1
|
Tabari F, Berger JI, Flouty O, Copeland B, Greenlee JD, Johari K. Speech, voice, and language outcomes following deep brain stimulation: A systematic review. PLoS One 2024; 19:e0302739. [PMID: 38728329 PMCID: PMC11086900 DOI: 10.1371/journal.pone.0302739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| | - Joel I. Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States of America
| | - Brian Copeland
- Department of Neurology, LSU Health Sciences Center, New Orleans, LA, United States of America
| | - Jeremy D. Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America
- Iowa Neuroscience Institute, Iowa City, IA, United States of America
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
2
|
Wang Z, Zheng Z, Huang J, Cai X, Liu X, Xue C, Yao L, Lu G. Neurocognitive changes at different follow-up times after bilateral subthalamic nucleus deep brain stimulation in patients with Parkinson's disease. Heliyon 2024; 10:e26303. [PMID: 38379975 PMCID: PMC10877422 DOI: 10.1016/j.heliyon.2024.e26303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Background Bilateral deep thalamic nucleus brain stimulation (STN-DBS) surgery is often used to treat the motor symptoms of patients with Parkinson's disease. The change of neurocognitive symptoms in patients is, however, still unclear. Objective We aimed at analyzing the deterioration of neurocognitive symptoms in patients with Parkinson's disease after deep brain stimulation surgery under different follow-up times. Methods A comprehensive literature review was conducted using Pubmed, Cochrane Library, and Web of Science to screen eligible study records, the meta-analysis was performed using an inverse variance method and a random-effects model. Additionally, the areas of analysis include five: cognition, executive function, memory capacity, and verbal fluency (phonetic fluency and semantic fluency). They were analyzed for changes at six and twelve months postoperatively compared to baseline. The Meta-analysis has been registered with PROSPERO under the registration number: CRD42022308786. Results In terms of overall cognitive performance, executive function, and memory capacity, the original studies show a trend of improvement in these areas at 12 months postoperatively compared with 6 months, at variance, patients did not improve or deteriorated in phonetic fluency(d = -0.42 at both 6-month and 12-month follow-up) and semantic fluency from 6 to 12 months postoperatively. Conclusion In terms of most neurocognitive symptoms, including cognitive ability, executive function, and learning memory capacity, bilateral STN-DBS surgery appears to be safe at relatively long follow-up times. However, postoperative phonetic and semantic fluency changes should still not be underestimated, and clinicians should pay more attention to patients' changes in both.
Collapse
Affiliation(s)
- Zhuohang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Junwen Huang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xu Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xinjie Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Cheng Xue
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Longping Yao
- Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
3
|
Jain K, Ramesh R, Krishnan S, Kesavapisharady K, Divya KP, Sarma SP, Kishore A. Cognitive outcome following bilateral subthalamic nucleus deep brain stimulation for Parkinson's disease-a comparative observational study in Indian patients. Acta Neurol Belg 2022; 122:447-456. [PMID: 34448152 DOI: 10.1007/s13760-021-01778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms and motor complications of Parkinson's disease (PD). The intervention is expected to result in some cognitive changes, the nature of which is not uniform across the studies which have reported them. PD itself is associated with progressive cognitive decline and hence longitudinal follow-up studies with medically managed control group of patients are needed to explore the cognitive deficits attributable to DBS. METHODS We conducted a prospective comparative observational study to assess the effects of bilateral STN DBS on cognition. Cognitive functions were assessed at baseline and after a minimum of two years after surgery, and compared with baseline and follow-up assessments in patients on medical management alone. RESULTS Thirty-four patients with PD who underwent bilateral STN DBS and thirty-four medically managed patients participated in the study. At a mean follow-up of around 33 months, we found a significant decline in verbal fluency scores in the DBS group compared to those on medical management alone (1.15 ± 1.23 vs 0.59 ± 0.93, p = 0.034) and a trend for decline was noted in digit span test. There was no difference in the performance in tests addressing other cognitive domains, or tests of global cognitive function. No patient developed dementia. Motor functions and activities of daily living (ADL) were significantly better in the surgical group. CONCLUSION STN DBS results in minor deficits in executive functions, particularly verbal fluency. These may be inconsequential, considering the marked improvement in motor functions and ADL.
Collapse
|
4
|
Bucur M, Papagno C. Deep Brain Stimulation in Parkinson Disease: A Meta-analysis of the Long-term Neuropsychological Outcomes. Neuropsychol Rev 2022; 33:307-346. [PMID: 35318587 PMCID: PMC10148791 DOI: 10.1007/s11065-022-09540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidum internus (GPi) improves motor functions in patients with Parkinson's disease (PD) but may cause a decline in specific cognitive domains. The aim of this systematic review and meta-analysis was to assess the long-term (1-3 years) effects of STN or GPi DBS on four cognitive functions: (i) memory (delayed recall, working memory, immediate recall), (ii) executive functions including inhibition control (Color-Word Stroop test) and flexibility (phonemic verbal fluency), (iii) language (semantic verbal fluency), and (iv) mood (anxiety and depression). Medline and Web of Science were searched, and studies published before July 2021 investigating long-term changes in PD patients following DBS were included. Random-effects model meta-analyses were performed using the R software to estimate the standardized mean difference (SMD) computed as Hedges' g with 95% CI. 2522 publications were identified, 48 of which satisfied the inclusion criteria. Fourteen meta-analyses were performed including 2039 adults with a clinical diagnosis of PD undergoing DBS surgery and 271 PD controls. Our findings add new information to the existing literature by demonstrating that, at a long follow-up interval (1-3 years), both positive effects, such as a mild improvement in anxiety and depression (STN, Hedges' g = 0,34, p = 0,02), and negative effects, such as a decrease of long-term memory (Hedges' g = -0,40, p = 0,02), verbal fluency such as phonemic fluency (Hedges' g = -0,56, p < 0,0001), and specific subdomains of executive functions such as Color-Word Stroop test (Hedges' g = -0,45, p = 0,003) were observed. The level of evidence as qualified with GRADE varied from low for the pre- verses post-analysis to medium when compared to a control group.
Collapse
Affiliation(s)
- Madalina Bucur
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.
| |
Collapse
|
5
|
Vos SH, Kessels RPC, Vinke RS, Esselink RAJ, Piai V. The Effect of Deep Brain Stimulation of the Subthalamic Nucleus on Language Function in Parkinson's Disease: A Systematic Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:2794-2810. [PMID: 34157249 DOI: 10.1044/2021_jslhr-20-00515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose This systematic review focuses on the effect of bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) on language function in Parkinson's disease (PD). It fills an important gap in recent reviews by considering other language tasks in addition to verbal fluency. Method We critically and systematically reviewed the literature on studies that investigated the effect of bilateral STN-DBS on language function in PD. All studies included a matched PD control group who were on best medical treatment, with language testing at similar baseline and follow-up intervals as the DBS PD group. Results Thirteen identified studies included a form of a verbal fluency task, seven studies included picture naming, and only two studies included more language-oriented tasks. We found that verbal fluency was negatively affected after DBS, whereas picture naming was unaffected. Studies investigating individual change patterns using reliable change indices showed that individual variability is larger for picture naming than for verbal fluency. Conclusions Verbal fluency is the most frequently investigated aspect of language function. Our analysis showed a pattern of decline in verbal fluency across multiple studies after STN-DBS, whereas picture naming was unaffected. Data on more language-oriented tests in a large DBS sample and best medical treatment control group are sparse. The investigation of language function in PD after DBS requires sensitive language tests (with and without time pressure) and experimental designs as used in the studies reviewed here. Reliable change index statistics are a promising tool for investigating individual differences in performance after DBS. Supplemental Material https://doi.org/10.23641/asha.14794458.
