1
|
Pasandideh M, Gholizadeh M, Rahimi-Mianji G. A genome-wide association study revealed five SNPs affecting 8-month weight in sheep. Anim Genet 2020; 51:973-976. [PMID: 32910467 DOI: 10.1111/age.12996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/19/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Lamb weight at 8 months of age is an important trait in the sheep industry in terms of the onset of puberty around this age; however, knowledge of its effective genetic factors is limited. Therefore, a GWAS using the 50K SNP-Chip was performed on 96 Baluchi sheep to identify the genomic regions associated with 8-month weight. The results of the present study revealed five SNPs on chromosomes 4, 14 and 16 at 5% chromosome-wide significance level, jointly accounting for 0.95% of total genetic variance. Four genes - MTPN, HYDIN, LRGUK and ZFP90 - were found in 50 kb intervals around the significant SNPs, of which MTPN is involved in regulation of skeletal muscle growth. Our results may provide a new vision to identify the genomic regions affecting growth traits in sheep.
Collapse
Affiliation(s)
- M Pasandideh
- Department of Animal Science, Faculty of Animal and Aquatic Sciences, Sari Agricultural Sciences and Natural Resources University, PO Box 578, Sari, Iran
| | - M Gholizadeh
- Department of Animal Science, Faculty of Animal and Aquatic Sciences, Sari Agricultural Sciences and Natural Resources University, PO Box 578, Sari, Iran
| | - G Rahimi-Mianji
- Department of Animal Science, Faculty of Animal and Aquatic Sciences, Sari Agricultural Sciences and Natural Resources University, PO Box 578, Sari, Iran
| |
Collapse
|
2
|
Bordbar F, Jensen J, Du M, Abied A, Guo W, Xu L, Gao H, Zhang L, Li J. Identification and validation of a novel candidate gene regulating net meat weight in Simmental beef cattle based on imputed next-generation sequencing. Cell Prolif 2020; 53:e12870. [PMID: 32722873 PMCID: PMC7507581 DOI: 10.1111/cpr.12870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Genome‐wide association studies (GWAS) represent a powerful approach to detecting candidate genes for economically important traits in livestock. Our aim was to identify promising candidate muscle development genes that affect net meat weight (NMW) and validate these candidate genes in cattle. Materials and methods Using a next‐generation sequencing (NGS) dataset, we applied ~ 12 million imputed single nucleotide polymorphisms (SNPs) from 1,252 Simmental cattle to detect genes influencing net meat yield by way of a linear mixed model method. Haplotype and linkage disequilibrium (LD) blocks were employed to augment support for identified genes. To investigate the role of MTPN in bovine muscle development, we isolated myoblasts from the longissimus dorsi of a bovine foetus and treated the cells during proliferation, differentiation and hypertrophy. Results We identified one SNP (rs100670823) that exceeded our stringent significance threshold (P = 8.58 × 10−8) for a putative NMW‐related quantitative trait locus (QTL). We identified a promising candidate gene, myotrophin (MTPN), in the region around this SNP Myotrophin had a stimulatory effect on six muscle‐related markers that regulate differentiation and myoblast fusion. During hypertrophy, myotrophin promoted myotube hypertrophy and increased myotube diameters. Cell viability assay and flow cytometry showed that myotrophin inhibited myoblast proliferation. Conclusions The present experiments showed that myotrophin increases differentiation and hypertrophy of skeletal muscle cells, while inhibiting their proliferation. Our examination of GWAS results with in vitro biological studies provides new information regarding the potential application of myotrophin to increase meat yields in cattle and helpful information for further studies.
Collapse
Affiliation(s)
- Farhad Bordbar
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Min Du
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Adam Abied
- Animal Genetic Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Guo
- Meat Science and Muscle Biology, Animal and Diary Science, University of Wisconsin-Madison, Madison, USA
| | - Lingyang Xu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Husi H, MacDonald A, Skipworth RJE, Miller J, Cronshaw A, Greig C, Fearon KCH, Ross JA. Urinary diagnostic proteomic markers for dynapenia in cancer patients. Biomed Rep 2018; 8:547-556. [PMID: 29904611 DOI: 10.3892/br.2018.1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/19/2018] [Indexed: 12/24/2022] Open
Abstract
Dynapenia is defined as the age-related loss of muscle strength, and plays a significant role in the loss of physical function and increased risk of disability among older individuals. The need for an early diagnosis supports the search for a biomarker that reflects muscle 'weakening'. This has previously proven difficult due to patient heterogeneity at presentation and lack of understanding of the underlying molecular mechanisms. The aim of the present study was to identify potential urinary biomarkers of dynapenia in patients undergoing potentially curative surgery for upper gastrointestinal cancer. Maximum isometric knee extensor strength (strain gauge) and maximum leg extensor power (Nottingham power rig) measurements were taken. Cut-off values for dynapenia were based on the Allied Dunbar national fitness survey. Values below the 5th percentile for the population matched for age and sex on the Allied Dunbar national fitness survey were used to stratify the cohort into dynapenic or normal. Urine samples taken at induction of anaesthesia were analysed by SELDI-TOF mass spectrometry using CM10 and IMAC30 chip-types to establish statistically significant m/z peak fingerprint patterns, followed by in-gel LC-MS/MS to identify molecular constituents. Statistical analysis of decision-tree calculations using Biomarker Pattern software resulted in models with sensitivities of 86 and 96%, specificities of 81 and 89%, and overall correctness of 84 and 93%, when applied to the entire cohort for power and strength measurement-based stratifications using the IMAC30 chip-type and the CM10 chip-type, respectively. The molecular identities of 10 peaks of interest were further investigated. After subtraction of potentially unrelated proteins, they were identified as fragments of Annexin A1, collagen α-1 (XV), perlecan and myotrophin. These results demonstrate that urinary screening can be used to define cancer-associated muscle weakness, and the identification of potential biomarkers could be invaluable in establishing a rapid test to measure and assess dynapenia in the clinical setting.
