1
|
Solovjeva ON. New Role of Water in Transketolase Catalysis. Int J Mol Sci 2023; 24:ijms24032068. [PMID: 36768400 PMCID: PMC9917271 DOI: 10.3390/ijms24032068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Transketolase catalyzes the interconversion of keto and aldo sugars. Its coenzyme is thiamine diphosphate. The binding of keto sugar with thiamine diphosphate is possible only after C2 deprotonation of its thiazole ring. It is believed that deprotonation occurs due to the direct transfer of a proton to the amino group of its aminopyrimidine ring. Using mass spectrometry, it is shown that a water molecule is directly involved in the deprotonation process. After the binding of thiamine diphosphate with transketolase and its subsequent cleavage, a thiamine diphosphate molecule is formed with a mass increased by one oxygen molecule. After fragmentation, a thiamine diphosphate molecule is formed with a mass reduced by one and two hydrogen atoms, that is, HO and H2O are split off. Based on these data, it is assumed that after the formation of holotransketolase, water is covalently bound to thiamine diphosphate, and carbanion is formed as a result of its elimination. This may be a common mechanism for other thiamine enzymes. The participation of a water molecule in the catalysis of the one-substrate transketolase reaction and a possible reason for the effect of the acceptor substrate on the affinity of the donor substrate for active sites are also shown.
Collapse
Affiliation(s)
- Olga N Solovjeva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
2
|
Quantitative proteome and lysine succinylome analyses provide insights into metabolic regulation in breast cancer. Breast Cancer 2018; 26:93-105. [PMID: 30022435 DOI: 10.1007/s12282-018-0893-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/12/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Breast cancer, the most common invasive cancer and cause of cancer-related death in women worldwide, is a multifactorial, complex disease, and many molecular players and mechanisms underlying the complexity of its clinical behavior remain unknown. METHODS To explore the molecular features of breast cancer, quantitative proteome and succinylome analyses in breast cancer were extensively studied using quantitative proteomics techniques, anti-succinyl lysine antibody-based affinity enrichment, and high-resolution LC-MS/MS analysis. RESULTS Our study is the first to detect the regulation of lysine succinylation in breast cancer progression. We identified a novel mechanism by which the pentose phosphate pathway and the endoplasmic reticulum protein processing pathway might be regulated via lysine succinylation in their core enzymes. CONCLUSIONS These results expand our understanding of tumorigenesis mechanisms and provide a basis for further characterization of the pathophysiological roles in breast cancer progression, laying a foundation for innovative and novel breast cancer drugs and therapies.
Collapse
|
3
|
Klaus A, Baldensperger T, Fiedler R, Girndt M, Glomb MA. Influence of Transketolase-Catalyzed Reactions on the Formation of Glycolaldehyde and Glyoxal Specific Posttranslational Modifications under Physiological Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1498-1508. [PMID: 29400466 DOI: 10.1021/acs.jafc.7b05472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, we investigated the role of transketolase (TK) in the modulation of glycolaldehyde driven Maillard reactions. In vitro experiments with recombinant human TK reduced glycolaldehyde and glyoxal induced carbonyl stress and thereby suppressed the formation of advanced glycation endproducts up to 70% due to the enzyme-catalyzed conversion of glycolaldehyde to erythrulose. This was further substantiated by the use of 13C-labeled compounds. For the first time, glycolaldehyde and other sugars involved in the TK reaction were quantified in vivo and compared to nondiabetic uremic patients undergoing hemodialysis. Quantitation revealed amounts of glycolaldehyde up to 2 μM and highlighted its crucial role in the formation of AGEs in vivo. In this context, a LC-MS2 method for the comprehensive detection of sedoheptulose-7-phosphate, fructose-6-phosphate, ribose-5-phosphate, erythrose-4-phosphate, erythrulose, and glycolaldehyde in whole blood, plasma, and red blood cells was established and validated based on derivatization with 1-naphthylamine and sodium cyanoborohydride.
