1
|
Matusica D, Alfonsi F, Turner BJ, Butler TJ, Shepheard SR, Rogers ML, Skeldal S, Underwood CK, Mangelsdorf M, Coulson EJ. Inhibition of motor neuron death in vitro and in vivo by a p75 neurotrophin receptor intracellular domain fragment. J Cell Sci 2015; 129:517-30. [PMID: 26503157 DOI: 10.1242/jcs.173864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR); also known as NGFR) can mediate neuronal apoptosis in disease or following trauma, and facilitate survival through interactions with Trk receptors. Here we tested the ability of a p75(NTR)-derived trophic cell-permeable peptide, c29, to inhibit p75(NTR)-mediated motor neuron death. Acute c29 application to axotomized motor neuron axons decreased cell death, and systemic c29 treatment of SOD1(G93A) mice, a common model of amyotrophic lateral sclerosis, resulted in increased spinal motor neuron survival mid-disease as well as delayed disease onset. Coincident with this, c29 treatment of these mice reduced the production of p75(NTR) cleavage products. Although c29 treatment inhibited mature- and pro-nerve-growth-factor-induced death of cultured motor neurons, and these ligands induced the cleavage of p75(NTR) in motor-neuron-like NSC-34 cells, there was no direct effect of c29 on p75(NTR) cleavage. Rather, c29 promoted motor neuron survival in vitro by enhancing the activation of TrkB-dependent signaling pathways, provided that low levels of brain-derived neurotrophic factor (BDNF) were present, an effect that was replicated in vivo in SOD1(G93A) mice. We conclude that the c29 peptide facilitates BDNF-dependent survival of motor neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Dusan Matusica
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia Department of Anatomy & Histology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Fabienne Alfonsi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Victoria 3051, Australia
| | - Tim J Butler
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephanie R Shepheard
- Department of Human Physiology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Mary-Louise Rogers
- Department of Human Physiology, Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Sune Skeldal
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Clare K Underwood
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marie Mangelsdorf
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Fabrication of growth factor- and extracellular matrix-loaded, gelatin-based scaffolds and their biocompatibility with Schwann cells and dorsal root ganglia. Biomaterials 2012; 33:8529-39. [PMID: 22906605 DOI: 10.1016/j.biomaterials.2012.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/15/2012] [Indexed: 12/11/2022]
Abstract
One of the most exciting new avenues of research to repair the injured spinal cord is to combine cells for implantation with scaffolds that protect the cells and release growth factors to improve their survival and promote host axonal regeneration. To realize this goal, we fabricated biodegradable, photocurable gelatin tubes and membranes for exploratory in vitro studies. Detailed methods are described for their fabrication with a high gelatin concentration. Gelatin membranes fabricated in the same way as tubes and photo-co-immobilized with rhBDNF or rhNT-3, with or without Schwann cells (SCs), showed an initial burst of neurotrophin release within 24 h, with release diminishing progressively for 21 days thereafter. SCs attained their typical bipolar conformation on membranes without neurotrophins but adhesion, alignment and proliferation were improved with neurotrophins, particularly rhBDNF. When dorsal root ganglion explants were cultured on membranes containing laminin and fibronectin plus both neurotrophins, neurite outgrowth was lengthier compared to combining one neurotrophin with laminin and fibronectin. Thus, these gelatin membranes allow SC survival and effectively release growth factors and harbor extracellular matrix components to improve cell survival and neurite growth. These scaffolds, based on the combination of cross-linked gelatin technology and incorporation of neurotrophins and extracellular matrix components, are promising candidates for spinal cord repair.