Collapse
Affiliation(s)
- Sandra H Vos
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - R Saman Vinke
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne A J Esselink
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vitória Piai
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
6
|
David FJ, Munoz MJ, Corcos DM. The effect of STN DBS on modulating brain oscillations: consequences for motor and cognitive behavior. Exp Brain Res 2020; 238:1659-1676. [PMID: 32494849 PMCID: PMC7415701 DOI: 10.1007/s00221-020-05834-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
In this review, we highlight Professor John Rothwell's contribution towards understanding basal ganglia function and dysfunction, as well as the effects of subthalamic nucleus deep brain stimulation (STN DBS). The first section summarizes the rate and oscillatory models of basal ganglia dysfunction with a focus on the oscillation model. The second section summarizes the motor, gait, and cognitive mechanisms of action of STN DBS. In the final section, we summarize the effects of STN DBS on motor and cognitive tasks. The studies reviewed in this section support the conclusion that high-frequency STN DBS improves the motor symptoms of Parkinson's disease. With respect to cognition, STN DBS can be detrimental to performance especially when the task is cognitively demanding. Consolidating findings from many studies, we find that while motor network oscillatory activity is primarily correlated to the beta-band, cognitive network oscillatory activity is not confined to one band but is subserved by activity in multiple frequency bands. Because of these findings, we propose a modified motor and associative/cognitive oscillatory model that can explain the consistent positive motor benefits and the negative and null cognitive effects of STN DBS. This is clinically relevant because STN DBS should enhance oscillatory activity that is related to both motor and cognitive networks to improve both motor and cognitive performance.
Collapse
Affiliation(s)
- Fabian J David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA.
| | - Miranda J Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 North Michigan Avenue, Suite 1100, Chicago, IL, 60611, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Cernera S, Okun MS, Gunduz A. A Review of Cognitive Outcomes Across Movement Disorder Patients Undergoing Deep Brain Stimulation. Front Neurol 2019; 10:419. [PMID: 31133956 PMCID: PMC6514131 DOI: 10.3389/fneur.2019.00419] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: Although the benefit in motor symptoms for well-selected patients with deep brain stimulation (DBS) has been established, cognitive declines associated with DBS can produce suboptimal clinical responses. Small decrements in cognition can lead to profound effects on quality of life. The growth of indications, the expansion of surgical targets, the increasing complexity of devices, and recent changes in stimulation paradigms have all collectively drawn attention to the need for re-evaluation of DBS related cognitive outcomes. Methods: To address the impact of cognitive changes following DBS, we performed a literature review using PubMed. We searched for articles focused on DBS and cognition. We extracted information about the disease, target, number of patients, assessment of time points, cognitive battery, and clinical outcomes. Diseases included were dystonia, Tourette syndrome (TS), essential tremor (ET), and Parkinson's disease (PD). Results: DBS was associated with mild cognitive issues even when rigorous patient selection was employed. Dystonia studies reported stable or improved cognitive scores, however one study using reliable change indices indicated decrements in sustained attention. Additionally, DBS outcomes were convoluted with changes in medication dose, alleviation of motor symptoms, and learning effects. In the largest, prospective TS study, an improvement in attentional skills was noted, whereas smaller studies reported variable declines across several cognitive domains. Although, most studies reported stable cognitive outcomes. ET studies largely demonstrated deficits in verbal fluency, which had variable responses depending on stimulation setting. Recently, studies have focused beyond the ventral intermediate nucleus, including the post-subthalamic area and zona incerta. For PD, the cognitive results were heterogeneous, although deficits in verbal fluency were consistent and related to the micro-lesion effect. Conclusion: Post-DBS cognitive issues can impact both motor and quality of life outcomes. The underlying pathophysiology of cognitive changes post-DBS and the identification of pathways underpinning declines will require further investigation. Future studies should employ careful methodological designs. Patient specific analyses will be helpful to differentiate the effects of medications, DBS and the underlying disease state, including disease progression. Disease progression is often an underappreciated factor that is important to post-DBS cognitive issues.
Collapse
Affiliation(s)
- Stephanie Cernera
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
8
|
Foley JA, Foltynie T, Limousin P, Cipolotti L. Standardised Neuropsychological Assessment for the Selection of Patients Undergoing DBS for Parkinson's Disease. PARKINSON'S DISEASE 2018; 2018:4328371. [PMID: 29971141 PMCID: PMC6009029 DOI: 10.1155/2018/4328371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 11/17/2022]
Abstract
DBS is an increasingly offered advanced treatment for Parkinson's disease (PD). Neuropsychological assessment is considered to be an important part of the screening for selection of candidates for this treatment. However, no standardised screening procedure currently exists. In this study, we examined the use of our standardised neuropsychological assessment for the evaluation of surgical candidates and to identify risk factors for subsequent decline in cognition and mood. A total of 40 patients were assessed before and after DBS. Evaluation of mood and case notes review was also undertaken. Before DBS, patients with PD demonstrated frequent impairments in intellectual functioning, memory, attention, and executive function, as well as high rates of mood disorder. Post-DBS, there was a general decline in verbal fluency only, and in one patient, we documented an immediate and irreversible global cognitive decline, which was associated with older age and more encompassing cognitive deficits at baseline. Case note review revealed that a high proportion of patients developed mood disorder, which was associated with higher levels of depression at baseline and greater reduction in levodopa medication. We conclude that our neuropsychological assessment is suitable for the screening of candidates and can identify baseline risk factors, which requires careful consideration before and after surgery.
Collapse
Affiliation(s)
- Jennifer A. Foley
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Tom Foltynie
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Lisa Cipolotti
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
9
|
Neuropsychological performance changes following subthalamic versus pallidal deep brain stimulation in Parkinson's disease: a systematic review and metaanalysis. CNS Spectr 2018; 23:10-23. [PMID: 28236811 DOI: 10.1017/s1092852917000062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Studies comparing subthalamus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) for the management of Parkinson's disease in terms of neuropsychological performance are scarce and heterogeneous. Therefore, we performed a systematic review and metaanalysis to compare neuropsychological outcomes following STN DBS versus GPi DBS. METHODS A computer literature search of PubMed, the Web of Science, and Cochrane Central was conducted. Records were screened for eligible studies, and data were extracted and synthesized using Review Manager (v. 5.3 for Windows). RESULTS Seven studies were included in the qualitative synthesis. Of them, four randomized controlled trials (n=345 patients) were pooled in the metaanalysis models. The standardized mean difference (SMD) of change in the Stroop color-naming test favored the GPi DBS group (SMD=-0.31, p=0.009). However, other neuropsychological outcomes did not favor either of the two groups (Stroop word-reading: SMD=-0.21, p=0.08; the Wechsler Adult Intelligence Scale (WAIS) digits forward: SMD=0.08, p=0.47; Trail Making Test Part A: SMD=-0.05, p=0.65; WAIS-R digit symbol: SMD=-0.16, p=0.29; Trail Making Test Part B: SMD=-0.14, p=0.23; Stroop color-word interference: SMD=-0.16, p=0.18; phonemic verbal fluency: bilateral DBS SMD=-0.04, p=0.73, and unilateral DBS SMD=-0.05, p=0.83; semantic verbal fluency: bilateral DBS SMD=-0.09, p=0.37, and unilateral DBS SMD=-0.29, p=0.22; Boston Naming Test: SMD=-0.11, p=0.33; Beck Depression Inventory: bilateral DBS SMD=0.15, p=0.31, and unilateral DBS SMD=0.36, p=0.11). CONCLUSIONS There was no statistically significant difference in most of the neuropsychological outcomes. The present evidence does not favor any of the targets in terms of neuropsychological performance.