Collapse
Affiliation(s)
- Alexander Klaus
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | - Tim Baldensperger
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | - Roman Fiedler
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Strasse 40, 06120 Halle/Saale, Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg , Ernst-Grube-Strasse 40, 06120 Halle/Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg , Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| |
Collapse
|
4
|
Boren J, Ramos-Montoya A, Bosch KS, Vreeling H, Jonker A, Centelles JJ, Cascante M, Frederiks WM. In Situ Localization of Transketolase Activity in Epithelial Cells of Different Rat Tissues and Subcellularly in Liver Parenchymal Cells. J Histochem Cytochem 2016; 54:191-9. [PMID: 16116031 DOI: 10.1369/jhc.5a6745.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolic mapping of enzyme activities (enzyme histochemistry) is an important tool to understand (patho)physiological functions of enzymes. A new enzyme histochemical method has been developed to detect transketolase activity in situ in various rat tissues and its ultrastructural localization in individual cells. In situ detection of transketolase is important because this multifunctional enzyme has been related with diseases such as cancer, diabetes, Alzheimer's disease, and Wernicke-Korsakoff's syndrome. The proposed method is based on the tetrazolium salt method applied to unfixed cryostat sections in the presence of polyvinyl alcohol. The method appeared to be specific for transketolase activity when the proper control reaction is performed and showed a linear increase of the amount of final reaction product with incubation time. Transketolase activity was studied in liver, small intestine, trachea, tongue, kidney, adrenal gland, and eye. Activity was found in liver parenchyma, epithelium of small intestine, trachea, tongue, proximal tubules of kidney and cornea, and ganglion cells in medulla of adrenal gland. To demonstrate transketolase activity ultrastructurally in liver parenchymal cells, the cupper iron method was used. It was shown that transketolase activity was present in peroxisomes and at membranes of granular endoplasmic reticulum. This ultrastructural localization is similar to that of glucose-6-phosphate dehydrogenase activity, suggesting activity of the pentose phosphate pathway at these sites. It is concluded that the method developed for in situ localization of transketolase activity for light and electron microscopy is specific and allows further investigation of the role of transketolase in (proliferation of) cancer cells and other pathophysiological processes.
Collapse
Affiliation(s)
- Joan Boren
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bi H, Wang M, Dong X, Ai X. Cloning and expression analysis of transketolase gene in Cucumis sativus L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:512-21. [PMID: 23860231 DOI: 10.1016/j.plaphy.2013.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 06/20/2013] [Indexed: 05/26/2023]
Abstract
Transketolase (TK, EC 2.2.1.1) is a key enzyme in the photosynthetic carbon reduction cycle (Calvin cycle). A full-length cDNA encoding transketolase (TK, designated as CsTK) was isolated from cucumber leaves (Cucumis sativa L. cv 'Jinyou 3') by RT-PCR and RACE. The cDNA contained 2368 nucleotides with a complete open reading frame (ORF) of 2229 nucleotides, which was predicted to encode a peptide of 742 amino acids. Expression analysis by real-time PCR and western blot revealed that TK mRNA was abundant in cucumber leaves and detectable in stems, fruits and roots. TK activity and the gene expression at the mRNA and protein levels was higher in mid-position leaves (4th apical leaves) than in upper position leaves (1st) and base position leaves (12th). The diurnal variation of CsTK expression and TK activity in the optimal functional leaf (4th leaf) was a single-peak curve, and the peak appeared at 14:00 on a sunny day. Low temperature (5 °C) and low light (100 μmol m(-2) s(-1)) induced CsTK expression, but the expression level decreased after 24 h of chilling stress. Over-expression of CsTK increased the TK activity, mRNA abundance and activities of other main enzymes in Calvin cycle, and net photosynthetic rate (Pn) in transgenic cucumber leaves. Transgenic plants showed a higher ratio of female flower and yield relative to the wild type (WT) plants. The decreases in Pn and carboxylation efficiency (CE) were less in transgenic plants than that in WT during low temperature and low light intensity.