Collapse
|
3
|
Schaser AJ, Stang K, Connor NP, Behan M. The effect of age and tongue exercise on BDNF and TrkB in the hypoglossal nucleus of rats. Behav Brain Res 2011; 226:235-41. [PMID: 21951697 DOI: 10.1016/j.bbr.2011.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/14/2011] [Indexed: 11/30/2022]
Abstract
Age-associated changes in tongue musculature may contribute to dysphagia. One possible treatment is tongue exercise. Exercise induces synaptic plasticity by increasing neurotrophic factors in spinal cord and limb musculature. However, effects of exercise on neurotrophic factors in the cranial sensorimotor system are unknown. Our purpose was to examine the effects of age and exercise on brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the rat hypoglossal nucleus. Young, middle-aged, and old rats were assigned to exercise or no-exercise control conditions. Exercise animals were trained to perform a tongue press task for 8 weeks. Samples from the hypoglossal nucleus were analyzed for BDNF and TrkB immunoreactivity. Baseline maximum tongue forces were similar in all age groups and increased significantly following exercise. BDNF immunoreactivity did not show a significant decrease with age in control group. However, in the exercise group, BDNF was significantly increased in young animals. TrkB immunoreactivity decreased significantly with age in control group, but did not change with exercise. BDNF and TrkB immunoreactivity levels were positively correlated with exercise in young and middle aged animals, but were negatively or weakly correlated with exercise in old animals and with a lack of exercise in no-exercise controls. Tongue exercise was associated with increased tongue forces in rats at all ages. While increases in BDNF and TrkB levels associated with exercise may play a role in mechanisms contributing to increased tongue forces in young and middle-aged rats, other mechanisms may be involved in increased tongue forces observed in old rats.
Collapse
Affiliation(s)
- Allison J Schaser
- Department of Surgery, University of Wisconsin-Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
4
|
Abouzied MM, El-Tahir HM, Gieselmann V, Franken S. Hepatoma-derived growth factor-related protein-3: a new neurotrophic and neurite outgrowth-promoting factor for cortical neurons. J Neurosci Res 2010; 88:3610-20. [PMID: 20890995 DOI: 10.1002/jnr.22507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/22/2010] [Accepted: 08/12/2010] [Indexed: 01/15/2023]
Abstract
Hepatoma-derived growth factor-related proteins (HRPs) make up a family of six members. Hepatoma-derived growth factor-related protein-3 (HRP-3) is the only family member whose expression is almost restricted to nervous tissue. Here we show that soluble HRP-3 acts as a novel neurotrophic factor for cultured primary cortical neurons. Antibody-mediated neutralization of HRP-3 function results in neuronal degeneration. In contrast, HRP-3 as the only addition to a culture medium not supporting neuronal survival rescues neurons to an extent comparable to the addition of FCS. Besides this neuroprotective capability, the protein exerts a neurite outgrowth-promoting effect when it is presented as a coated substrate but not as a soluble factor. This study points to an important role of HRP-3 during the development of the nervous system.
Collapse
Affiliation(s)
- Mekky M Abouzied
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | | | | | | |
Collapse
|
5
|
Lacomblez L, Bensimon G, Douillet P, Doppler V, Salachas F, Meininger V. Xaliproden in amyotrophic lateral sclerosis: early clinical trials. ACTA ACUST UNITED AC 2009; 5:99-106. [PMID: 15204011 DOI: 10.1080/14660820410018973] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. We report the safety and functional efficacy results of a double-blind, placebo-controlled phase II study of xaliproden, a non-peptidic compound with growth factor activities, in 54 ALS patients treated for up to 32 weeks. In order to overcome the interference of mortality with functional assessment in exploratory studies, we identified from our ALS database prognostic factors to establish a staging process for selection pf patients: age, disease duration, slopes of deterioration of the functional scores calculated during the two months prior to the inclusion, and the value at entry of the forced vital capacity (FVC). The six months intent-to-treat analysis showed no statistically significant effect but a trend in favour of 2 mg xaliproden compared to placebo for reduction in the rate of deterioration of FVC, limbs functional score, and manual muscle testing score (MMT). The results in the completer analysis showed a significant 43% slower rate of deterioration in FVC (P=0.046) in xaliproden-treated patients but not in functional and MMT scores. These results support the use of a staging process to select suitable patients for phase II studies, and suggest that xaliproden may have potential effects in ALS and deserve further study.