Collapse
|
10
|
Mehanna R, Bajwa JA, Fernandez H, Wagle Shukla AA. Cognitive Impact of Deep Brain Stimulation on Parkinson's Disease Patients. PARKINSON'S DISEASE 2017; 2017:3085140. [PMID: 29359065 PMCID: PMC5735627 DOI: 10.1155/2017/3085140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/15/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
Subthalamic nucleus (STN) or globus pallidus interna (GPi) deep brain stimulation (DBS) is considered a robust therapeutic tool in the treatment of Parkinson's disease (PD) patients, although it has been reported to potentially cause cognitive decline in some cases. We here provide an in-depth and critical review of the current literature regarding cognition after DBS in PD, summarizing the available data on the impact of STN and GPi DBS as monotherapies and also comparative data across these two therapies on 7 cognitive domains. We provide evidence that, in appropriately screened PD patients, worsening of one or more cognitive functions is rare and subtle after DBS, without negative impact on quality of life, and that there is very little data supporting that STN DBS has a worse cognitive outcome than GPi DBS.
Collapse
Affiliation(s)
- Raja Mehanna
- University of Texas Health Science Center, Houston, TX, USA
| | - Jawad A. Bajwa
- Parkinson's, Movement Disorders and Neurorestoration Program, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hubert Fernandez
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
11
|
Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS. Behav Neurol 2017; 2017:7348101. [PMID: 28408788 PMCID: PMC5377057 DOI: 10.1155/2017/7348101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/08/2017] [Indexed: 11/29/2022] Open
Abstract
Objective. Reduced verbal fluency is a strikingly uniform finding following deep brain stimulation (DBS) for Parkinson's disease (PD). The precise cognitive mechanism underlying this reduction remains unclear, but theories have suggested reduced motivation, linguistic skill, and/or executive function. It is of note, however, that previous reports have failed to consider the potential role of any changes in speed of processing. Thus, the aim of this study was to examine verbal fluency changes with a particular focus on the role of cognitive speed. Method. In this study, 28 patients with PD completed measures of verbal fluency, motivation, language, executive functioning, and speed of processing, before and after DBS. Results. As expected, there was a marked decline in verbal fluency but also in a timed test of executive functions and two measures of speed of processing. Verbal fluency decline was associated with markers of linguistic and executive functioning, but not after speed of processing was statistically controlled for. In contrast, greater decline in verbal fluency was associated with higher levels of apathy at baseline, which was not associated with changes in cognitive speed. Discussion. Reduced generativity and processing speed may account for the marked reduction in verbal fluency commonly observed following DBS.
Collapse
|
12
|
Foki T, Hitzl D, Pirker W, Novak K, Pusswald G, Auff E, Lehrner J. Assessment of individual cognitive changes after deep brain stimulation surgery in Parkinson's disease using the Neuropsychological Test Battery Vienna short version. Wien Klin Wochenschr 2017; 129:564-571. [PMID: 28176003 PMCID: PMC5552840 DOI: 10.1007/s00508-017-1169-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
Long-term therapy of Parkinson’s disease with L‑DOPA is associated with a high risk of developing motor fluctuations and dyskinesia. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can improve these motor complications. Although the positive effect on motor symptoms has been proven, postoperative cognitive decline has been documented. To tackle the impact of DBS on cognition, 18 DBS patients were compared to 25 best medically treated Parkinson’s patients, 24 patients with mild cognitive impairment (MCI) and 12 healthy controls using the Neuropsychological Test Battery Vienna short version (NTBV-short) for cognitive outcome 12 months after the first examination. Reliable change index methodology was used. Roughly 10% of DBS patients showed cognitive decline mainly affecting the domains attention and executive functioning (phonemic fluency). Further research is needed to identify the mechanisms that lead to improvement or deterioration of cognitive functions in individual cases.
Collapse
Affiliation(s)
- Thomas Foki
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Daniela Hitzl
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Walter Pirker
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
- Department of Neurology, Wilhelminenspital Wien, Vienna, Austria
| | - Klaus Novak
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Gisela Pusswald
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Eduard Auff
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Johann Lehrner
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1097, Vienna, Austria.
| |
Collapse
|
13
|
Wang XH, Zhang L, Sperry L, Olichney J, Farias ST, Shahlaie K, Chang NM, Liu Y, Wang SP, Wang C. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson's Disease. Chin Med J (Engl) 2016; 128:3371-80. [PMID: 26668154 PMCID: PMC4797515 DOI: 10.4103/0366-6999.171464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE This review examines the evidence that deep brain stimulation (DBS) has extensive impact on nonmotor symptoms (NMSs) of patients with Parkinson's disease (PD). DATA SOURCES We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi), subthalamic nucleus (STN), and ventral intermediate thalamic nucleus. STUDY SELECTION We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. RESULTS In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. CONCLUSIONS As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fabbro F, Marini A, Felisari G, Comi GP, D'Angelo MG, Turconi AC, Bresolin N. Language Disturbances in a Group of Participants Suffering from Duchenne Muscular Dystrophy: A Pilot Study. Percept Mot Skills 2016; 104:663-76. [PMID: 17566456 DOI: 10.2466/pms.104.2.663-676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Results from several studies suggest that the process of language acquisition may be altered in patients suffering from Duchenne Muscular Dystrophy. In this study, a group of 8 male participants with Duchenne Muscular Dystrophy ( M age = 16 yr., SD = 4.7) underwent an extensive neuropsychological and language assessment. They also performed a discourse production task. Results showed mild mental retardation associated with a specific deficit in Verbal rather than Performance IQ. At the linguistic assessment, 7 of 8 participants showed moderate to severe difficulties on oral language processing with particularly impaired morphosyntactic competence.
Collapse
Affiliation(s)
- F Fabbro
- Istituto Scientifico E. Medea IRCCS, Università degli Studi di Udine, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Tiedt HO, Ehlen F, Krugel LK, Horn A, Kühn AA, Klostermann F. Subcortical roles in lexical task processing: Inferences from thalamic and subthalamic event-related potentials. Hum Brain Mapp 2016; 38:370-383. [PMID: 27647660 DOI: 10.1002/hbm.23366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023] Open
Abstract
Subcortical functions for language capacities are poorly defined, but may be investigated in the context of deep brain stimulation. Here, we studied event-related potentials recorded from electrodes in the subthalamic nucleus (STN) and the thalamic ventral intermediate nucleus (VIM) together with surface-EEG. Participants completed a lexical decision task (LDT), which required the differentiation of acoustically presented words from pseudo-words by button press. Target stimuli were preceded by prime-words. In recordings from VIM, a slow potential shift apparent at the lower electrode contacts persisted during target stimulus presentation (equally for words and pseudo-words). In contrast, recordings from STN electrodes showed a short local activation on prime-words but not target-stimuli. In both depth-recording regions, further components related to contralateral motor responses to target words were evident. On scalp level, mid-central activations on (pseudo)lexical stimuli were obtained, in line with the expression of N400 potentials. The prolonged activity recorded from VIM, exclusively accompanying the relevant LDT phase, is in line with the idea of thalamic "selective engagement" for supporting the realization of the behavioral focus demanded by the task. In contrast, the phasic prime related activity rather indicates "procedural" STN functions, for example, for trial sequencing or readiness inhibition of prepared target reactions. Hum Brain Mapp 38:370-383, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannes O Tiedt
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Lea K Krugel
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany
| | - Andreas Horn
- Department of Neurology, Motor Neuroscience Group, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany.,Laboratory for Brain Network Imaging and Modulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, 02215
| | - Andrea A Kühn
- Department of Neurology, Motor Neuroscience Group, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, Berlin, 13353, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, Berlin, 12003, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| |
Collapse
|
16
|
Krugel LK, Ehlen F, Tiedt HO, Kühn AA, Klostermann F. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing. Neuropsychologia 2014; 63:175-84. [DOI: 10.1016/j.neuropsychologia.2014.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/01/2023]
|
17
|
Ehlen F, Schoenecker T, Kühn AA, Klostermann F. Differential effects of deep brain stimulation on verbal fluency. BRAIN AND LANGUAGE 2014; 134:23-33. [PMID: 24815947 DOI: 10.1016/j.bandl.2014.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
We aimed at gaining insights into principles of subcortical lexical processing. Therefore, effects of deep brain stimulation (DBS) in different target structures on verbal fluency (VF) were tested. VF was assessed with active vs. inactivated DBS in 13 and 14 patients with DBS in the vicinity of the thalamic ventral intermediate nucleus (VIM) and, respectively, of the subthalamic nucleus (STN). Results were correlated to electrode localizations in postoperative MRI, and compared to those of 12 age-matched healthy controls. Patients' VF performance was generally below normal. However, while activation of DBS in the vicinity of VIM provoked marked VF decline, it induced subtle phonemic VF enhancement in the vicinity of STN. The effects correlated with electrode localizations in left hemispheric stimulation sites. The results show distinct dependencies of VF on DBS in the vicinity of VIM vs. STN. Particular risks for deterioration occur in patients with relatively ventromedial thalamic electrodes.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Charité, University Medicine Berlin, Dept. of Neurology, Motor and Cognition Group, Campus Benjamin Franklin, Germany.
