent assays. The expression of interleukin (IL)–1α and the phosphorylation and degradation of the endogenous nuclear factor–κB (NF-κB) inhibitor IκB-α were examined by immunoblot analysis. Among the various cytokines and chemokines examined, we found that ANCE markedly stimulated the release of the proinflammatory cytokine IL-6 and the chemokines IL-8 and monocyte chemoattractant protein (MCP)–1 by ARPE-19 cells. ANCE-induced IL-6, IL-8, and MCP-1 release was inhibited by IL-1 receptor antagonist and by an IKK2 inhibitor (a blocker of NF-κB signaling) in a concentration-dependent manner, but was not affected by a pan-caspase inhibitor (Z-VAD-FMK). Recombinant IL-1α also induced the secretion of IL-6, IL-8, and MCP-1 from ARPE-19 cells, and IL-1α was detected in ANCE. Furthermore, ANCE induced the phosphorylation and degradation of IκB-α in ARPE-19 cells. Our findings thus suggest that IL-1α is an important danger signal that is released from necrotic retinal pigment epithelial cells and triggers proinflammatory cytokine and chemokine secretion from intact cells in a manner dependent on NF-κB signaling. IL-1α is therefore a potential therapeutic target for amelioration of sterile inflammation in the retina.
Collapse
|
44
|
Ghosh D, Haswell KM, Sprada M, Gonzalez-Fernandez F. Structure of zebrafish IRBP reveals fatty acid binding. Exp Eye Res 2015; 140:149-158. [PMID: 26344741 DOI: 10.1016/j.exer.2015.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/22/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) has a remarkable role in targeting and protecting all-trans and 11-cis retinol, and 11-cis retinal during the rod and cone visual cycles. Little is known about how the correct retinoid is efficiently delivered and removed from the correct cell at the required time. It has been proposed that different fatty composition at that the outer-segments and retinal-pigmented epithelium have an important role is regulating the delivery and uptake of the visual cycle retinoids at the cell-interphotoreceptor-matrix interface. Although this suggests intriguing mechanisms for the role of local fatty acids in visual-cycle retinoid trafficking, nothing is known about the structural basis of IRBP-fatty acid interactions. Such regulation may be mediated through IRBP's unusual repeating homologous modules, each containing about 300 amino acids. We have been investigating structure-function relationships of Zebrafish IRBP (zIRBP), which has only two tandem modules (z1 and z2), as a model for the more complex four-module mammalian IRBP's. Here we report the first X-ray crystal structure of a teleost IRBP, and the only structure with a bound ligand. The X-ray structure of z1, determined at 1.90 Å resolution, reveals a two-domain organization of the module (domains A and B). A deep hydrophobic pocket with a single bound molecule of oleic acid was identified within the N-terminal domain A. In fluorescence titrations assays, oleic acid displaced all-trans retinol from zIRBP. Our study, which provides the first structure of an IRBP with bound ligand, supports a potential role for fatty acids in regulating retinoid binding.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| | - Karen M Haswell
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Molly Sprada
- SUNY Eye Institute, State University of New York, USA
| | - Federico Gonzalez-Fernandez
- Medical Research & Development Service, G.V. (Sonny) Veterans Affairs Medical Center, Jackson, MS, USA; Departments of Ophthalmology and Pathology, University of Mississippi Medical Center, Jackson, MS, USA; SUNY Eye Institute, State University of New York, USA.
| |
Collapse
|
45
|
Sun M, Lu X, Hao L, Wu T, Zhao H, Wang C. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells. Food Nutr Res 2015; 59:27830. [PMID: 26070791 PMCID: PMC4464420 DOI: 10.3402/fnr.v59.27830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/05/2023] Open
Abstract
Background Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L.) anthocyanin (PSPA), a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation) of human retinal pigment epithelial (RPE) cells, which perform essential functions for the visual process. Methods The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaoling Lu
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China;
| | - Lei Hao
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Huanjiao Zhao
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Chao Wang
- Key Laboratory of Food Nutrition and Safety of the Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
46
|
Gonzalez-Fernandez F, Betts-Obregon B, Yust B, Mimun J, Sung D, Sardar D, Tsin AT. Interphotoreceptor retinoid-binding protein protects retinoids from photodegradation. Photochem Photobiol 2015; 91:371-8. [PMID: 25565073 DOI: 10.1111/php.12416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
Abstract
Retinol degrades rapidly in light into a variety of photoproducts. It is remarkable that visual cycle retinoids can evade photodegradation as they are exchanged between the photoreceptors, retinal pigment epithelium and Müller glia. Within the interphotoreceptor matrix, all-trans retinol, 11-cis retinol and retinal are bound by interphotoreceptor retinoid-binding protein (IRBP). Apart from its role in retinoid trafficking and targeting, could IRBP have a photoprotective function? HPLC was used to evaluate the ability of IRBP to protect all-trans and 11-cis retinols from photodegradation when exposed to incandescent light (0 to 8842 μW cm(-2)); time periods of 0-60 min, and bIRBP: retinol molar ratios of 1:1 to 1:5. bIRBP afforded a significant prevention of both all-trans and 11-cis retinol to rapid photodegradation. The effect was significant over the entire light intensity range tested, and extended to the bIRBP: retinol ratio 1:5. In view of the continual exposure of the retina to light, and the high oxidative stress in the outer retina, our results suggest IRBP may have an important protective role in the visual cycle by reducing photodegradation of all-trans and 11-cis retinols. This role of IRBP is particularly relevant in the high flux conditions of the cone visual cycle.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS; Departments of Ophthalmology & Pathology, University of Mississippi School of Medicine, Jackson, MS; SUNY Eye Institute, State University of New York, Buffalo, NY
| | | | | | | | | | | | | |
Collapse
|
47
|
El-Beltagy AEFBM. Light and electron microscopic studies on the pigmented epithelium and photoreceptors of the retina of common buzzard (Buteo buteo). Tissue Cell 2014; 47:78-85. [PMID: 25541273 DOI: 10.1016/j.tice.2014.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 11/29/2022]
