1
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Lossio CF, Silva MTL, Correia JLA, Correia SEG, Nagano CS, Oliveira MV, Lima LD, Vital APMS, Leal RB, Nascimento KS. A Diocleinae type II lectin from Dioclea lasiophylla Mart. Ex Benth seeds specific to α-lactose/GalNAc. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Cortázar TM, Wilson IBH, Hykollari A, Reyes EA, Vega NA. Differential recognition of natural and remodeled glycotopes by three Diocleae lectins. Glycoconj J 2018; 35:205-216. [PMID: 29374812 DOI: 10.1007/s10719-018-9812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
The carbohydrate specificities of Dioclea grandiflora lectins DGL-I1 and DGL-II, and Galactia lindenii lectin II (GLL-II) were explored by use of remodeled glycoproteins as well as by the lectin hemagglutinating activity against erythrocytes from various species with different glycomic profiles. The three lectins exhibited differences in glycan binding specificity but also showed overlapping recognition of some glycotopes (i.e. Tα glycotope for the three lectins; IIβ glycotope for DGL-II and GLL-II lectins); in many cases the interaction with distinct glycotopes was influenced by the structural context, i.e., by the neighbouring sugar residues. Our data complement and expand the existing knowledge about the binding specificity of these three Diocleae lectins, and taken together with results of previous studies, allow us to suggest a functional map of the carbohydrate recognition which illustrate the impact of modification of basic glycotopes enhancing, permiting, or inhibiting their recognition by each lectin.
Collapse
Affiliation(s)
- Tania M Cortázar
- Protein Research Group, Department of Chemistry, Universidad Nacional, Calle 45 # 30-03, Building 451. Lab. 201-1, Bogotá, Colombia.
| | - Iain B H Wilson
- Molecular Glycobiology Research Group, Department für Chemie, Universität für Bodenkultur (BOKU), Muthgasse 18, A-1190, Wien, Austria
| | - Alba Hykollari
- Molecular Glycobiology Research Group, Department für Chemie, Universität für Bodenkultur (BOKU), Muthgasse 18, A-1190, Wien, Austria
| | - Edgar A Reyes
- Protein Research Group, Department of Chemistry, Universidad Nacional, Calle 45 # 30-03, Building 451. Lab. 201-1, Bogotá, Colombia
| | - Nohora A Vega
- Protein Research Group, Department of Chemistry, Universidad Nacional, Calle 45 # 30-03, Building 451. Lab. 201-1, Bogotá, Colombia
| |
Collapse
|
3
|
Lectin genes and their mature proteins: Still an exciting matter, as revealed by biochemistry and bioinformatics analyses of newly reported proteins. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Dam TK, Cavada BS, Nagano CS, Rocha BA, Benevides RG, Nascimento KS, de Sousa LA, Oscarson S, Brewer CF. Fine specificities of two lectins from Cymbosema roseum seeds: a lectin specific for high-mannose oligosaccharides and a lectin specific for blood group H type II trisaccharide. Glycobiology 2011; 21:925-33. [DOI: 10.1093/glycob/cwr025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
5
|
Peng H, Lv H, Wang Y, Liu YH, Li CY, Meng L, Chen F, Bao JK. Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 2009; 30:1805-15. [PMID: 19577602 PMCID: PMC7115534 DOI: 10.1016/j.peptides.2009.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 10/27/2022]
Abstract
A novel mannose-binding lectin (designated CML) was isolated from Clematis montana Buch.-Ham stem (Ranunculaceae) using ion exchange and gel filtration chromatographies on DEAE-Sepharose and Sephacryl S-100. The purified C. montana lectin was a homodimer of 11,968.9 Da subunits as determined by gel filtration and MS. The hemagglutinating activity of CML was inhibited by branched oligomannosides. The N-terminal 15-amino acid sequence of CML, DNVKYSGQVKNTGSA, has not been reported for other lectins. Also, the peptide mass fingerprinting assay confirmed that there is no match result of similar plant lectins for CML, indicating CML may be a novel plant lectin. CML showed marked antiviral activity against various viruses in cell culture. Subsequently, CML was also found to exhibit remarkable inhibitory effect on L929, HeLa, MCF7 and HepG2 cells. Furthermore, CML specially induced L929 cell apoptosis in dose-dependent manner as evidenced by MTT, fluorescent microscopy, LDH activity-based cytotoxicity assays and DNA ladder. Moreover, due to both caspase inhibitors and Western blot analyses, caspase was also found to play the important role in the potential apoptotic mechanism of CML. When the carbohydrate-binding site was fully inhibited by sugars, cytotoxicity was abruptly decreased and apoptotic phenomenon in L929 cells was not observed, suggesting a significant correlation between mannose-binding-specific activity and the antineoplastic mechanism.