Collapse
Affiliation(s)
- Huangai Bi
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | |
Collapse
|
6
|
Fullam E, Pojer F, Bergfors T, Jones TA, Cole ST. Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme. Open Biol 2013; 2:110026. [PMID: 22645655 PMCID: PMC3352088 DOI: 10.1098/rsob.110026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
The transketolase (TKT) enzyme in Mycobacterium tuberculosis
represents a novel drug target for tuberculosis treatment and has low homology
with the orthologous human enzyme. Here, we report on the structural and kinetic
characterization of the transketolase from M. tuberculosis
(TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that
TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and
fructose-6-phosphate as well as the reduction of the acceptor sugar
ribose-5-phosphate. An invariant residue of the TKT consensus sequence required
for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities
are unaffected, and the 2.5 Å resolution structure of full-length TBTKT
provides an explanation for this. Key structural differences between the human
and mycobacterial TKT enzymes that impact both substrate and cofactor
recognition and binding were uncovered. These changes explain the kinetic
differences between TBTKT and its human counterpart, and their differential
inhibition by small molecules. The availability of a detailed structural model
of TBTKT will enable differences between human and M.
tuberculosis TKT structures to be exploited to design selective
inhibitors with potential antitubercular activity.
Collapse
|
7
|
Meshalkina LE, Solovjeva ON, Kochetov GA. Interaction of transketolase from human tissues with substrates. BIOCHEMISTRY (MOSCOW) 2012; 76:1061-4. [PMID: 22082276 DOI: 10.1134/s0006297911090112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Michaelis constant values for substrates of transketolase from human tissues were determined over a wide range of substrate concentrations. It is shown that K(m) values determined by other authors are significantly overestimated and explained why this is so.
Collapse
Affiliation(s)
- L E Meshalkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia.
| | | | | |
Collapse
|
8
|
Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Lüdtke S, Tittmann K. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem 2010; 285:31559-70. [PMID: 20667822 PMCID: PMC2951230 DOI: 10.1074/jbc.m110.149955] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/14/2010] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of human transketolase (TKT), a thiamine diphosphate (ThDP) and Ca(2+)-dependent enzyme that catalyzes the interketol transfer between ketoses and aldoses as part of the pentose phosphate pathway, has been determined to 1.75 Å resolution. The recombinantly produced protein crystallized in space group C2 containing one monomer in the asymmetric unit. Two monomers form the homodimeric biological assembly with two identical active sites at the dimer interface. Although the protomer exhibits the typical three (α/β)-domain structure and topology reported for TKTs from other species, structural differences are observed for several loop regions and the linker that connects the PP and Pyr domain. The cofactor and substrate binding sites of human TKT bear high resemblance to those of other TKTs but also feature unique properties, including two lysines and a serine that interact with the β-phosphate of ThDP. Furthermore, Gln(189) spans over the thiazolium moiety of ThDP and replaces an isoleucine found in most non-mammalian TKTs. The side chain of Gln(428) forms a hydrogen bond with the 4'-amino group of ThDP and replaces a histidine that is invariant in all non-mammalian TKTs. All other amino acids involved in substrate binding and catalysis are strictly conserved. Besides a steady-state kinetic analysis, microscopic equilibria of the donor half-reaction were characterized by an NMR-based intermediate analysis. These studies reveal that formation of the central 1,2-dihydroxyethyl-ThDP carbanion-enamine intermediate is thermodynamically favored with increasing carbon chain length of the donor ketose substrate. Based on the structure of human transketolase and sequence alignments, putative functional properties of the related transketolase-like proteins TKTL1 and -2 are discussed in light of recent findings suggesting that TKTL1 plays a role in cancerogenesis.