Abstract
The current study is essentially carried out to reveal the histological and ultra-structural details of the retinal pigmented epithelium (RPE) and photoreceptors cell layers of a common buzzard (Buteo buteo). The recorded results revealed that the neural retina of common buzzard consisted of seven distinct cell layers. The inner nuclear layer was markedly revealed as the thickest one among these layers. A highly melanized RPE was recorded in between the choroid and neural retina. Histologically, the RPE was represented by a single layer of cuboidal epithelial cells with centrally located nucleus. Ultrastructurally, the RPE cells showed numerous melanosomes, mitochondria, phagosomes, myeloid bodies, smooth endoplasmic reticulum (SER), but very rare rough endoplasmic reticulum (RER). The photoreceptor cell layer was represented by three categories of photoreceptor cells: few single rods, numerous single and double cones. Each double cone consisted of a short accessory cone and a long principle cone. The photoreceptor outer segment consisted of bi-membranous discs that are enclosed by outer membrane. Moreover, the inner segment of rods consisted of an ellipsoid and an inner hyperboloid. The hyperboloid was rich with RER, polysomes, Golgi apparatus and autophagic vacuoles. Furthermore, the inner segment of single cone and accessory cone consisted of an ellipsoid, paraboloid and myoid regions, while, the inner segment of principle cone lacked the paraboloid regions. At the proximal end of each inner segment for all types of cones, there was a large heterogeneous oil droplet. The paraboloid region was markedly rich with glycogen granules. The myoid region exhibited the same organelles but with little glycogen granules when compared with hyperboloid.
Collapse
|
48
|
Palczewski K. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2014; 55:6651-72. [PMID: 25338686 DOI: 10.1167/iovs.14-15502] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Visual transduction is the process in the eye whereby absorption of light in the retina is translated into electrical signals that ultimately reach the brain. The first challenge presented by visual transduction is to understand its molecular basis. We know that maintenance of vision is a continuous process requiring the activation and subsequent restoration of a vitamin A-derived chromophore through a series of chemical reactions catalyzed by enzymes in the retina and retinal pigment epithelium (RPE). Diverse biochemical approaches that identified key proteins and reactions were essential to achieve a mechanistic understanding of these visual processes. The three-dimensional arrangements of these enzymes' polypeptide chains provide invaluable insights into their mechanisms of action. A wealth of information has already been obtained by solving high-resolution crystal structures of both rhodopsin and the retinoid isomerase from pigment RPE (RPE65). Rhodopsin, which is activated by photoisomerization of its 11-cis-retinylidene chromophore, is a prototypical member of a large family of membrane-bound proteins called G protein-coupled receptors (GPCRs). RPE65 is a retinoid isomerase critical for regeneration of the chromophore. Electron microscopy (EM) and atomic force microscopy have provided insights into how certain proteins are assembled to form much larger structures such as rod photoreceptor cell outer segment membranes. A second challenge of visual transduction is to use this knowledge to devise therapeutic approaches that can prevent or reverse conditions leading to blindness. Imaging modalities like optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) applied to appropriate animal models as well as human retinal imaging have been employed to characterize blinding diseases, monitor their progression, and evaluate the success of therapeutic agents. Lately two-photon (2-PO) imaging, together with biochemical assays, are revealing functional aspects of vision at a new molecular level. These multidisciplinary approaches combined with suitable animal models and inbred mutant species can be especially helpful in translating provocative cell and tissue culture findings into therapeutic options for further development in animals and eventually in humans. A host of different approaches and techniques is required for substantial progress in understanding fundamental properties of the visual system.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
49
|
Prukova D, Ileninova Z, Antosova B, Kasparek P, Gregor M, Sedlacek R. Transgenic reporter mice with promoter region of murine LRAT specifically marks lens and meiosis spermatocytes. Physiol Res 2014; 64:247-54. [PMID: 25317684 DOI: 10.33549/physiolres.932733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lecithin:retinol acyltransferase (LRAT) is the major enzyme responsible for retinol esterification in the mammalian body. LRAT exhibits specific activity in the cells with active retinol metabolism where it converts retinols into retinyl esters, which represents the major storage form of retinol. Besides hepatic stellate cells in the liver, LRAT appears to have a key physiologic role in several other tissues. In this study, we generated a transgenic reporter mouse expressing green fluorescence protein (EGFP) under the control of region containing -1166 bps from promoter upstream from the putative transcriptional start site and 262 bps downstream of this start. Transgenic reporter mice exhibited specific expression in eyes and testes. In eyes, expression of EGFP-reporter is found in lens and lens epithelium and fibers from embryo to adulthood. In testes, LRAT-EGFP reporter is expressed both in Sertoli and in spermatocytes marking initiation of spermatogenesis in prepubertal mice. Our data show that the examined LRAT regulatory region is sufficient to achieve strong and selective expression in the eye and testes but not in liver and other organs.
Collapse
Affiliation(s)
- D Prukova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic. ;
| | | | | | | | | | | |
Collapse
|
50
|
Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release 2014; 190:172-81. [PMID: 24998941 PMCID: PMC4142116 DOI: 10.1016/j.jconrel.2014.06.043] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
Abstract
Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non-invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance.
Collapse
Affiliation(s)
- Yoo Chun Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bryce Chiang
- Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xianggen Wu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|