1
|
Loss of stability and unfolding cooperativity in hPGK1 upon gradual structural perturbation of its N-terminal domain hydrophobic core. Sci Rep 2022; 12:17200. [PMID: 36229482 PMCID: PMC9561527 DOI: 10.1038/s41598-022-22088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
Phosphoglycerate kinase has been a model for the stability, folding cooperativity and catalysis of a two-domain protein. The human isoform 1 (hPGK1) is associated with cancer development and rare genetic diseases that affect several of its features. To investigate how mutations affect hPGK1 folding landscape and interaction networks, we have introduced mutations at a buried site in the N-terminal domain (F25 mutants) that either created cavities (F25L, F25V, F25A), enhanced conformational entropy (F25G) or introduced structural strain (F25W) and evaluated their effects using biophysical experimental and theoretical methods. All F25 mutants folded well, but showed reduced unfolding cooperativity, kinetic stability and altered activation energetics according to the results from thermal and chemical denaturation analyses. These alterations correlated well with the structural perturbation caused by mutations in the N-terminal domain and the destabilization caused in the interdomain interface as revealed by H/D exchange under native conditions. Importantly, experimental and theoretical analyses showed that these effects are significant even when the perturbation is mild and local. Our approach will be useful to establish the molecular basis of hPGK1 genotype-phenotype correlations due to phosphorylation events and single amino acid substitutions associated with disease.
Collapse
|
2
|
Li Q, Scholl ZN, Marszalek PE. Unraveling the Mechanical Unfolding Pathways of a Multidomain Protein: Phosphoglycerate Kinase. Biophys J 2019; 115:46-58. [PMID: 29972811 DOI: 10.1016/j.bpj.2018.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/31/2018] [Accepted: 05/21/2018] [Indexed: 01/12/2023] Open
Abstract
Phosphoglycerate kinase (PGK) is a highly conserved enzyme that is crucial for glycolysis. PGK is a monomeric protein composed of two similar domains and has been the focus of many studies for investigating interdomain interactions within the native state and during folding. Previous studies used traditional biophysical methods (such as circular dichroism, tryptophan fluorescence, and NMR) to measure signals over a large ensemble of molecules, which made it difficult to observe transient changes in stability or structure during unfolding and refolding of single molecules. Here, we unfold single molecules of PGK using atomic force spectroscopy and steered molecular dynamic computer simulations to examine the conformational dynamics of PGK during its unfolding process. Our results show that after the initial forced separation of its domains, yeast PGK (yPGK) does not follow a single mechanical unfolding pathway; instead, it stochastically follows two distinct pathways: unfolding from the N-terminal domain or unfolding from the C-terminal domain. The truncated yPGK N-terminal domain unfolds via a transient intermediate, whereas the structurally similar isolated C-terminal domain has no detectable intermediates throughout its mechanical unfolding process. The N-terminal domain in the full-length yPGK displays a strong unfolding intermediate 13% of the time, whereas the truncated domain (yPGKNT) transitions through the intermediate 81% of the time. This effect indicates that the mechanical properties of yPGK cannot be simply deduced from the mechanical properties of its constituents. We also find that Escherichia coli PGK is significantly less mechanically stable as compared to yPGK, contrary to bulk unfolding measurements. Our results support the growing body of observations that the folding behavior of multidomain proteins is difficult to predict based solely on the studies of isolated domains.
Collapse
Affiliation(s)
- Qing Li
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Zackary N Scholl
- Program in Computational Biology and Bioinformatics, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| | - Piotr E Marszalek
- Center for Biologically Inspired Materials and Material Systems, Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
3
|
Valentini G, Maggi M, Pey AL. Protein Stability, Folding and Misfolding in Human PGK1 Deficiency. Biomolecules 2013; 3:1030-52. [PMID: 24970202 PMCID: PMC4030965 DOI: 10.3390/biom3041030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023] Open
Abstract
Conformational diseases are often caused by mutations, altering protein folding and stability in vivo. We review here our recent work on the effects of mutations on the human phosphoglycerate kinase 1 (hPGK1), with a particular focus on thermodynamics and kinetics of protein folding and misfolding. Expression analyses and in vitro biophysical studies indicate that disease-causing mutations enhance protein aggregation propensity. We found a strong correlation among protein aggregation propensity, thermodynamic stability, cooperativity and dynamics. Comparison of folding and unfolding properties with previous reports in PGKs from other species suggests that hPGK1 is very sensitive to mutations leading to enhance protein aggregation through changes in protein folding cooperativity and the structure of the relevant denaturation transition state for aggregation. Overall, we provide a mechanistic framework for protein misfolding of hPGK1, which is insightful to develop new therapeutic strategies aimed to target native state stability and foldability in hPGK1 deficient patients.
