1
|
Olszewski M, Hu X, Lin TC, Matyjaszewski K, Lebedeva N, Taylor P. Oscillatory and Relaxation Study of the Interfacial Rheology of Star Polymers with Low-Grafting-Density PEO Arms and Hydrophobic Poly(divinylbenzene) Cores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37216597 DOI: 10.1021/acs.langmuir.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Star polymers have been gaining interest due to their tunable properties. They have been used as effective stabilizers for Pickering emulsions. Herein, star polymers were synthesized via activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP). Poly(ethylene oxide) (PEO) with terminal α-bromoisobutyrate ATRP functionality was used as a macroinitiator and divinylbenzene as a crosslinker for the arm-first star synthesis. Stars with PEO arms with a molar mass of either 2 or 5 kDa had a relatively low density of grafted chains, i.e., ca. 0.25 chain/nm2. The properties of PEO stars adsorbed at oil-water interfaces were investigated using interfacial tension and interfacial rheology. The magnitude of interfacial tensions at oil-water interfaces depends on the nature of the oil phase, being lower at the m-xylene/water interface than at the n-dodecane/water interface. Small differences were observed for stars with different molecular weights of PEO arms. The overall behavior of PEO stars adsorbed at an interface can be considered as an intermediate between a particle and a linear/branched polymer. Obtained results offer an important insight into the interfacial rheology of PEO star polymers in the context of their application as stabilizers for Pickering emulsions.
Collapse
Affiliation(s)
- Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ting-Chih Lin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Natalia Lebedeva
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27409, United States
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| |
Collapse
|
2
|
Chan DHH, Hunter SJ, Neal TJ, Lindsay C, Taylor P, Armes SP. Adsorption of sterically-stabilized diblock copolymer nanoparticles at the oil-water interface: effect of charged end-groups on interfacial rheology. SOFT MATTER 2022; 18:6757-6770. [PMID: 36040127 DOI: 10.1039/d2sm00835a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The RAFT aqueous emulsion polymerization of either methyl methacrylate (MMA) or benzyl methacrylate (BzMA) is conducted at 70 °C using poly(glycerol monomethacrylate) (PGMA) as a water-soluble precursor to produce sterically-stabilized diblock copolymer nanoparticles of approximately 30 nm diameter. Carboxylic acid- or morpholine-functional RAFT agents are employed to confer anionic or cationic functionality at the ends of the PGMA stabilizer chains, with a neutral RAFT agent being used as a control. Thus the electrophoretic footprint of such minimally-charged model nanoparticles can be adjusted simply by varying the solution pH. Giant (mm-sized) aqueous droplets containing such nanoparticles are then grown within a continuous phase of n-dodecane and a series of interfacial rheology measurements are conducted. The interfacial tension between the aqueous phase and n-dodecane is strongly dependent on the charge of the terminal group on the stabilizer chains. More specifically, neutral nanoparticles produce a significantly lower interfacial tension than either cationic or anionic nanoparticles. Moreover, adsorption of neutral nanoparticles at the n-dodecane-water interface produces higher interfacial elastic moduli than that observed for charged nanoparticles. This is because neutral nanoparticles can adsorb at much higher surface packing densities owing to the absence of electrostatic repulsive forces in this case.
Collapse
Affiliation(s)
- Derek H H Chan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Saul J Hunter
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Thomas J Neal
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Christopher Lindsay
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| |
Collapse
|
3
|
Tripodi E, Lazidis A, Norton IT, Spyropoulos F. Food Structure Development in Emulsion Systems. HANDBOOK OF FOOD STRUCTURE DEVELOPMENT 2019. [DOI: 10.1039/9781788016155-00059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of food products exist, in part or entirely, as emulsions, while others are present in an emulsified state at some point during their production/formation. Mayonnaise, butter, margarine, salad dressing, whipped cream, and ice cream represent some of the typical examples of emulsion-based foods. Controlled by both formulation and processing aspects, the emulsion architecture that is formed ultimately determines many of the attributes of the final food product. This chapter initially provides an overview of the basic constituents of emulsions and their influence on the microstructure and stability of conventional as well as more complex systems. The available spectrum of processing routes and characterization techniques currently utilized (or emerging) within the area of emulsions is then discussed. The chapter concludes with a concise outline of the relationship between food emulsion microstructure design and its performance (textural, rheological, sensorial, etc.).