Collapse
Affiliation(s)
- Hao Peng
- School of Life Sciences, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Rocha BAM, Moreno FBMB, Delatorre P, Souza EP, Marinho ES, Benevides RG, Rustiguel JKR, Souza LAG, Nagano CS, Debray H, Sampaio AH, de Azevedo WF, Cavada BS. Purification, Characterization, and Preliminary X-Ray Diffraction Analysis of a Lactose-Specific Lectin from Cymbosema roseum Seeds. Appl Biochem Biotechnol 2008; 152:383-93. [DOI: 10.1007/s12010-008-8334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
|
7
|
Qureshi IA, Dash P, Srivastava PS, Koundal KR. Purification and characterization of an N-acetyl-D-galactosamine-specific lectin from seeds of chickpea (Cicer arietinum L.). PHYTOCHEMICAL ANALYSIS : PCA 2006; 17:350-6. [PMID: 17019937 DOI: 10.1002/pca.925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A novel lectin (CAA-II) was isolated and purified from the seeds of Cicer arietinum by ammonium sulphate fractionation and affinity chromatography on an N-acetyl-D-galactosamine-linked agarose column. The lectin is composed of four identical subunits of 30 kDa and the molecular mass of the native lectin was estimated to be 120 kDa by gel filtration chromatography and confirmed by mass spectrometry. The lectin showed agglutination activity against rabbit erythrocytes (trypsin-treated and untreated) as well as against human erythrocytes. Haemagglutination inhibition assays showed that the lectin is a galactose-specific protein having a high affinity for N-acetyl-D-galactosamine. The molecular weight, haemagglutination pattern, carbohydrate specificity and N-terminal amino acid sequence indicated that the lectin is clearly distinct from the previously reported chickpea lectin CAA-I.
Collapse
|
8
|
Melgarejo LM, Vega N, Pérez G. Isolation and characterization of novel lectins from Canavalia ensiformis DC and Dioclea grandiflora Mart. ex Benth. seeds. ACTA ACUST UNITED AC 2005. [DOI: 10.1590/s1677-04202005000300006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two lectins were isolated from Canavalia ensiformis and Dioclea grandiflora seeds. Gel filtration produced a fraction corresponding to Con A or D. grandiflora lectin while erythroagglutination assays revealed a distinct fraction presenting a lectin that agglutinates human red blood cells (RBCs) but not rabbit RBCs. Hydrophobic interaction chromatography showed that the latter fraction yielded a protein that readily agglutinates human erythrocytes; the lectin was also purified by affinity chromatography on Lac-Sepharose showing similar properties to that of the Phenyl-Sepharose-purified lectin. Despite minor differences (carbohydrate content or A1%1cm), the two lectins showed similar molecular properties in that they consisted of two non-covalently linked monomers having a Mr of 29-30 kDa and their pI values indicated that both lectins were slightly acidic proteins. The C. ensiformis lectin (CEL-II) and D. grandiflora lectin (DGL-II) specifically recognised the H-type 2 blood group (alpha-L-Fuc (1-2)-beta-D-Gal (1-4)-beta-D-GlcNAc-O-R), while binding to H-type 1, H-type 3, H-type 4, Leª or Le y was weaker. Carbohydrate inhibition of erythroagglutination showed that simple sugars were weakly recognised by the lectins, if at all. The N-terminal region presented a unique sequence hitherto found only in some Diocleinae lectins (designated type II). The overall results confirmed the existence of a second distinct lectin type, phylogenetically close to Diocleinae species. The data indicate a functional similarity among lectins of this type which possesses distinctive characteristics differentiating them from "classical" Man/Glc lectins.