Collapse
Affiliation(s)
- Giovanna Valentini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Viale Taramelli, 3B, Pavia 27100, Italy.
| | - Maristella Maggi
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Viale Taramelli, 3B, Pavia 27100, Italy.
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, Granada 18071, Spain.
| |
Collapse
|
4
|
Tran DT, Banerjee S, Alayash AI, Crumbliss AL, Fitzgerald MC. Slow histidine H/D exchange protocol for thermodynamic analysis of protein folding and stability using mass spectrometry. Anal Chem 2012; 84:1653-60. [PMID: 22185579 DOI: 10.1021/ac202927p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application.
Collapse
Affiliation(s)
- Duc T Tran
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
5
|
Rosenkranz T, Schlesinger R, Gabba M, Fitter J. Native and Unfolded States of Phosphoglycerate Kinase Studied by Single‐Molecule FRET. Chemphyschem 2010; 12:704-10. [DOI: 10.1002/cphc.201000701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/29/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias Rosenkranz
- Research Centre Jülich, ISB‐2: Molecular Biophysics, 52425 Jülich (Germany), Fax: (+49) 2461 61 1448
| | - Ramona Schlesinger
- Research Centre Jülich, ISB‐2: Molecular Biophysics, 52425 Jülich (Germany), Fax: (+49) 2461 61 1448
| | - Matteo Gabba
- Research Centre Jülich, ISB‐2: Molecular Biophysics, 52425 Jülich (Germany), Fax: (+49) 2461 61 1448
| | - Jörg Fitter
- Research Centre Jülich, ISB‐2: Molecular Biophysics, 52425 Jülich (Germany), Fax: (+49) 2461 61 1448
| |
Collapse
|
6
|
Agócs G, Solymosi K, Varga A, Módos K, Kellermayer M, Závodszky P, Fidy J, Osváth S. Recovery of functional enzyme from amyloid fibrils. FEBS Lett 2010; 584:1139-42. [PMID: 20132817 DOI: 10.1016/j.febslet.2010.01.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/21/2023]
Abstract
Amyloid deposits, which accumulate in numerous diseases, are the final stage of multi-step protein conformational-conversion and oligomerization processes. The underlying molecular mechanisms are not fully understood, and particularly little is known about the reverse reaction. Here we show that phosphoglycerate kinase amyloid fibrils can be converted back into native protein. We achieved recovery with 60% efficiency, which is comparable to the success rate of the unfolding-refolding studies, and the recovered enzyme was folded, stable and fully active. The key intermediate stages in the recovery process are fibril disassembly and unfolding followed by spontaneous protein folding.