Collapse
Affiliation(s)
- Ernesto Tripodi
- Chemical Engineering Department, University of Birmingham UK
| | - Aris Lazidis
- Chemical Engineering Department, University of Birmingham UK
- Nestlé Product Technology Centre, York UK
| | - Ian T. Norton
- Chemical Engineering Department, University of Birmingham UK
| | | |
Collapse
|
4
|
Balaraj VS, Zeng PCH, Sanford SP, McBride SA, Raghunandan A, Lopez JM, Hirsa AH. Surface shear viscosity as a macroscopic probe of amyloid fibril formation at a fluid interface. SOFT MATTER 2017; 13:1780-1787. [PMID: 28177017 DOI: 10.1039/c6sm01831a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amyloidogenesis of proteins is of wide interest because amyloid structures are associated with many diseases, including Alzheimer's and type II diabetes. Dozens of different proteins of various sizes are known to form amyloid fibrils. While there are numerous studies on the fibrillization of insulin induced by various perturbations, shearing at fluid interfaces has not received as much attention. Here, we present a study of human insulin fibrillization at room temperature using a deep-channel surface viscometer. The hydrodynamics of the bulk flow equilibrates in just over a minute, but the proteins at the air-water interface exhibit a very slow development during which the surface (excess) shear viscosity deduced from a Newtonian surface model increases slightly over a period of a day and a half. Then, there is a very rapid increase in the surface shear viscosity to effectively unbounded levels as the interface becomes immobilized. Atomic force microscopy shows that fibrils appear at the interface after it becomes immobilized. Fibrillization in the bulk does not occur until much later. This has been verified by concurrent atomic force microscopy and circular dichroism spectroscopy of samples from the bulk. The immobilized interface has zero in-plane shear rate, however due to the bulk flow, there is an increase in the strength of the normal component of the shear rate at the interface, implicating this component of shear in the fibrillization process ultimately resulting in a thick weave of fibrils on the interface. Real-time detection of fibrillization via interfacial rheology may find utility in other studies of proteins at sheared interfaces.
Collapse
Affiliation(s)
- Vignesh S Balaraj
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | - Philip C H Zeng
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA. and Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Sean P Sanford
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Samantha A McBride
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Aditya Raghunandan
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | - Juan M Lopez
- School of Mathematical and Statistical Sciences, Arizona State Univ., Tempe AZ, 85287, USA
| | - Amir H Hirsa
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA. and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| |
Collapse
|
5
|
Garakani TM, Richter MJ, Böker A. Controlling the bio-inspired synthesis of silica. J Colloid Interface Sci 2017; 488:322-334. [PMID: 27838557 DOI: 10.1016/j.jcis.2016.10.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022]
Abstract
The influence of different parameters on the silicification procedure using lysozyme is reported. When polyethoxysiloxane (PEOS), an internally crosslinked silica reservoir, is used, regular structures with a narrow size distribution could be obtained only via introducing the silica precursor in two steps including initial dropping and subsequent addition of residual oil phase in one portion. We found that mixing sequence of mineralizing agents in the presence of a positively charged surfactant plays a key role in terms of silica precipitation when tetraethoxyorthosilicate (TEOS) is the oil phase. In contrast, well-mineralized crumpled features with high specific surface area could be synthesized in the presence of PEOS as a silica precursor polymer, regardless of mixing sequence. Moreover, introducing sodium dodecyl sulfate (SDS) as a negatively charged surfactant resulted in regular silica sphere formation only in combination with hexylene glycol (MPD) as a specific co-solvent. Finally, it is demonstrated that by inclusion of different nanoparticles even more sophisticated hybrid materials can be generated.
Collapse
Affiliation(s)
- Tayebeh Mirzaei Garakani
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University, Forckenbeckstr. 50, D-52062 Aachen, Germany
| | - Marina Juliane Richter
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University, Forckenbeckstr. 50, D-52062 Aachen, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstr. 69, 14476 Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
6
|
Wojciechowski K, Orczyk M, Gutberlet T, Trapp M, Marcinkowski K, Kobiela T, Geue T. Unusual penetration of phospholipid mono- and bilayers by Quillaja bark saponin biosurfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1931-40. [DOI: 10.1016/j.bbamem.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
7
|
Mezzenga R, Fischer P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:046601. [PMID: 23455715 DOI: 10.1088/0034-4885/76/4/046601] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aggregation of proteins is of fundamental relevance in a number of daily phenomena, as important and diverse as blood coagulation, medical diseases, or cooking an egg in the kitchen. Colloidal food systems, in particular, are examples that have great significance for protein aggregation, not only for their importance and implications, which touches on everyday life, but also because they allow the limits of the colloidal science analogy to be tested in a much broader window of conditions, such as pH, ionic strength, concentration and temperature. Thus, studying the aggregation and self-assembly of proteins in foods challenges our understanding of these complex systems from both the molecular and statistical physics perspectives. Last but not least, food offers a unique playground to study the aggregation of proteins in three, two and one dimensions, that is to say, in the bulk, at air/water and oil/water interfaces and in protein fibrillation phenomena. In this review we will tackle this very ambitious task in order to discuss the current understanding of protein aggregation in the framework of foods, which is possibly one of the broadest contexts, yet is of tremendous daily relevance.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- ETH Zurich, Food and Soft Materials Science, Department of Health Science and Technology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland.
| | | |
Collapse
|
8
|
|
9
|
Krägel J, Derkatch SR, Miller R. Interfacial shear rheology of protein-surfactant layers. Adv Colloid Interface Sci 2008; 144:38-53. [PMID: 18823871 DOI: 10.1016/j.cis.2008.08.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The shear rheology of adsorbed or spread layers at air/liquid and liquid/liquid phase boundaries is relevant in a wide range of technical applications such as mass transfer, monolayers, foaming, emulsification, oil recovery, or high speed coating. Interfacial shear rheological properties can provide important information about interactions and molecular structure in the interfacial layer. A variety of measuring techniques have been proposed in the literature to measure interfacial shear rheological properties and have been applied to pure protein or mixed protein adsorption layers at air/water or oil/water interfaces. Such systems play for example an important role as stabilizers in foams and emulsions. The aim of this contribution is to give a literature overview of interfacial shear rheological studies of pure protein and protein/surfactant mixtures at liquid interfaces measured with different techniques. Techniques which utilize the damping of waves, spectroscopic or AFM techniques and all micro-rheological techniques will not discuss here.