Collapse
|
9
|
Almanza M, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognises blood group H determinants. Arch Biochem Biophys 2004; 429:180-90. [PMID: 15313221 DOI: 10.1016/j.abb.2004.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 06/08/2004] [Indexed: 11/28/2022]
Abstract
A lectin was isolated from Galactia lindenii seeds and characterised. The lectin, purified by affinity chromatography, readily agglutinated O(H) human erythrocytes and interacted weakly with rabbit and rat erythrocytes. Specificity towards blood group H-type determinants was established; among them H-type 2 (alpha-L-Fuc (1-2)-beta-D-Gal (1-4)-beta-D-GlcNAc-O-R) was recognised by the lectin. The binding to the glycoconjugate was partially inhibited by GalNAc and Me-beta-Gal. The protein is an M=104,256 tetramer which dissociates into identical M=26,064 subunits under non-reducing conditions. Its amino acid composition, pI, A(1%), and N-terminal sequence (23 residues) were determined. The N-terminal region showed a unique sequence found hitherto only in some lectins (designated type-II) from the Dioclea genus. This work presents the evidence concerning a distinct type of lectin found in the Diocleinae tribe able to recognise the H-type 2 human blood group determinant and clearly different from the Glc/Man-specific lectins. The protein is a potential tool in cellular and histochemical studies.
Collapse
Affiliation(s)
- Maritza Almanza
- Biochemistry Laboratory, Department of Chemistry, Universidad Nacional, Bogotá, Colombia
| | | | | |
Collapse
|
10
|
Pando SC, Macedo MLR, Freire MGM, Toyama MH, Novello JC, Marangoni S. Biochemical characterization of a lectin from Delonix regia seeds. JOURNAL OF PROTEIN CHEMISTRY 2002; 21:279-85. [PMID: 12168698 DOI: 10.1023/a:1019797320348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A lectin from Delonix regia (DRL) seeds was purified by gel filtration on Sephadex G-100 followed by ion-exchange chromatography on diethylaminoethyl-Sepharose and reverse-phase high-performance liquid chromatography on a C18 column. Hemagglutinating activity was monitored using rat erythrocytes. DRL showed no specificity for human erythrocytes of ABO blood groups. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a single protein in the presence of 0.1 M of dithiothreitol (DTT) and in nonreducing conditions. Native-PAGE showed that DRL is a monomer with a molecular mass of about 12 kDa, as determined by denaturing gel electrophoresis and gel filtration chromatography. An amino acid composition revealed the absence of cysteine residues, the presence of 1 mol methionine/mol protein and a high proportion of acidic amino acids and glycine. The N-terminal sequence of DRL was determined by Edman degradation, and up to 16 amino acid residues showed more than 90% homology with other lectins from the Leguminosae family. The optimal pH range for lectin activity was between pH 8.0 and 9.0, and the lectin was active up to 60 degrees C. The lectin required Mn2+ for hemagglutinating activity and remained active after reduction with 0.1 M of DTT, but lost activity in the presence of 8 M of urea. Sodium metaperiodate had no effect on the activity of DRL.
Collapse
Affiliation(s)
- S C Pando
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
11
|
Freire MG, Machado OL, Smolka MB, Marangoni S, Novello JC, Macedo ML. Isolation and characterization of isolectins from Talisia esculenta seeds. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:495-500. [PMID: 11760124 DOI: 10.1023/a:1012510614429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Four isolectins (TEL-I, TEL-II, TEL-III and TEL-IV) were isolated from seeds of Talisia esculenta by reverse-phase high-performance liquid chromatography. RP-HPLC was performed on a u-Bondapack C18 column (0.78 cm x 30 cm) (Waters 991-PDA system) at room temperature. Rechromatography of the four fractions on a C18 column under the same conditions yielded lectins with two dissimilar subunits (Mr 20 kDa and 40 kDa) bound noncovalently. The isolectins showed very similar characteristics, such as molecular masses, N-terminal sequences, and hemagglutinating activity, but differed in their isoelectric points and in inhibition by carbohydrates.
Collapse
Affiliation(s)
- M G Freire
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), SP, Brazil
| | | | | | | | | | | |
Collapse
|