Collapse
Affiliation(s)
- Lucette Lacomblez
- Department of Pharmacology,Federation of Neurology, Mazarin, Hôpital de la Salpêtrière, Paris, France.
| | | | | | | | | | | |
Collapse
|
6
|
Echarte MM, Bruno L, Arndt-Jovin DJ, Jovin TM, Pietrasanta LI. Quantitative single particle tracking of NGF-receptor complexes: transport is bidirectional but biased by longer retrograde run lengths. FEBS Lett 2007; 581:2905-13. [PMID: 17543952 DOI: 10.1016/j.febslet.2007.05.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 01/11/2023]
Abstract
The retrograde transport of nerve growth factor (NGF) in neurite-like processes of living differentiated PC12 cells was studied using streptavidin-quantum dots (QDs) coupled to monobiotin-NGF. These reagents were active in differentiation, binding, internalization, and transport. Ten-35% of the QD-NGF-receptor complexes were mobile. Quantitative single particle tracking revealed a bidirectional step-like motion, requiring intact microtubules, with a net retrograde velocity of 0.054+/-0.020 microm/s. Individual runs had a mean velocity of approximately 0.15 microm/s at room temperature, and the run times were exponentially distributed. The photostability and brightness of QDs permit extended real-time analysis of individual QDbNGF- receptor complexes trafficking within neurites.
Collapse
Affiliation(s)
- María M Echarte
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón I, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
7
|
Settanni G, Cattaneo A, Carloni P. Molecular dynamics simulations of the NGF-TrkA domain 5 complex and comparison with biological data. Biophys J 2003; 84:2282-92. [PMID: 12668437 PMCID: PMC1302795 DOI: 10.1016/s0006-3495(03)75034-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 11/19/2002] [Indexed: 11/28/2022] Open
Abstract
The nerve growth factor (NGF) is an important pharmacological target for Alzheimer's and other neurodegenerative diseases. Its action derives partly from its binding to the tyrosine kinase A receptor (TrkA). Here we study energetics and dynamics of the NGF-TrkA complex by carrying out multinanosecond molecular dynamics simulations, accompanied by electrostatic calculations based on the Poisson-Boltzmann equation. Our calculations, which are based on the x-ray structure of the complex, suggest that some of the mutations affecting dramatically the affinity of the complex involve residues that form highly favorable, direct or water-mediated hydrogen bond interactions at the ligand-receptor interface and, in some cases, that also critically participate to the large-scale motions of the complex. Furthermore, our calculations offer a rationale for the small effect on binding affinity observed upon specific mutations involving large changes in electrostatics (i.e., the charged-to-neutral mutations). Finally, these calculations, used along with the mutagenesis data, provide a basis for designing new peptides that mimic NGF in TrkA binding function.
Collapse
Affiliation(s)
- Giovanni Settanni
- International School for Advanced Studies (SISSA/ISAS), Trieste, Italy
| | | | | |
Collapse
|
8
|
Pradat PF, Kennel P, Naimi-Sadaoui S, Finiels F, Scherman D, Orsini C, Delaere P, Mallet J, Revah F. Viral and non-viral gene therapy partially prevents experimental cisplatin-induced neuropathy. Gene Ther 2002; 9:1333-7. [PMID: 12224017 DOI: 10.1038/sj.gt.3301801] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2002] [Accepted: 05/06/2002] [Indexed: 11/09/2022]
Abstract
Sensory neuropathies are a frequent and dose-limiting complication resulting from treatment with cisplatin. Neurotrophin-3 (NT-3) promotes the survival of the large fiber sensory neurones that are impaired in cisplatin-induced neuropathy, and may therefore serve as a preventive agent. However, the short half-life of recombinant NT-3 after systemic administration limits its clinical applications. We compared two muscle-based gene transfer strategies for the continuous delivery of NT-3 to the bloodstream in an experimental model of cisplatin-induced neuropathy. Electrophysiological studies showed that the intramuscular injection of an adenovirus encoding NT-3 partially prevented the cisplatin-induced increase in sensory distal latencies. Similar effects were observed in cisplatin-treated mice that received intramuscular injections of a plasmid encoding NT-3 associated with in vivo electroporation. The two techniques were well tolerated and induced only slight muscle toxicity. Measurement of renal function, weight and survival showed that neither technique increased the toxicity of cisplatin. Our study shows that gene therapy, using either a viral or a non-viral vector, is a promising strategy for the prevention of cisplatin-induced neuropathy.