Collapse
Affiliation(s)
- Gergely Agócs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gráczer É, Varga A, Melnik B, Semisotnov G, Závodszky P, Vas M. Symmetrical Refolding of Protein Domains and Subunits: Example of the Dimeric Two-Domain 3-Isopropylmalate Dehydrogenases. Biochemistry 2009; 48:1123-34. [DOI: 10.1021/bi801857t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Éva Gráczer
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Bogdan Melnik
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Gennady Semisotnov
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Péter Závodszky
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Mária Vas
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
8
|
Predicting protein folding pathways at the mesoscopic level based on native interactions between secondary structure elements. BMC Bioinformatics 2008; 9:320. [PMID: 18651953 PMCID: PMC2527578 DOI: 10.1186/1471-2105-9-320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 07/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Since experimental determination of protein folding pathways remains difficult, computational techniques are often used to simulate protein folding. Most current techniques to predict protein folding pathways are computationally intensive and are suitable only for small proteins. Results By assuming that the native structure of a protein is known and representing each intermediate conformation as a collection of fully folded structures in which each of them contains a set of interacting secondary structure elements, we show that it is possible to significantly reduce the conformation space while still being able to predict the most energetically favorable folding pathway of large proteins with hundreds of residues at the mesoscopic level, including the pig muscle phosphoglycerate kinase with 416 residues. The model is detailed enough to distinguish between different folding pathways of structurally very similar proteins, including the streptococcal protein G and the peptostreptococcal protein L. The model is also able to recognize the differences between the folding pathways of protein G and its two structurally similar variants NuG1 and NuG2, which are even harder to distinguish. We show that this strategy can produce accurate predictions on many other proteins with experimentally determined intermediate folding states. Conclusion Our technique is efficient enough to predict folding pathways for both large and small proteins at the mesoscopic level. Such a strategy is often the only feasible choice for large proteins. A software program implementing this strategy (SSFold) is available at .
Collapse
|
9
|
Balog E, Laberge M, Fidy J. The influence of interdomain interactions on the intradomain motions in yeast phosphoglycerate kinase: a molecular dynamics study. Biophys J 2007; 92:1709-16. [PMID: 17158564 PMCID: PMC1796818 DOI: 10.1529/biophysj.106.093195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 11/06/2006] [Indexed: 11/18/2022] Open
Abstract
A 3-ns molecular dynamics simulation in explicit solvent was performed to examine the inter- and intradomain motions of the two-domain enzyme yeast phosphoglycerate kinase without the presence of substrates. To elucidate contributions from individual domains, simulations were carried out on the complete enzyme as well as on each isolated domain. The enzyme is known to undergo a hinge-bending type of motion as it cycles from an open to a closed conformation to allow the phosphoryl transfer occur. Analysis of the correlation of atomic movements during the simulations confirms hinge bending in the nanosecond timescale: the two domains of the complete enzyme exhibit rigid body motions anticorrelated with respect to each other. The correlation of the intradomain motions of both domains converges, yielding a distinct correlation map in the enzyme. In the isolated domain simulations-in which interdomain interactions cannot occur-the correlation of domain motions no longer converges and shows a very small correlation during the same simulation time. This result points to the importance of interdomain contacts in the overall dynamics of the protein. The secondary structure elements responsible for interdomain contacts are also discussed.
Collapse
Affiliation(s)
- Erika Balog
- Department of Biophysics and Radiation Biology and Research Group for Membrane Biology of the Hungarian Academy of Sciences, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
10
|
Osváth S, Jäckel M, Agócs G, Závodszky P, Köhler G, Fidy J. Domain interactions direct misfolding and amyloid formation of yeast phosphoglycerate kinase. Proteins 2006; 62:909-17. [PMID: 16353200 DOI: 10.1002/prot.20823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are proteins that are built of two structural domains and are deposited full-length in amyloid plaques formed in various diseases. In spite of the known differences in the mechanisms of folding of single- and multidomain proteins, no published studies can be found that address the role of the domain-domain interactions during misfolding and amyloid formation. By the discovery of the role of domain-domain interactions, here we provide important insight in the submolecular mechanism of amyloid formation. A model system based on yeast phosphoglycerate kinase was designed. This system includes the wild-type yeast phosphoglycerate kinase and single-tryptophan mutants of the individual N and C terminal domains and the complete protein. Electron microscopic measurements proved that amyloid fibrils grow from all mutants under identical conditions as for the wild-type protein. Misfolding and amyloid formation was followed in stopped-flow and manual mixing experiments on the 1 ms to 4 days timescale. Tryptophan fluorescence was used for selective detection of conformational changes accompanying the formation of the amyloidogenic intermediates and the growth of amyloid fibrils. The interactions between the polypeptide chains of the two domains direct the misfolding process from the early steps to the amyloid formation, and influence the final structure. The kinetics of misfolding is different for the individual domains, pointing to the significance of the amino acid sequence. Misfolding of the domains within the complete protein is synchronized indicating that domain-domain interactions direct the misfolding and amyloid formation mechanism.