| | - Thomas Schoenecker
- Charité, University Medicine Berlin, Dept. of Neurology, Motor Neuroscience Group, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Andrea A Kühn
- Charité, University Medicine Berlin, Dept. of Neurology, Motor Neuroscience Group, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| | - Fabian Klostermann
- Charité, University Medicine Berlin, Dept. of Neurology, Motor and Cognition Group, Campus Benjamin Franklin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| |
Collapse
|
18
|
Intact lexicon running slowly--prolonged response latencies in patients with subthalamic DBS and verbal fluency deficits. PLoS One 2013; 8:e79247. [PMID: 24236114 PMCID: PMC3827350 DOI: 10.1371/journal.pone.0079247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/20/2013] [Indexed: 12/02/2022] Open
Abstract
Background Verbal Fluency is reduced in patients with Parkinson’s disease, particularly if treated with deep brain stimulation. This deficit could arise from general factors, such as reduced working speed or from dysfunctions in specific lexical domains. Objective To test whether DBS-associated Verbal Fluency deficits are accompanied by changed dynamics of word processing. Methods 21 Parkinson’s disease patients with and 26 without deep brain stimulation of the subthalamic nucleus as well as 19 healthy controls participated in the study. They engaged in Verbal Fluency and (primed) Lexical Decision Tasks, testing phonemic and semantic word production and processing time. Most patients performed the experiments twice, ON and OFF stimulation or, respectively, dopaminergic drugs. Results Patients generally produced abnormally few words in the Verbal Fluency Task. This deficit was more severe in patients with deep brain stimulation who additionally showed prolonged response latencies in the Lexical Decision Task. Slowing was independent of semantic and phonemic word priming. No significant changes of performance accuracy were obtained. The results were independent from the treatment ON or OFF conditions. Conclusion Low word production in patients with deep brain stimulation was accompanied by prolonged latencies for lexical decisions. No indication was found that the latter slowing was due to specific lexical dysfunctions, so that it probably reflects a general reduction of cognitive working speed, also evident on the level of Verbal Fluency. The described abnormalities seem to reflect subtle sequelae of the surgical procedure for deep brain stimulation rather than of the proper neurostimulation.
Collapse
|
19
|
Lee H, Fell J, Axmacher N. Electrical engram: how deep brain stimulation affects memory. Trends Cogn Sci 2013; 17:574-84. [PMID: 24126128 DOI: 10.1016/j.tics.2013.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/20/2023]
Abstract
Deep brain stimulation (DBS) is a surgical procedure involving implantation of a pacemaker that sends electric impulses to specific brain regions. DBS has been applied in patients with Parkinson's disease, depression, and obsessive-compulsive disorder (among others), and more recently in patients with Alzheimer's disease to improve memory functions. Current DBS approaches are based on the concept that high-frequency stimulation inhibits or excites specific brain regions. However, because DBS entails the application of repetitive electrical stimuli, it primarily exerts an effect on extracellular field-potential oscillations similar to those recorded with electroencephalography. Here, we suggest a new perspective on how DBS may ameliorate memory dysfunction: it may enhance normal electrophysiological patterns underlying long-term memory processes within the medial temporal lobe.
Collapse
Affiliation(s)
- Hweeling Lee
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | | | | |
Collapse
|
20
|
Pouratian N, Thakkar S, Kim W, Bronstein JM. Deep brain stimulation for the treatment of Parkinson's disease: efficacy and safety. Degener Neurol Neuromuscul Dis 2012; 2012. [PMID: 24298202 DOI: 10.2147/dnnd.s25750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) surgery has become increasingly utilized in the treatment of advanced Parkinson's disease. Over the past decade, a number of studies have demonstrated that DBS is superior to best medical management in appropriately selected patients. The primary targets for DBS in Parkinson's disease include the subthalamic nucleus and the internal segment of the globus pallidus, both of which improve the cardinal motor features in Parkinson's disease. Recent randomized studies have revealed that both targets are similarly effective in treating the motor symptoms of Parkinson's disease, but emerging evidence suggests that the globus pallidus may be the preferred target in many patients, based on differences in nonmotor outcomes. Here, we review appropriate patient selection, and the efficacy and safety of DBS therapy in Parkinson's disease. Best outcomes are achieved if the problems of the individual patient are considered when evaluating surgical candidates and considering whether the subthalamic nucleus or the globus pallidus internus should be targeted.
Collapse
Affiliation(s)
- Nader Pouratian
- Departments of Neurosurgery, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles ; Bioengineering, David Geffen School of Medicine at UCLA (University of California, Los Angeles), Los Angeles
| | | | | | | |
Collapse
|
21
|
Phillips L, Litcofsky KA, Pelster M, Gelfand M, Ullman MT, Charles PD. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease. PLoS One 2012; 7:e42829. [PMID: 22880117 PMCID: PMC3413674 DOI: 10.1371/journal.pone.0042829] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 07/13/2012] [Indexed: 11/25/2022] Open
Abstract
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.
Collapse
Affiliation(s)
- Lara Phillips
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (LP); (MU); (PDC)
| | - Kaitlyn A. Litcofsky
- Brain and Language Lab, Department of Neuroscience, Georgetown University, Washington, District of Columbia, United States of America
- Department of Psychology, Center for Language Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael Pelster
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Matthew Gelfand
- Brain and Language Lab, Department of Neuroscience, Georgetown University, Washington, District of Columbia, United States of America
| | - Michael T. Ullman
- Brain and Language Lab, Department of Neuroscience, Georgetown University, Washington, District of Columbia, United States of America
- * E-mail: (LP); (MU); (PDC)
| | - P. David Charles
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (LP); (MU); (PDC)
| |
Collapse
|
22
|
Yamanaka T, Ishii F, Umemura A, Miyata M, Horiba M, Oka Y, Yamada K, Okita K, Matsukawa N, Ojika K. Temporary deterioration of executive function after subthalamic deep brain stimulation in Parkinson's disease. Clin Neurol Neurosurg 2012; 114:347-51. [DOI: 10.1016/j.clineuro.2011.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 08/03/2011] [Accepted: 11/05/2011] [Indexed: 11/26/2022]
|
23
|
Romann AJ, Dornelles S, Maineri NDL, Rieder CRDM, Olchik MR. Cognitive assessment instruments in Parkinson's disease patients undergoing deep brain stimulation. Dement Neuropsychol 2012; 6:2-11. [PMID: 29213766 PMCID: PMC5619101 DOI: 10.1590/s1980-57642012dn06010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep Brain Stimulation (DBS) is a widely used surgical technique in individuals
with Parkinson's disease (PD) that can lead to significant reductions in motor
symptoms.