Collapse
Affiliation(s)
- P-F Pradat
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs (LGN), UMR C9923, Centre National de la Recherche Scientifique, Hôpital de la Pitié-Salpétrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pradat PF, Kennel P, Naimi-Sadaoui S, Finiels F, Orsini C, Revah F, Delaere P, Mallet J. Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies. Hum Gene Ther 2001; 12:2237-49. [PMID: 11779407 DOI: 10.1089/10430340152710577] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurotrophic factors (NFs) are promising agents for the treatment of peripheral neuropathies such as diabetic neuropathy. However, the value of treatment with recombinant NF is limited by the short half-lives of these molecules, which reduces efficiency, and by their potential toxicity. We explored the use of intramuscular injection of a recombinant adenovirus encoding NT-3 (AdNT-3) to deliver sustained low doses of NT-3. We assessed its effect in two rat models: streptozotocin (STZ)-induced diabetes, a model of early diabetic neuropathy characterized by demyelination, and acrylamide experimental neuropathy, a model of diffuse axonal neuropathy which, like late-onset human diabetic neuropathy, results in a diffuse sensorimotor neuropathy with dysautonomy. Treatment of STZ-diabetic rats with AdNT-3 partially prevented the slowing of motor and sensory nerve conduction velocities (p < 0.01 and p < 0.0001, respectively). Treatment with AdNT-3 of acrylamide-intoxicated rats prevented the slowing of motor and nerve conduction velocities (p < 0.001 and p < 0.0001, respectively) and the decrease in amplitude of compound muscle potentials (p < 0.0001), an index of denervation. Acrylamide-intoxicated rats treated with NT-3 had higher than control levels of muscle choline acetyltransferase activity (p < 0.05), suggesting greater muscle innervation. In addition, treatment of acrylamide-intoxicated rats with AdNT-3 significantly improved behavioral test results. Treatment with AdNT-3 was well tolerated with minimal muscle inflammation and no detectable general side effects. Therefore, our results suggest that NT-3 delivery by adenovirus-based gene therapy is a promising strategy for the prevention of both early diabetic neuropathy and axonal neuropathies, especially late axonal diabetic neuropathy.
Collapse
Affiliation(s)
- P F Pradat
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs (LGN), UMR C9923, Centre National de la Recherche Scientifique, Hôpital de la Pitié-Salpétrière, 75651 Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lowry KS, Murray SS, Coulson EJ, Epa R, Bartlett PF, Barrett G, Cheema SS. Systemic administration of antisense p75(NTR) oligodeoxynucleotides rescues axotomised spinal motor neurons. J Neurosci Res 2001; 64:11-7. [PMID: 11276046 DOI: 10.1002/jnr.1048] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75(NTR) can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease.
Collapse
Affiliation(s)
- K S Lowry
- Department of Anatomy and Cell Biology, Monash University, Wellington Road, Clayton, Victoria, 3800 Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Pradat PF, Finiels F, Kennel P, Naimi S, Orsini C, Delaere P, Revah F, Mallet J. Partial prevention of cisplatin-induced neuropathy by electroporation-mediated nonviral gene transfer. Hum Gene Ther 2001; 12:367-75. [PMID: 11242529 DOI: 10.1089/10430340150503993] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cisplatin-induced sensory peripheral neuropathy is the dose-limiting factor for cisplatin chemotherapy. We describe the preventive effect of NT-3 delivery, using direct gene transfer into muscle by in vivo electroporation in a mouse model of cisplatin-induced neuropathy. Cisplatin-induced neuropathy was produced by weekly injections of cisplatin (five injections). Two doses of plasmid DNA encoding murine NT-3 (pCMVNT-3) were tested (5 and 50 microg/animal/injection). Cisplatin-treated mice were given two intramuscular injections. The first injection of pCMVNT-3 was given 2 days before the first injection of cisplatin and the second injection 2 weeks later. Six weeks after the start of the experiment, measurement of NT-3 levels (ELISA) demonstrated significant levels both in muscle and plasma. We observed a smaller cisplatin-related increase in the latency of the sensory nerve action potential of the caudal nerve in pCMVNT-3-treated mice than in controls (p < 0.0001). Mean sensory distal latencies were not different between the 5- and 50- microg/animal/injection groups. Treatment with gene therapy induced only a slight muscle toxicity and no general side effects. Therefore, neurotrophic factor delivery by direct gene transfer into muscle by electroporation is of potential benefit in the prevention of cisplatin-induced neuropathy and of peripheral neuropathies in general.