Collapse
Affiliation(s)
- Szabolcs Osváth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
11
|
Varga A, Flachner B, Gráczer E, Osváth S, Szilágyi AN, Vas M. Correlation between conformational stability of the ternary enzyme-substrate complex and domain closure of 3-phosphoglycerate kinase. FEBS J 2005; 272:1867-85. [PMID: 15819882 DOI: 10.1111/j.1742-4658.2005.04618.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
3-phosphoglycerate kinase (PGK) is a typical two-domain hinge-bending enzyme with a well-structured interdomain region. The mechanism of domain-domain interaction and its regulation by substrate binding is not yet fully understood. Here the existence of strong cooperativity between the two domains was demonstrated by following heat transitions of pig muscle and yeast PGKs using differential scanning microcalorimetry and fluorimetry. Two mutants of yeast PGK containing a single tryptophan fluorophore either in the N- or in the C-terminal domain were also studied. The coincidence of the calorimetric and fluorimetric heat transitions in all cases indicated simultaneous, highly cooperative unfolding of the two domains. This cooperativity is preserved in the presence of substrates: 3-phosphoglycerate bound to the N domain or the nucleotide (MgADP, MgATP) bound to the C domain increased the structural stability of the whole molecule. A structural explanation of domain-domain interaction is suggested by analysis of the atomic contacts in 12 different PGK crystal structures. Well-defined backbone and side-chain H bonds, and hydrophobic and electrostatic interactions between side chains of conserved residues are proposed to be responsible for domain-domain communication. Upon binding of each substrate newly formed molecular contacts are identified that firstly explain the order of the increased heat stability in the various binary complexes, and secondly describe the possible route of transmission of the substrate-induced conformational effects from one domain to the other. The largest stability is characteristic of the native ternary complex and is abolished in the case of a chemically modified inactive form of PGK, the domain closure of which was previously shown to be prevented [Sinev MA, Razgulyaev OI, Vas M, Timchenko AA & Ptitsyn OB (1989) Eur J Biochem180, 61-66]. Thus, conformational stability correlates with domain closure that requires simultaneous binding of both substrates.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
12
|
Osváth S, Köhler G, Závodszky P, Fidy J. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase. Protein Sci 2005; 14:1609-16. [PMID: 15883189 PMCID: PMC2253372 DOI: 10.1110/ps.051359905] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded state by stopped-flow or manual mixing and monitored by tryptophan fluorescence from 1 msec to 1000 sec. Denaturant titrations of both individual domains showed apparent two-state unfolding transitions. Refolding kinetics of the individual domains from different denaturant concentrations, however, revealed the presence of intermediate structures during titration for both domains. Refolding of the same domains within the complete protein showed that domain-domain interactions direct the folding of both domains, but in an asymmetric way. Folding of the N domain was already altered within 1 msec, while detectable changes in the folding of the C domain occurred only 60-100 msec after initiating refolding. All mutants showed a hyperfluorescent kinetic intermediate. Both the disappearance of this intermediate and the completion of the folding were significantly faster in the individual N domain than in the complete protein. On the contrary, folding of the individual C domain was slower than in the complete protein. The presence of the C domain directs the refolding of the N domain along a completely different pathway than that of the individual N domain, while folding of the individual C domain follows the same path as within the complete protein.
Collapse
Affiliation(s)
- Szabolcs Osváth
- Department of Biophysics and Radiation Biology, Hungarian Academy of Sciences-Semmelweis University, Budapest.