Collapse
Affiliation(s)
- Lars Mitschke
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Christoph Parthier
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Kathrin Schröder-Tittmann
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | | | - Stefan Lüdtke
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
- the Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Kai Tittmann
- From the Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
- the Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences, Department of Bioanalytics, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
9
|
Meshalkina LE, Solovjeva ON, Khodak YA, Drutsa VL, Kochetov GA. Isolation and properties of human transketolase. BIOCHEMISTRY (MOSCOW) 2010; 75:873-80. [DOI: 10.1134/s0006297910070096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ewe JA, Wan-Abdullah WN, Liong MT. Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins. Int J Food Sci Nutr 2010; 61:87-107. [PMID: 19961357 DOI: 10.3109/09637480903334163] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ten strains of Lactobacillus were evaluated for their viability in soymilk. Lactobacillus acidophilus ATCC 314, L. acidophilus FTDC 8833, L. acidophilus FTDC 8633 and L. gasseri FTDC 8131 displayed higher viability in soymilk and were thus selected to be evaluated for viability and growth characteristics in soymilk supplemented with B-vitamins. Pour plate analyses showed that the supplementation of all B-vitamins studied promoted the growth of lactobacilli to a viable count exceeding 7 log CFU/ml. alpha-Galactosidase specific activity of lactobacilli as determined spectrophotometrically showed an increase upon supplementation of B-vitamins. High-performance liquid chromatography analyses revealed that this led to increased hydrolysis of soy oligosaccharides and subsequently higher utilization of simple sugars. Production of organic acids as determined via high-performance liquid chromatography also showed an increase, accompanied by a decrease in pH of soymilk. Additionally, the supplementation of B-vitamins also promoted the synthesis of riboflavin and folic acid by lactobacilli in soymilk. Our results indicated that B-vitamin-supplemented soymilk is a good proliferation medium for strains of lactobacilli.
Collapse
Affiliation(s)
- Joo-Ann Ewe
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Malaysia
| | | | | |
Collapse
|
11
|
Vizán P, Alcarraz-Vizán G, Díaz-Moralli S, Solovjeva ON, Frederiks WM, Cascante M. Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. Int J Cancer 2009; 124:2789-96. [PMID: 19253370 DOI: 10.1002/ijc.24262] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell cycle regulation is dependent on multiple cellular and molecular events. Cell proliferation requires metabolic sources for the duplication of DNA and cell size. However, nucleotide reservoirs are not sufficient to support cell duplication and, therefore, biosynthetic pathways should be upregulated during cell cycle. Here, we reveal that glucose-6-phosphate dehydrogenase (G6PDH) and transketolase (TKT), the 2 key enzymes of oxidative and nonoxidative branches of the pentose phosphate pathway (PPP), respectively, which is necessary for nucleotide synthesis, are enhanced during cell cycle progression of the human colon cancer cell line HT29. These enhanced enzyme activities coincide with an increased ratio of pentose monophosphate to hexose monophosphate pool during late G1 and S phase, suggesting a potential role for pentose phosphates in proliferating signaling. Isotopomeric analysis distribution of nucleotide ribose synthesized from 1,2-(13)C(2)-glucose confirms the activation of the PPP during late G1 and S phase and reveals specific upregulation of the oxidative branch. Our data sustain the idea of a critical oxidative and nonoxidative balance in cancer cells, which is consistent with a late G1 metabolic check point. The distinctive modulation of these enzymes during cell cycle progression may represent a new strategy to inhibit proliferation in anticancer treatments.
Collapse
Affiliation(s)
- Pedro Vizán
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine of University of Barcelona (IBUB), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Du MX, Sim J, Fang L, Yin Z, Koh S, Stratton J, Pons J, Wang JJX, Carte B. Identification of novel small-molecule inhibitors for human transketolase by high-throughput screening with fluorescent intensity (FLINT) assay. ACTA ACUST UNITED AC 2005; 9:427-33. [PMID: 15296642 DOI: 10.1177/1087057104263913] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The metabolic enzyme transketolase (TK) plays a crucial role in tumor cell nucleic acid synthesis, using glucose through the elevated nonoxidative pentose phosphate pathway (PPP). Identification of inhibitors specifically targeting TK and preventing the nonoxidative PPP from generating the RNA ribose precursor, ribose-5-phosphate, provides a novel approach for developing effective anticancer therapeutic agents. The full-length human transketolase gene was cloned and expressed in Escherichia coli and the recombinant human transketolase protein purified to homogeneity. A fluorescent intensity (FLINT) assay was developed and optimized. Library compounds were screened in a high-throughput screening (HTS) campaign using the FLINT assay. Fifty-four initial hits were identified. Among them, 2 scaffolds with high selectivity, ideal physiochemical properties, and low molecular weight were selected for lead optimization studies. These compounds specifically inhibited in vitro TK enzyme activity and suppressed tumor cell proliferation in at least 3 cancer cell lines: SW620, LS174T, and MIA PaCa-2. Identification of these active scaffolds represents a good starting point for development of drugs specifically targeting TK and the nonoxidative PPP for cancer therapy.