Collapse
Affiliation(s)
- P F Pradat
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, UMR C9923, Centre National de la Recherche Scientifique, Hôpital de la Pitié-Salpétriere, 75651 Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Doré S, Kar S, Zheng WH, Quirion R. Rediscovering good old friend IGF-I in the new millenium: possible usefulness in Alzheimer's disease and stroke. PHARMACEUTICA ACTA HELVETIAE 2000; 74:273-80. [PMID: 10812969 DOI: 10.1016/s0031-6865(99)00037-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Much research has been done over the past two decades on the role of insulin-like growth factors I and II (IGF) in the maintenance of normal body homeostasis, especially in regard to various endocrine functions, growth and aging. For example, IGF-I is a well established promoter of tissue growth and has been used in the clinics for the treatment of growth related disorders, even being abused by athletes to enhance performance in competitions. In contrast, comparatively limited attention has been given to the potential significance of the IGFs in the central nervous system. Over the past few years, we have studied the trophic as well as neuromodulatory roles of the IGFs in the brain. IGF-I and IGF-II are potent modulators of acetylcholine release, IGF-I inhibiting release while IGF-II is a potent stimulant. Moreover, only the internalization of the IGF-I receptor complex was blocked by an inhibitor of phosphotyrosylation. This is in accordance with the differential nature of the IGF-I and IGF-II receptors, the former being a tyrosine kinase receptor while the later is a single transmembrane domain protein bearing binding sites for 6-mannose phosphate containing residues. The activation of IGF-I receptors protected neurons against cell death induced by amyloidogenic derivatives likely by an intracellular mechanism distinct from those involved in the regulation of acetylcholine release and neuronal growth. The stimulation of IGF-I receptors can activate intracellular pathways implicating a PI3/Akt kinase and CREB phosphorylation or modulate the production of free radicals. The effects, particularly those of IGF-I on key markers of the Alzheimer's (AD) brains namely cholinergic dysfunction, neuronal amyloid toxicity, tau phosphorylation and glucose metabolism suggest the potential usefulness of this growth factor in the treatment of neurodegenerative diseases. However, the poor bioavailability, enzymatic stability and brain penetration of IGF-I hamper progress in this regard. The recent development of a small, non-peptidyl mimetic of insulin able to directly activate the insulin receptor [Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao, X., Griffin, P., Calaycay, J., Zierath, J.R., Heck, J. V., Smith, R.G., Moller, D.E., 1999. Science, 284, 974-977] suggests that a similar strategy could be used for IGF-I and the IGF-I receptor leading to the characterization of IGF-I mimics of potential clinical usefulness.
Collapse
Affiliation(s)
- S Doré
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
13
|
Pan W, Vallance K, Kastin AJ. TGFalpha and the blood-brain barrier: accumulation in cerebral vasculature. Exp Neurol 1999; 160:454-9. [PMID: 10619562 DOI: 10.1006/exnr.1999.7215] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor alpha (TGFalpha) is a cytokine that belongs to the epidermal growth factor (EGF) family of growth factors. EGF has a fast and saturable entry from blood to brain that is inhibitable by TGFalpha (18). In this report, we studied the passage of TGFalpha from blood to brain after an i.v. bolus injection. Using radioactively labeled peptide, we found that TGFalpha had an apparent rate of entry of 0.7 microl/g/min. However, most of the TGFalpha was trapped in the capillary endothelial cells of the cerebral vasculature rather than entering the brain parenchyma. No saturation was detected. TGFalpha was relatively stable in blood for 20 min after i.v. injection, but dissociation of the isotope 125I was more evident in brain. The accumulation of TGFalpha in the cerebral vasculature was similar to that of amyloid-beta protein1-40. Therefore, we conclude that TGFalpha from the periphery interacts with the blood-brain barrier without substantial uptake into brain parenchyma. This raises the possibility that TGFalpha might be involved in intracranial vascular disorders such as angiopathy.