Collapse
Affiliation(s)
- Aline Juliane Romann
- Mestranda em Medicina, Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil (UFRGS). Fonoaudióloga Clínica
| | - Silvia Dornelles
- Doutora em Ciências da Criança e do Adolescente, UFRGS. Professora Adjunto da UFRGS, Departamento de Psicologia do Desenvolvimento e da Personalidade
| | - Nicole de Liz Maineri
- Mestre em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre RS, Brazil (PUCRS). Neuropsicóloga do Laboratório de Estudos Cognitivos, MemoLab (Hospital Moinhos de Vento)
| | - Carlos Roberto de Mello Rieder
- Doutor em Clinical Neuroscience (University of Birmingham). Professor Adjunto de Neurologia da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) e do Programa de Pós Graduação em Medicina, Ciências Médicas, UFRGS
| | - Maira Rozenfeld Olchik
- Doutora em Educação, UFRGS. Professora Adjunto do Curso de Fonoaudiologia da UFRGS, Departamento de Cirurgia e Ortopedia
| |
Collapse
|
24
|
Ray N, Antonelli F, Strafella AP. Imaging impulsivity in Parkinson's disease and the contribution of the subthalamic nucleus. PARKINSONS DISEASE 2011; 2011:594860. [PMID: 21765999 PMCID: PMC3135010 DOI: 10.4061/2011/594860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/20/2011] [Indexed: 01/16/2023]
Abstract
Taking risks is a natural human response, but, in some, risk taking is compulsive and may be detrimental. The subthalamic nucleus (STN) is thought to play a large role in our ability to inhibit responses. Differences between individuals' ability to inhibit inappropriate responses may underlie both the normal variation in trait impulsivity in the healthy population, as well as the pathological compulsions experienced by those with impulse control disorders (ICDs). Thus, we review the role of the STN in response inhibition, with a particular focus on studies employing imaging methodology. We also review the latest evidence that disruption of the function of the STN by deep brain stimulation in patients with Parkinson's disease can increase impulsivity.
Collapse
Affiliation(s)
- Nicola Ray
- Toronto Western Research Institute and Hospital, UHN, University of Toronto, Toronto, ON, Canada M5T 2S8
| | | | | |
Collapse
|
25
|
Paradis M. Principles underlying the Bilingual Aphasia Test (BAT) and its uses. CLINICAL LINGUISTICS & PHONETICS 2011; 25:427-443. [PMID: 21675824 DOI: 10.3109/02699206.2011.560326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Bilingual Aphasia Test (BAT) is designed to be objective (so it can be administered by a lay native speaker of the language) and equivalent across languages (to allow for a comparison between the languages of a given patient as well as across patients from different institutions). It has been used not only with aphasia but also with any condition that results in language impairment (Alzheimer's, autism, cerebellar lesions, developmental language disorders, mild cognitive impairment, motor neuron disease, multiple sclerosis, Parkinson's, vascular dementia, etc.). It has also been used for research purposes on non-brain-damaged unilingual and bilingual populations. By means of its 32 tasks, it assesses comprehension and production of implicit linguistic competence and metalinguistic knowledge (which provide indications for apposite rehabilitation strategies). Versions of the BAT are available for free download at www.mcgill.ca/linguistics/research/bat/.
Collapse
Affiliation(s)
- Michel Paradis
- Department of Linguistics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Klein J, Winter C, Coquery N, Heinz A, Morgenstern R, Kupsch A, Juckel G. Lesion of the medial prefrontal cortex and the subthalamic nucleus selectively affect depression-like behavior in rats. Behav Brain Res 2010; 213:73-81. [PMID: 20434489 DOI: 10.1016/j.bbr.2010.04.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 12/19/2022]
Affiliation(s)
- Julia Klein
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Naskar S, Sood SK, Goyal V, Dhara M. RETRACTED: Mechanism(s) of deep brain stimulation and insights into cognitive outcomes in Parkinson's disease. ACTA ACUST UNITED AC 2010; 65:1-13. [DOI: 10.1016/j.brainresrev.2010.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/12/2010] [Accepted: 04/27/2010] [Indexed: 11/30/2022]
|
28
|
Zanini S, Moschella V, Stefani A, Peppe A, Pierantozzi M, Galati S, Costa A, Mazzone P, Stanzione P. Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson's disease: A pilot study. Parkinsonism Relat Disord 2009; 15:606-9. [DOI: 10.1016/j.parkreldis.2008.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 11/28/2022]
|
29
|
Deep brain stimulation and cognitive functions in Parkinson's disease: A three-year controlled study. Mov Disord 2009; 24:1621-8. [DOI: 10.1002/mds.22603] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
Halpern CH, Rick JH, Danish SF, Grossman M, Baltuch GH. Cognition following bilateral deep brain stimulation surgery of the subthalamic nucleus for Parkinson's disease. Int J Geriatr Psychiatry 2009; 24:443-51. [PMID: 19016252 DOI: 10.1002/gps.2149] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative disorder characterized by significant motor dysfunction and various non-motor disturbances, including cognitive alterations. Deep brain stimulation (DBS) is an increasingly utilized therapeutic option for patients with PD that yields remarkable success in alleviating disabling motor symptoms. DBS has additionally been associated with changes in cognition, yet the evidence is not consistent across studies. The following review sought to provide a clearer understanding of the various cognitive sequelae of bilateral subthalamic nucleus (STN) DBS while taking into account corresponding neuroanatomy and potential confounding variables. DESIGN A literature search was performed using the following inclusion criteria: (1) at least five subjects followed for a mean of at least 3 months after surgery; (2) pre- and postoperative cognitive data using at least one standardized measure; (3) adequate report of study results using means and standard deviations. RESULTS Two recent meta-analyses found mild post-operative impairments in verbal learning and executive function in patients who underwent DBS surgery. However, studies have revealed improved working memory and psychomotor speed in the 'on' vs 'off' stimulation state. A deficit in language may be a consequence of the surgical procedure. CONCLUSIONS While cognitive decline has been observed in some domains, our review of the data suggests that STN DBS is a worthwhile and safe method to treat PD.
Collapse
Affiliation(s)
- Casey H Halpern
- Department of Neurosurgery, Neurology and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
31
|
Heo JH, Lee KM, Paek SH, Kim MJ, Lee JY, Kim JY, Cho SY, Lim YH, Kim MR, Jeong SY, Jeon BS. The effects of bilateral Subthalamic Nucleus Deep Brain Stimulation (STN DBS) on cognition in Parkinson disease. J Neurol Sci 2008; 273:19-24. [DOI: 10.1016/j.jns.2008.06.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 05/29/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
32
|
Zahodne LB, Okun MS, Foote KD, Fernandez HH, Rodriguez RL, Kirsch-Darrow L, Bowers D. Cognitive declines one year after unilateral deep brain stimulation surgery in Parkinson's disease: a controlled study using reliable change. Clin Neuropsychol 2008; 23:385-405. [PMID: 18821180 DOI: 10.1080/13854040802360582] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Conflicting research suggests that deep brain stimulation surgery, an effective treatment for medication-refractory Parkinson's disease (PD), may lead to selective cognitive declines. We compared cognitive performance of 22 PD patients who underwent unilateral DBS to the GPi or STN to that of 19 PD controls at baseline and 12 months. We hypothesized that compared to PD controls, DBS patients would decline on tasks involving dorsolateral prefrontal cortex circuitry (letter fluency, semantic fluency, and Digit Span Backward) but not on other tasks (Vocabulary, Boston Naming Test), and that a greater proportion of DBS patients would fall below Reliable Change Indexes (RCIs). Compared to controls, DBS patients declined only on the fluency tasks. Analyses classified 50% of DBS patients as decliners, compared to 11% of controls. Decliners experienced less motor improvement than non-decliners. The present study adds to the literature through its hypothesis-driven method of task selection, inclusion of a disease control group, longer-term follow-up and use of Reliable Change. Our findings provide evidence that unilateral DBS surgery is associated with verbal fluency declines and indicate that while these changes may not be systematically related to age, cognitive or depression status at baseline, semantic fluency declines may be more common after left-sided surgery. Finally, use of Reliable Change highlights the impact of individual variability and indicates that fluency declines likely reflect significant changes in a subset of patients who demonstrate a poorer surgical outcome overall.