| | | | | | | |
Collapse
|
13
|
Szilágyi AN, Kotova NV, Semisotnov GV, Vas M. Incomplete refolding of a fragment of the N-terminal domain of pig muscle 3-phosphoglycerate kinase that lacks a subdomain. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1327.2001.02060.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Osváth S, Sabelko JJ, Gruebele M. Tuning the Heterogeneous Early Folding Dynamics of Phosphoglycerate Kinase. J Mol Biol 2003; 333:187-99. [PMID: 14516752 DOI: 10.1016/j.jmb.2003.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We recently reported stretched kinetics during the formation of a collapsed, long-lived intermediate state of the large two-domain enzyme phosphoglycerate kinase (PGK). It was postulated that intrinsic roughness of the energy landscape on the way downhill to the intermediate causes the lack of a single time-scale. Here, we investigate several alternative explanations for stretched refolding dynamics in more detail: tyrosine fluorescence, multiple tryptophan probes, and rate differences between independently folding domains. To this end, we systematically simplify PGK in several steps from the full protein with two tryptophan residues and all tyrosine residues probed, to a single domain with only one tryptophan residue and no tyrosine residue probed. The kinetics in the 10 micros to 10 ms range are revealed by laser-induced temperature-jump relaxation experiments. The isolated N-terminal domain forms an intermediate by nearly single-exponential kinetics, but the isolated C-terminal domain shows strongly non-exponential kinetics. Thus, domain interaction and a cis-proline residue between the two domains are ruled out as the sole contributors to heterogeneity during the earliest folding dynamics of the C-terminal domain. We apply two limiting models for the roughness of the energy landscape. A sequential three-state model lumps all the roughness into a single trap. The "strange kinetics" model with logarithmic oscillations developed by Klafter and co-workers distributes the roughness over a larger number of states. Both models explain our data about equally well, but the coincidental values of rate constants in all of our double-exponential fits, and the absence of a spectroscopic signature distinct from the endpoints of the folding process favors more roughness than can be explained by just a single trap.
Collapse
Affiliation(s)
- Szabolcs Osváth
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | | | | |
Collapse
|
15
|
Galani D, Fersht AR, Perrett S. Folding of the yeast prion protein Ure2: kinetic evidence for folding and unfolding intermediates. J Mol Biol 2002; 315:213-27. [PMID: 11779240 DOI: 10.1006/jmbi.2001.5234] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.
Collapse
Affiliation(s)
- Despina Galani
- Centre for Protein Engineering, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
16
|
Szilágyi AN, Ghosh M, Garman E, Vas M. A 1.8 A resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure. J Mol Biol 2001; 306:499-511. [PMID: 11178909 DOI: 10.1006/jmbi.2000.4294] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3-phosphoglycerate kinase (PGK) is a typical kinase with two structural domains. The domains each bind one of the two substrates, 3-phosphoglycerate (3-PG) and MgATP. For the phospho-transfer reaction to take place the substrates must be brought closer by a hinge-bending domain closure. Open and closed structures of the enzyme with different relative domain positions have been determined from different species, but a comprehensive description of this conformational transition is yet to be attained. Crystals of pig muscle PGK in complex with MgADP and 3-phosphoglycerate were grown under the conditions which have previously resulted in crystals of the closed, catalytically competent conformation of Trypanosoma brucei PGK. The X-ray structure of the pig muscle ternary complex was determined at 1.8 A and the model was refined to R=20.8% and Rfree=24.1%. Contrary to expectation, however, it represents an essentially open conformation compared to that of T. brucei PGK. In addition, the beta-phosphate group of ADP is mobile in the new structure, in contrast to its well-defined position in T. brucei PGK. An extensive comparison of the ternary complexes from these remote species has been carried out in order to establish general differences between the two conformations and is reported here. A second pair of the open and closed structures was also compared. These analyses have made it possible to define several characteristic changes which accompany the structural transition, in addition to those identified previously: (1) the operation of a hinge at beta-strand L in the inter-domain region which greatly affects the relative domain positions; (2) the rearrangement and movement of helix 8, regulated through the interactions with the nucleotide phosphate; and (3) the existence of another hinge between helix 14 and the rest of the C-terminal part of the chain, which allows fine adjustment of the N-domain position. The main hinge at beta-strand L acts in concert with the C-terminal hinge at helix 7 described previously. Simultaneous interactions of the nucleotide phosphate groups with the loop that precedes helix 8, beta-strand J and the N terminus of helix 13 are required for propagation of the nucleotide effect towards the beta-strand L molecular hinge. A detailed description of the role of nucleotide binding in the hinge operation is presented.
Collapse
Affiliation(s)
- A N Szilágyi
- Institute of Enzymology Biological Research Center, Hungarian Academy of Sciences, Budapest, H-1518, Hungary
| | | | | | | |
Collapse
|