Collapse
Affiliation(s)
- W Pan
- Department of Neurology, Tulane University, New Orleans, Louisiana 70112-1262, USA
| | | | | |
Collapse
|
14
|
Mitsumoto H, Tsuzaka K. Neurotrophic factors and neuro-muscular disease: II. GDNF, other neurotrophic factors, and future directions. Muscle Nerve 1999; 22:1000-21. [PMID: 10417781 DOI: 10.1002/(sici)1097-4598(199908)22:8<1000::aid-mus2>3.0.co;2-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This is the second of two reviews in which we discuss the essential aspects of neurotrophic factor neurobiology, the characteristics of each neurotrophic factor, and their clinical relevance to neuromuscular diseases. The previous paper reviewed the neurotrophin family and neuropoietic cytokines. In the present article, we focus on the GDNF family and other neurotrophic factors and then consider future approaches that may be utilized in neurotrophic factor treatment.
Collapse
Affiliation(s)
- H Mitsumoto
- Department of Neurology (S-90), The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
15
|
Culmsee C, Semkova I, Krieglstein J. NGF mediates the neuroprotective effect of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo: evidence from an NGF-antisense study. Neurochem Int 1999; 35:47-57. [PMID: 10403429 DOI: 10.1016/s0197-0186(99)00032-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies in our laboratory suggested that neuroprotective effects of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo occurred due to enhanced synthesis of nerve growth factor. The aim of the present study was to evaluate the effects of a phosphothioated NGF oligodeoxynucleotide on neuroprotection by clenbuterol in vitro and in vivo. After clenbuterol treatment (1-100 microM) an increase in nerve growth factor mRNA and protein levels (200-300% of control) was observed in primary cultures of rat cortical astrocytes. Nerve growth factor antisense oligonucleotide (0.3-1 microM for 3 days) reduced the content of nerve growth factor protein in the medium of the astrocytes concentration-dependently to 20% of control level. Nerve growth factor content in the medium of mixed hippocampal cells was reduced to 55% of sister cultures receiving the vehicle or a random control oligonucleotide. In mixed hippocampal cultures pretreated with random oligonucleotide (1 microM, 30 h), clenbuterol (10 microM) reduced the percentage of damaged neurons after glutamate exposure (0.5 mM, 1 h) to 17%. Pretreatment with nerve growth factor antisense oligonucleotide (1 microM) for 30 h before glutamate incubation blocked the protective effect of clenbuterol. In vivo, clenbuterol (0.01-0.1 mg/kg) reduced the infarct volume in a rat model of permanent focal cerebral ischemia dose-dependently. Nerve growth factor antisense oligonucleotides injected into the cortical tissue before ischemia abolished the cerebroprotective effect of clenbuterol. Our results indicate that the nerve growth factor antisense oligonucleotide presented in this study is a useful tool to investigate the effects of nerve growth factor knock down. By using the nerve growth factor antisense oligonucleotide we could demonstrate that nerve growth factor mediated the neuroprotective effects of the beta2-adrenoceptor agonist clenbuterol in vitro and in vivo.
Collapse
Affiliation(s)
- C Culmsee
- Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Germany
| | | | | |
Collapse
|
16
|
Suliman IA, Lindgren JU, Gillberg PG, Elhassan AM, Monneron C, Adem A. Alteration of spinal cord IGF-I receptors and skeletal muscle IGF-I after hind-limb immobilization in the rat. Neuroreport 1999; 10:1195-9. [PMID: 10363923 DOI: 10.1097/00001756-199904260-00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of 4 weeks' hind-limb immobilization on the spinal cord insulin-like growth factor-I (IGF-I) receptors and skeletal muscle IGF-I level was investigated in rats. Quantitative receptor autoradiography using [125I]IGF-I as a ligand was performed to measure IGF-I receptors in cryosections from the lumbar region of the spinal cord. IGF-I receptor levels were significantly higher in all spinal cord laminae on the side ipsilateral to the immobilized limb than in the same spinal level of the controls. Using radioimmunoassay (RIA), IGF-I levels were significantly low in the soleus (SOL), but not the tibialis anterior (TIB) muscles, compared to the controls. The enhancement of the spinal cord IGF-I receptors after hind-limb immobilization may constitute part of the nervous system response to disuse.