Collapse
Affiliation(s)
- Holger Husi
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, IV2 3JH Inverness, UK
| | - Alisdair MacDonald
- School of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | | | - Janice Miller
- School of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Andrew Cronshaw
- School of Biological Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Carolyn Greig
- School of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Kenneth C H Fearon
- School of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - James A Ross
- School of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| |
Collapse
|
4
|
Wang L, Wang Y. Molecular characterization, expression patterns and subcellular localization of Myotrophin (MTPN) gene in porcine skeletal muscle. Mol Biol Rep 2011; 39:2733-8. [PMID: 21667249 DOI: 10.1007/s11033-011-1028-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/03/2011] [Indexed: 11/24/2022]
Abstract
Myotrophin (MTPN) is an effective growth factor in promoting skeletal muscle growth in vitro and vivo and has been purified from porcine skeletal muscle. However, in pigs, the information on MTPN gene is very limited. In this study, we cloned cDNA sequences and analyzed the genomic structure of porcine MTPN gene. The deduced amino acid sequence of porcine MTPN contains two the ankyrin repeat domains. RT-PCR analysis revealed that porcine MTPN gene was widely expressed in many tissues, a high expression level was observed in the spleen, liver and uterus, and transient transfection indicated that porcine MTPN proteins was located in cytoplasms within Pig Kidney Epithelial cells (PK15). Quantitative real-time PCR (qRT-PCR) analyses showed that MTPN expression peaked at embryonic 65 day post conception (dpc). During postnatal muscle development, MTPN expression was down-regulated from the 3 day to the 180 day in Yorkshire pigs. This result suggests that the MTPN gene may be important gene for skeletal muscle growth and provides useful information for further studies on its roles in porcine skeletal muscle.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| | | |
Collapse
|
5
|
Tee JM, Peppelenbosch MP. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol 2010; 45:318-30. [PMID: 20515317 PMCID: PMC2942773 DOI: 10.3109/10409238.2010.488217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute for Developmental Biology and Stem Cell Research-University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Shiraishi S, Nakamura YN, Iwamoto H, Haruno A, Sato Y, Mori S, Ikeuchi Y, Chikushi J, Hayashi T, Sato M, Cassens RG, Ito T. S-myotrophin promotes the hypertrophy of skeletal muscle of mice in vivo. Int J Biochem Cell Biol 2005; 38:1114-22. [PMID: 16531094 DOI: 10.1016/j.biocel.2005.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/22/2005] [Accepted: 11/27/2005] [Indexed: 11/16/2022]
Abstract
S-myotrophin is a newly discovered muscle growth factor. Effects of crude S-myotrophin injection on the growth and morphology of skeletal muscle of normal, ScN and mdx mice were investigated in the present study. Total dose of crude S-myotrophin was 100 microg (100 microg protein/ml x 50 microl x 20 times). In the case of normal mice (Sea:ddY), body weight and the weight of M. gluteus major of crude S-myotrophin injected mice was significantly heavier than that of control (PBS-injected) mice after 5 weeks' feeding. Antibody staining of laminin and dystrophin showed clear sarcolemmal and basement membrane structure surrounding each muscle fibre. The numbers of muscle fibres per 100 microm(2) was less in crude S-myotrophin-injected normal mice than in PBS-injected mice. Quite similar observations as in the case of normal mice were obtained in the case of ScN mice having heterogeneous gene of dystrophin. In the case of mdx mice, body weight and the weight of M. gluteus major of crude S-myotrophin injected mdx mice was significantly heavier than that of PBS-injected mdx mice. Antibody staining of laminin showed almost intact structure of the basement membrane containing laminin even in skeletal muscle of mdx mice subjected to crude S-myotrophin injection, while irregular and incompletely developed structure of muscle fibres or necrosis were observed in muscle fibres of PBS-injected mdx mice. In spite of crudeness of the preparation, the present animal experiments indicate that S-myotrophin has a strong growth promoting activity of muscle cells of normal and dystrophic mice.
Collapse
Affiliation(s)
- Shohei Shiraishi
- Laboratory of Chemistry and Technology of Animal Products, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-Ward, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|