Collapse
|
13
|
Bhattacharya S, Schiavone M, Gomes J, Bhattacharya SK. Cascade of bioreactors in series for conversion of 3-phospho-d-glycerate into d-ribulose-1,5-bisphosphate: kinetic parameters of enzymes and operation variables. J Biotechnol 2004; 111:203-17. [PMID: 15219406 DOI: 10.1016/j.jbiotec.2004.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 03/31/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
A novel scheme employing enzymatic catalysts is described enabling conversion of D-ribulose-1,5-bisphosphate (RuBP) from 3-phospho-D-glycerate (3-PGA) without loss of carbon. Bioreactors harboring immobilized enzymes namely, phosphoglycerate kinase (PGK), glycerate phosphate dehydrogenase, triose phosphate isomerase (TIM), aldolase, transketolase (TKL), phosphatase (PTASE/FP), epimerase (EMR) and phosphoribulokinase (PRK), in accordance with this novel scheme were employed. These reactors were designed and constructed based on simulations carried out to study their performance under various operational conditions and allowed production of about 56 +/- 3% RuBP from 3-PGA. This method of synthesis of RuBP from 3-PGA employing immobilized enzyme bioreactors may be used for continuous regeneration of RuBP in biocatalytic carbon dioxide fixation processes from emissions where RuBP acts as acceptor of carbon dioxide to produce 3-PGA, rendering the fixation process continuous.
Collapse
Affiliation(s)
- Sumana Bhattacharya
- Environmental Biotechnology Division, ABRD Company LLC, 1555 Wood Road, Cleveland, OH 44121, USA
| | | | | | | |
Collapse
|
14
|
Schenk G, Duggleby RG, Nixon PF. Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 1998; 30:1297-318. [PMID: 9924800 DOI: 10.1016/s1357-2725(98)00095-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review highlights recent research on the properties and functions of the enzyme transketolase, which requires thiamin diphosphate and a divalent metal ion for its activity. The transketolase-catalysed reaction is part of the pentose phosphate pathway, where transketolase appears to control the non-oxidative branch of this pathway, although the overall flux of labelled substrates remains controversial. Yeast transketolase is one of several thiamin diphosphate dependent enzymes whose three-dimensional structures have been determined. Together with mutational analysis these structural data have led to detailed understanding of thiamin diphosphate catalysed reactions. In the homodimer transketolase the two catalytic sites, where dihydroxyethyl groups are transferred from ketose donors to aldose acceptors, are formed at the interface between the two subunits, where the thiazole and pyrimidine rings of thiamin diphosphate are bound. Transketolase is ubiquitous and more than 30 full-length sequences are known. The encoded protein sequences contain two motifs of high homology; one common to all thiamin diphosphate-dependent enzymes and the other a unique transketolase motif. All characterised transketolases have similar kinetic and physical properties, but the mammalian enzymes are more selective in substrate utilisation than the nonmammalian representatives. Since products of the transketolase-catalysed reaction serve as precursors for a number of synthetic compounds this enzyme has been exploited for industrial applications. Putative mutant forms of transketolase, once believed to predispose to disease, have not stood up to scrutiny. However, a modification of transketolase is a marker for Alzheimer's disease, and transketolase activity in erythrocytes is a measure of thiamin nutrition. The cornea contains a particularly high transketolase concentration, consistent with the proposal that pentose phosphate pathway activity has a role in the removal of light-generated radicals.
Collapse
Affiliation(s)
- G Schenk
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|