Collapse
Affiliation(s)
- I A Suliman
- Department of Orthopedic Surgery, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Akar CA, Wallace WC. Amyloid precursor protein modulates the interaction of nerve growth factor with p75 receptor and potentiates its activation of trkA phosphorylation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:125-32. [PMID: 9602092 DOI: 10.1016/s0169-328x(98)00037-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have recently shown that the secreted form of amyloid precursor protein (APPs) potentiates the neurotrophic actions of nerve growth factor (NGF). The combined presence of NGF and APPs in low concentrations resulted in a synergistic potentiation of NGF neuritogenic activity on PC12 cells. Therefore, the effect of APPs on NGF receptor-binding has been examined. In the presence of APPs, the apparent affinity of NGF's low affinity binding site increased by a factor of 2.5. In addition, a 2- to 2.5-fold decrease in the number of sites was observed, although APPs did not compete with NGF for the same binding sites. These effects of APPs were not caused by direct interaction with NGF itself. In addition, APPs synergistically potentiated the tyrosine phosphorylation of trkA due to NGF. These results suggest that an increased affinity of p75 for NGF may underlie the potentiation of neurotrophic actions of NGF by APPs, and that increase may be caused by an indirect interaction between APPs and p75.
Collapse
Affiliation(s)
- C A Akar
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Gerontology Research Center, 4940 Eastern Ave., Baltimore, MD 21224, USA
| | | |
Collapse
|
18
|
Satoh JI, Yukitake M, Kurohara K, Kuroda Y. Retinoic acid-induced neuronal differentiation regulates expression of mRNAs for neurotrophins and neurotrophin receptors in a human embryonal carcinoma cell line NTera2. Neuropathology 1997. [DOI: 10.1111/j.1440-1789.1997.tb00018.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci 1997. [PMID: 8987823 DOI: 10.1523/jneurosci.16-24-07950.1996] [Citation(s) in RCA: 325] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The survival, differentiation, and maintenance of responsive neurons are regulated by nerve growth factor (NGF), which is secreted by the target and interacts with receptors on the axon tip. It is uncertain how the NGF signal is communicated retrogradely from distal axons to neuron cell bodies. Retrograde transport of activated receptors in endocytic vesicles could convey the signal. However, little is known about endocytosis of NGF receptors, and there is no evidence that NGF receptors continue to signal after endocytosis. We have examined early events in the membrane traffic of NGF and its receptor, gp140(TrkA) (TrkA), in PC12 cells. NGF induced rapid and extensive endocytosis of TrkA in these cells, and the receptor subsequently moved into small organelles located near the plasma membrane. Some of these organelles contained clathrin and alpha-adaptin, which implies that TrkA is internalized by clathrin-mediated endocytosis. Using mechanical permeabilization and fractionation, intracellular organelles derived from endocytosis were separated from the plasma membrane. After NGF treatment, NGF was bound to TrkA in endocytic organelles, and TrkA was tyrosine-phosphorylated and bound to PLC-gamma1, suggesting that these receptors were competent to initiate signal transduction. These studies raise the possibility that NGF induces formation of signaling endosomes containing activated TrkA. They are an important first step in elucidating the molecular mechanism of NGF retrograde signaling.
Collapse
|
20
|
|
21
|
Abstract
The discovery of nerve growth factor (NGF) over 40 years ago led to the formulation of the "Neurotrophic Factor Hypothesis". This hypothesis states that developing neurons compete with each other for a limited supply of a neurotrophic factor (NTF) provided by the target tissue. Successful competitors survive; unsuccessful ones die. Subsequent research on NTFs has shown that NTF expression and actions are considerably more complex and diverse than initially predicted. Even for NGF, different regulatory patterns are seen for different neuronal populations. As would be predicted by the "Neurotrophic Factor Hypothesis", NGF levels critically regulate basal forebrain cholinergic neuron size and neurochemical differentiation. In contrast, the level of trkA, the NGF receptor, regulates these properties in caudate-putamen cholinergic neurons. Understanding NTF regulation and actions on neurons has led to their use in clinical trials of human neurological diseases. NTFs may emerge as important therapies to prevent neuronal dysfunction and death.
Collapse
Affiliation(s)
- E C Yuen
- Department of Neurology, University of California at San Francisco 94143, USA
| | | | | | | | | |
Collapse
|