Collapse
Affiliation(s)
- Laura B Zahodne
- Clinical and Health Psychology, University of Florida, Gainesville, FL 32610-0165, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Bötzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, Deuschl G. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol 2008; 7:605-14. [PMID: 18538636 DOI: 10.1016/s1474-4422(08)70114-5] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in patients with Parkinson's disease (PD) and improves their quality of life; however, the effect of DBS on cognitive functions and its psychiatric side-effects are still controversial. To assess the neuropsychiatric consequences of DBS in patients with PD we did an ancillary protocol as part of a randomised study that compared DBS with the best medical treatment. METHODS 156 patients with advanced Parkinson's disease and motor fluctuations were randomly assigned to have DBS of the STN or the best medical treatment for PD according to the German Society of Neurology guidelines. 123 patients had neuropsychological and psychiatric examinations to assess the changes between baseline and after 6 months. The primary outcome was the comparison of the effect of DBS with the best medical treatment on overall cognitive functioning (Mattis dementia rating scale). Secondary outcomes were the effects on executive function, depression, anxiety, psychiatric status, manic symptoms, and quality of life. Analysis was per protocol. The study is registered at ClinicalTrials.gov, number NCT00196911. FINDINGS 60 patients were randomly assigned to receive STN-DBS and 63 patients to have best medical treatment. After 6 months, impairments were seen in executive function (difference of changes [DBS-best medical treatment] in verbal fluency [semantic] -4.50 points, 95% CI -8.07 to -0.93, Cohen's d=-;0.4; verbal fluency [phonemic] -3.06 points, -5.50 to -0.62, -0.5; Stroop 2 naming colour error rate -0.37 points, -0.73 to 0.00, -0.4; Stroop 3 word reading time -5.17 s, -8.82 to -1.52, -0.5; Stroop 4 colour naming time -13.00 s, -25.12 to -0.89, -0.4), irrespective of the improvement in quality of life (difference of changes in PDQ-39 10.16 points, 5.45 to 14.87, 0.6; SF-36 physical 16.55 points, 10.89 to 22.21, 0.9; SF-36 psychological 9.74 points, 2.18 to 17.29, 0.5). Anxiety was reduced in the DBS group compared with the medication group (difference of changes in Beck anxiety inventory 10.43 points, 6.08 to 14.78, 0.8). Ten patients in the DBS group and eight patients in the best medical treatment group had severe psychiatric adverse events. INTERPRETATION DBS of the STN does not reduce overall cognition or affectivity, although there is a selective decrease in frontal cognitive functions and an improvement in anxiety in patients after the treatment. These changes do not affect improvements in quality of life. DBS of the STN is safe with respect to neuropsychological and psychiatric effects in carefully selected patients during a 6-month follow-up period. FUNDING German Federal Ministry of Education and Research (01GI0201).
Collapse
|
34
|
Temel Y. Subthalamic nucleus stimulation in Parkinson's disease: the other side of the medallion. Exp Neurol 2008; 211:321-3. [PMID: 18410927 DOI: 10.1016/j.expneurol.2008.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
35
|
Tir M, Devos D, Blond S, Touzet G, Reyns N, Duhamel A, Cottencin O, Dujardin K, Cassim F, Destée A, Defebvre L, Krystkowiak P. Exhaustive, one-year follow-up of subthalamic nucleus deep brain stimulation in a large, single-center cohort of parkinsonian patients. Neurosurgery 2007; 61:297-304; discussion 304-5. [PMID: 17762742 DOI: 10.1227/01.neu.0000285347.50028.b9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To prospectively assess the impact of subthalamic nucleus (STN) deep brain stimulation (DBS) at 12 months after surgery in a series of 100 consecutive patients treated in a single center. The primary objective was to describe the clinical outcome in terms of efficacy and tolerance in STN-DBS patients. A secondary objective was to discuss presurgery clinical characteristics a posteriori as a function of outcome. METHODS One hundred and three consecutive patients with severe Parkinson's disease received bilateral STN-DBS in our clinic between May 1998 and March 2003. Clinical assessment was performed before and 12 months after surgery and was based on the Unified Parkinson's Disease Rating Scale, Parts II, III, and IV A; the Schwab and England Scale; and cognitive evaluation. Patient-rated overall improvement was also evaluated. RESULTS Twelve months after surgery, the Unified Parkinson's Disease Rating Scale Part III score decreased by 43%, the Unified Parkinson's Disease Rating Scale Part II score (activities of daily living) fell by 34%, and the severity of dyskinesia-related disability decreased by 61%. The main surgical complications after STN-DBS were as follows: infection (n = 7), intracerebral hematoma (n = 5), electrode fracture (n = 4), and incorrect lead placement (n = 8). We observed cognitive decline and depression in 7.7 and 18% of the patients, respectively. The mean patient-rated overall improvement score was 70.7%. CONCLUSION The efficacy and safety of STN-DBS in our center's large cohort of Parkinsonian patients are generally similar to the results obtained by other groups, albeit at the lower limit of the range of reported values. In contrast to efficacy, the occurrence of adverse events cannot be predicted. Younger patients with Parkinson's disease (i.e., those younger than 60 yr) often show an excellent response to levodopa. However, in view of our data on overall patient satisfaction and the occurrence of adverse events, we suggest that older patients (but not those older than 70 yr) and less dopa-sensitive patients (but not those with a response <50%) should still be offered the option of STN-DBS.
Collapse
Affiliation(s)
- Melissa Tir
- Department of Neurology, Salengro Hospital, Lille University Medical Centre, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tir M, Devos D, Blond S, Touzet G, Reyns N, Duhamel A, Cottencin O, Dujardin K, Cassim F, Destée A, Defebvre L, Krystkowiak P. EXHAUSTIVE, ONE-YEAR FOLLOW-UP OF SUBTHALAMIC NUCLEUS DEEP BRAIN STIMULATION IN A LARGE, SINGLE-CENTER COHORT OF PARKINSONIAN PATIENTS. Neurosurgery 2007. [DOI: 10.1227/01.neu.0000307964.21298.fd] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Castner JE, Copland DA, Silburn PA, Coyne TJ, Sinclair F, Chenery HJ. Lexical-semantic inhibitory mechanisms in Parkinson's disease as a function of subthalamic stimulation. Neuropsychologia 2007; 45:3167-77. [PMID: 17706256 DOI: 10.1016/j.neuropsychologia.2007.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 05/21/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Inhibitory control may be affected by Parkinson's disease (PD) due to impairment within the non-motor basal ganglia-thalamocortical circuits. The present study aimed to identify the effects of chronic stimulation of the subthalamic nucleus (STN) on lexical-semantic inhibitory control. Eighteen participants with PD who had undergone surgery for deep brain stimulation (DBS) of the STN, completed a picture-word interference (PWI) task and the Hayling test in on and off stimulation conditions. The results of PD participants were compared with 21 non-neurologically impaired control participants. PD participants performed no differently from controls on the PWI task, and no significant differences between on and off stimulation conditions were revealed, therefore suggesting that PD participants are not impaired in lexical-semantic interference control. In contrast, in the off stimulation condition, PD participants had significantly delayed reaction times and increased errors on the inhibition section of the Hayling test compared with the STN stimulation condition and control participants. These results suggest that PD patients are impaired in aspects of inhibitory control that are dependent on behavioural inhibition (such as the suppression of prepotent responses) and selection from competing alternatives without the presence of external cues. Furthermore, STN stimulation acts to restore these behavioural inhibitory processes.
Collapse
Affiliation(s)
- Joanna E Castner
- Centre for Research into Language Processing and Linguistics, Division of Speech Pathology, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Rothlind JC, Cockshott RW, Starr PA, Marks WJ. Neuropsychological performance following staged bilateral pallidal or subthalamic nucleus deep brain stimulation for Parkinson's disease. J Int Neuropsychol Soc 2007; 13:68-79. [PMID: 17166305 DOI: 10.1017/s1355617707070105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 07/10/2006] [Accepted: 07/13/2006] [Indexed: 11/07/2022]
Abstract
Deep brain stimulation (DBS) has the potential to significantly reduce motor symptoms in advanced Parkinson's disease (PD). Controversy remains about non-motor effects of DBS and the relative advantages of treatment at two brain targets, the globus pallidus internus (GPi) and the subthalamic nucleus (STN). We investigated effects of DBS on neuropsychological functioning in 42 patients with advanced PD randomly assigned to receive staged bilateral DBS surgery of either the GPi or STN. Patients underwent neuropsychological assessment prior to and 6 months after unilateral surgery. Twenty-nine subsequently underwent surgery to the contralateral side and completed a second follow-up neuropsychological evaluation 15 months later. Unilateral treatment resulted in small but statistically significant reductions in performance on several measures, including verbal fluency and working memory. A similar pattern was observed after bilateral treatment. Reductions in verbal associative fluency were significant only after left-sided treatment. There were few significant differences related to treatment at the two surgical targets. Supplementary analyses suggested that decrements in select neuropsychological domains following DBS are unrelated to age or post-surgical reduction in dopaminergic medication dose. Findings are discussed with reference to possible causes of neuropsychological decline and the need for further controlled studies of specific neuropsychological effects of DBS.
Collapse
Affiliation(s)
- Johannes C Rothlind
- Mental Health Service, Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | |
Collapse
|
39
|
Voon V, Kubu C, Krack P, Houeto JL, Tröster AI. Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 2006; 21 Suppl 14:S305-27. [PMID: 16810676 DOI: 10.1002/mds.20963] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor, cognitive, neuropsychiatric, autonomic, and other nonmotor symptoms. The efficacy of deep brain stimulation (DBS) for the motor symptoms of advanced PD is well established. However, the effects of DBS on the cognitive and neuropsychiatric symptoms are less clear. The neuropsychiatric aspects of DBS for PD have recently been of considerable clinical and pathophysiological interest. As a companion to the preoperative and postoperative sections of the DBS consensus articles, this article reviews the published literature on the cognitive and neuropsychiatric aspects of DBS for PD. The majority of the observed neuropsychiatric symptoms are transient, treatable, and potentially preventable. Outcome studies, methodological issues, pathophysiology, and preoperative and postoperative management of the cognitive and neuropsychiatric aspects and complications of DBS for PD are discussed.
Collapse
Affiliation(s)
- Valerie Voon
- Department of Psychiatry, Toronto Western Hospital, Toronto, Canada.
| | | | | | | | | |
Collapse
|
40
|
Parsons TD, Rogers SA, Braaten AJ, Woods SP, Tröster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson's disease: a meta-analysis. Lancet Neurol 2006; 5:578-88. [PMID: 16781988 DOI: 10.1016/s1474-4422(06)70475-6] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Deep brain stimulation of the subthalamic nucleus (STN DBS) is an increasingly common treatment for Parkinson's disease. Qualitative reviews have concluded that diminished verbal fluency is common after STN DBS, but that changes in global cognitive abilities, attention, executive functions, and memory are only inconsistently observed and, when present, often nominal or transient. We did a quantitative meta-analysis to improve understanding of the variability and clinical significance of cognitive dysfunction after STN DBS. METHODS We searched MedLine, PsycLIT, and ISI Web of Science electronic databases for articles published between 1990 and 2006, and extracted information about number of patients, exclusion criteria, confirmation of target by microelectrode recording, verification of electrode placement via radiographic means, stimulation parameters, assessment time points, assessment measures, whether patients were on levodopa or dopaminomimetics, and summary statistics needed for computation of effect sizes. We used the random-effects meta-analytical model to assess continuous outcomes before and after STN DBS. FINDINGS Of 40 neuropsychological studies identified, 28 cohort studies (including 612 patients) were eligible for inclusion in the meta-analysis. After adjusting for heterogeneity of variance in study effect sizes, the random effects meta-analysis revealed significant, albeit small, declines in executive functions and verbal learning and memory. Moderate declines were only reported in semantic (Cohen's d 0.73) and phonemic verbal fluency (0.51). Changes in verbal fluency were not related to patient age, disease duration, stimulation parameters, or change in dopaminomimetic dose after surgery. INTERPRETATION STN DBS, in selected patients, seems relatively safe from a cognitive standpoint. However, difficulty in identification of factors underlying changes in verbal fluency draws attention to the need for uniform and detailed reporting of patient selection, demographic, disease, treatment, surgical, stimulation, and clinical outcome parameters.
Collapse
Affiliation(s)
- Thomas D Parsons
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599-7025, USA
| | | | | | | | | |
Collapse
|
41
|
Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 2006; 12:265-72. [PMID: 16621661 DOI: 10.1016/j.parkreldis.2006.01.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The long-lasting beneficial effects of subthalamic nucleus (STN) deep brain stimulation (DBS) on motor function have now largely been acknowledged. Whereas behavioural changes have been demonstrated in certain case reports and small case series, some authors have not observed behavioural changes at all. The extent to which these changes occur has not yet been established. The aim of the present study was to systematically analyse behavioural changes of bilateral STN DBS. MATERIALS AND METHODS A structured Medline search was conducted using previously described methods. Studies were selected according to specific in- and exclusion criteria. Data on patients, surgical technique, outcome and complications were collected and pooled. RESULTS In total 1,398 patients who underwent bilateral STN DBS were included. The total cumulative follow-up period was 1,480 patient-years. Cognitive problems were seen in 41%, depression in 8%, and (hypo)mania in 4% of the patients. Anxiety disorders were observed in less than 2%, and personality changes, hypersexuality, apathy, anxiety, and aggressiveness were observed in less than 0.5% of the group studied. About half of the patients did not experience behavioural changes. CONCLUSION Caregivers should be aware of the extent of these behavioural changes and a risk/benefit evaluation should be performed for individual patients.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Neurosurgery, University Hospital Maastricht, P. Debyelaan 25, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Tan SKH, Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V. The subthalamic nucleus: From response selection to execution. J Chem Neuroanat 2006; 31:155-61. [PMID: 16473494 DOI: 10.1016/j.jchemneu.2006.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/15/2005] [Accepted: 01/09/2006] [Indexed: 11/28/2022]
Abstract
The involvement of the subthalamic nucleus in physiological and pathological motor behaviour has now largely been established. Clinical observations in patients suffering from Parkinson disease treated with Deep Brain Stimulation of the STN show that these patients can suffer from postoperative changes in non-motor behaviour mainly involving alterations in cognitive functions. The involvement of the STN in cognition has initially been demonstrated by non-human studies investigating the effects of STN lesions and stimulations on cognitive parameters. In the present review, we discuss the findings of these preclinical studies on cognitive parameters and outline the anatomical and functional place of the STN in the basal ganglia cognitive circuit.
Collapse
Affiliation(s)
- Sonny K H Tan
- Department of Psychiatry & Neuropsychology, Division Cellular Neurosciences, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Woods SP, Rippeth JD, Conover E, Carey CL, Parsons TD, Tröster AI. Statistical Power of Studies Examining the Cognitive Effects of Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Clin Neuropsychol 2006; 20:27-38. [PMID: 16393919 DOI: 10.1080/13854040500203290] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It has been argued that neuropsychological studies generally possess adequate statistical power to detect large effect sizes. However, low statistical power is problematic in neuropsychological research involving clinical populations and novel interventions for which available sample sizes are often limited. One notable example of this problem is evident in the literature regarding the cognitive sequelae of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in persons with Parkinson's disease (PD). In the current review, a post hoc estimate of the statistical power of 30 studies examining cognitive effects of STN DBS in PD revealed adequate power to detect substantial cognitive declines (i.e., very large effect sizes), but surprisingly low estimated power to detect cognitive changes associated with conventionally small, medium, and large effect sizes. Such wide spread Type II error risk in the STN DBS cognitive outcomes literature may affect the clinical decision-making process as concerns the possible risk of postsurgical cognitive morbidity, as well as conceptual inferences to be drawn regarding the role of the STN in higher-level cognitive functions. Statistical and methodological recommendations (e.g., meta-analysis) are offered to enhance the power of current and future studies examining the neuropsychological sequelae of STN DBS in PD.
Collapse
Affiliation(s)
- Steven Paul Woods
- Department of Psychiatry, University of California, San Diego, CA 92103, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Lang AE, Houeto JL, Krack P, Kubu C, Lyons KE, Moro E, Ondo W, Pahwa R, Poewe W, Tröster AI, Uitti R, Voon V. Deep brain stimulation: Preoperative issues. Mov Disord 2006; 21 Suppl 14:S171-96. [PMID: 16810718 DOI: 10.1002/mds.20955] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Numerous factors need to be taken into account in deciding whether a patient with Parkinson's disease (PD) is a candidate for deep brain stimulation. Patient-related personal factors including age and the presence of other comorbid disorders need to be considered. Neuropsychological and neuropsychiatric concerns relate both to the presurgical status of the patient and to the potential for surgery to result in new problems postoperatively. A number of factors related to the underlying PD need to be considered, including the specific parkinsonian motor indications (e.g., tremor, bradykinesia, gait dysfunction), previous medical therapies, including benefit from current therapy and adverse effects, and past surgical treatments. Definable causes of Parkinsonism, particularly atypical Parkinsonisms, should be considered. Finally, methods of evaluating outcomes should be defined and formalized. This is a report from the Consensus on Deep Brain Stimulation for Parkinson's Disease, a project commissioned by the Congress of Neurological Surgeons and the Movement Disorder Society (MDS). The report has been endorsed by the Scientific Issues Committee of the MDS and the American Society of Stereotactic and Functional Neurosurgery. It outlines answers to a series of questions developed to address all aspects of deep brain stimulation preoperative decision-making.
Collapse
Affiliation(s)
- Anthony E Lang
- Department of Neurology, Toronto Western Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang JG, Zhang K, Ma Y, Hu WH, Yang AC, Chu JS, Wu ST, Ge M, Zhang Y, Wang ZC. Follow-up of bilateral subthalamic deep brain stimulation for Parkinson's disease. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 99:43-7. [PMID: 17370762 DOI: 10.1007/978-3-211-35205-2_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE To demonstrate the effects of bilateral subthalamic deep brain stimulation (STN-DBS) in the treatment of Parkinson's disease (PD) after 4-45 months' follow-up. METHOD Between 04/01 and 12/04, 46 PD patients were operated on with bilateral STN-DBS. All of them were evaluated with Unified Parkinson's Disease Rating Scale (UPDRS) parts II-V before surgery and 4-45 months after surgery. The amelioration of miscellaneous symptoms and decrease of medication dose, respectively, were compared. Main side effects were observed. FINDINGS After surgery, both the score of activities of daily living (ADL) and the UPDRS motor score decreased significantly (p < 0.001). Among the PD symptoms, tremor was improved best. Rigidity, bradykinesia, axial symptoms, facial expression and dyskinesia were all improved, although to a lesser extent, while speech was not improved. Medication dose was decreased significantly (p < 0.001). According to the time of follow-up, 4 groups were classified (4-12 months, 13-24 months. 25-36 months and 37-45 months group). ADL, UPDRS motor score and dyskinesia subscore improvement were compared among these groups. No significant difference existed. No life threatening complications occurred. Main side effects included hypophonia, dyskinesia, confusion, depression. CONCLUSIONS Bilateral STN-DBS is a satisfying surgical method for the treatment of advanced PD. It can improve the cardinal PD symptoms up to 45 months. Complications and side effects were rare and usually temporary or reversible.
Collapse
Affiliation(s)
- J G Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital University of Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 2005; 76:393-413. [PMID: 16249050 DOI: 10.1016/j.pneurobio.2005.09.005] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 08/05/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Once it was believed that the subthalamic nucleus (STN) was no more than a relay station serving as a "gate" for ascending basal ganglia-thalamocortical circuits. Nowadays, the STN is considered to be one of the main regulators of motor function related to the basal ganglia. The role of the STN in the regulation of associative and limbic functions related to the basal ganglia has generally received little attention. In the present review, the functional role of the STN in the control of cortico-basal ganglia-thalamocortical associative and limbic circuits is discussed. In the past 20 years the concepts about the functional role of the STN have changed dramatically: from being an inhibitory nucleus to a potent excitatory nucleus, and from being involved in hyperkinesias to hypokinesias. However, it has been demonstrated only recently, mainly by reports on the behavioral (side-) effects of STN deep brain stimulation (DBS), which is a popular surgical technique in the treatment of patients suffering from advanced Parkinson Disease (PD), that the STN is clinically involved in associative and limbic functions. These findings were confirmed by results from animal studies. Experimental studies applying STN DBS or STN lesions to investigate the neuronal mechanisms involved in these procedures found profound effects on cognitive and motivational parameters. The anatomical, electrophysiological and behavioral data presented in this review point towards a potent regulatory function of the STN in the processing of associative and limbic information towards cortical and subcortical regions. In conclusion, it can be stated that the STN has anatomically a central position within the basal ganglia thalamocortical associative and limbic circuits and is functionally a potent regulator of these pathways.
Collapse
Affiliation(s)
- Yasin Temel
- Department of Neurosurgery, University Hospital Maastricht, University of Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Whelan BM, Murdoch BE, Theodoros DG, Silburn P, Hall B. Beyond verbal fluency: investigating the long-term effects of bilateral subthalamic (STN) deep brain stimulation (DBS) on language function in two cases. Neurocase 2005; 11:93-102. [PMID: 16036464 DOI: 10.1080/13554790590925501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cognitive functioning has been described as largely impervious to chronic STN-DBS administered over 12-month periods. In relation to the domain of language, however, the effects of STN-DBS are yet to be thoroughly delineated. Verbal fluency tasks represent an almost exclusively applied index of linguistic proficiency relative to neuropsychological research within this population. Comprehensive investigations of the impact of STN-DBS on language function, however, have never been undertaken. The more precise elucidation of the role of the STN in the mediation of language processes, by way of assessments which probe language comprehension and production mechanisms, served as the primary focus of this research. Longitudinal analysis also afforded consideration of the way in which cognitive-linguistic circuits respond to STN-DBS over time. Bilateral STN-DBS primarily effected clinically reliable fluctuations (i.e., both improvements and declines) in performance in both subjects on tasks demanding cognitive-linguistic flexibility in the formulation and comprehension of complex language. Of particular note, both subjects demonstrated a cumulative increase in the proportion of reliable post-operative improvements achieved over time. The findings of this research lend support to models of subcortical participation in language which endorse a role for the STN, and suggest that bilateral STN-DBS may serve to enhance the proficiency of basal ganglia-thalamocortical linguistic circuits over time.
Collapse
Affiliation(s)
- Brooke-Mai Whelan
- Motor Speech Research Unit, Department of Speech Pathology and Audiology, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|