Collapse
Affiliation(s)
- J Krägel
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, Germany.
| | | | | |
Collapse
|
10
|
Acosta EJ, Gitiafroz R, Zuo YY, Policova Z, Cox PN, Hair ML, Neumann AW. Effect of humidity on lung surfactant films subjected to dynamic compression/expansion cycles. Respir Physiol Neurobiol 2007; 155:255-67. [DOI: 10.1016/j.resp.2006.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
|
11
|
Roberts SA, Kellaway IW, Taylor KMG, Warburton B, Peters K. Combined surface pressure-interfacial shear rheology study of the effect of pH on the adsorption of proteins at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7342-8. [PMID: 16042464 DOI: 10.1021/la050272l] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of pH on the adsorption of catalase and lysozyme at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. The results presented show that the rate of development of interfacial phenomena increases as the pH of the subphase approaches the isoelectric point of the protein under investigation. The development of the measured interfacial rheological parameters is due to an increased rate of cross-link formation within the resultant interfacial gel. The formation of the interfacial gels has been modeled using a combination of the Smoluchowski theory for the coagulation of an aerosol or fog and classic rubber elasticity theory. The enhanced rate of cross-link formation at the isoelectric point is a result of an in-surface phase separation brought about by cooperative deionization of the protein molecules near their isoelectric point. Simultaneous measurements of surface pressure and interfacial rheology have enabled us to show that the development of a gel-like interfacial network coincides with observed increases in surface pressure.
Collapse
Affiliation(s)
- Simon A Roberts
- The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | | | | | | | | |
Collapse
|
12
|
Roberts SA, Kellaway IW, Taylor KMG, Warburton B, Peters K. Combined surface pressure-interfacial shear rheology studies of the interaction of proteins with spread phospholipid monolayers at the air–water interface. Int J Pharm 2005; 300:48-55. [PMID: 15970408 DOI: 10.1016/j.ijpharm.2005.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/11/2005] [Accepted: 05/16/2005] [Indexed: 11/17/2022]
Abstract
The adsorption of two model proteins, catalase and lysozyme, to phospholipid monolayers spread at the air-water interface has been studied using a combined surface pressure-interfacial shear rheology technique. Monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) and DPPC:DPPG (7:3) were spread on a phosphate buffer air-water interface at pH 7.4. Protein solutions were introduced to the subphase and the resultant changes in surface pressure and interfacial storage and loss moduli were recorded with time. The results show that catalase readily adsorbs to all the phospholipid monolayers investigated, inducing a transition from liquid-like to gel-like rheological behaviour in the process. The changes in surface rheology as a result of the adsorption of catalase increase in the order DPPC<DPPC:DPPG<DPPG. Lysozyme behaves in a similar manner beneath a DPPG monolayer, but shows no measurable differences when injected beneath DPPC or the DPPC:DPPG (7:3) mixed monolayer. It is proposed that DPPG monolayers are more susceptible to penetration by adsorbing protein molecules. The interaction between DPPG and lysozyme is further enhanced due to electrostatic interactions between the negatively charged DPPG and the positively charged lysozyme.
Collapse
Affiliation(s)
- Simon A Roberts
- The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | | | |
Collapse
|
13
|
Karakashev SI, Nguyen AV, Manev ED, Phan CM. Surface foam film waves studied with high-speed linescan camera. Colloids Surf A Physicochem Eng Asp 2005. [DOI: 10.1016/j.colsurfa.2005.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ridout MJ, Mackie AR, Wilde PJ. Rheology of mixed beta-casein/beta-lactoglobulin films at the air-water interface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:3930-3937. [PMID: 15186119 DOI: 10.1021/jf034854p] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The adsorption of dilute mixtures of beta-casein/beta-lactoglobulin to the air-water interface was investigated using surface dilatation and surface shear rheology. The data were fitted to simple rheological models to try to gain further information regarding the composition and nature of the interface. The dilatational measurements suggested that the composition of the interface could be determined using these models and that the surface concentration was dominated by the beta-casein in the early stages of adsorption but that high levels of beta-lactoglobulin were present in the final stages. Surface shear rheological measurements showed a similar trend. However, the shear measurements appeared to be more sensitive to the strength of the network than to the composition of the interface. Fluorescence microscopy supported the findings and demonstrated that any "phase separation" capable of affecting the surface rheological measurements occurred at the sub-micrometer scale. The results also demonstrated that the heterogeneity of the interface, once formed, is kinetically trapped, and no further phase separation occurs over the time span of the experiments.
Collapse
Affiliation(s)
- Michael J Ridout
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom.
| | | | | |
Collapse
|
15
|
|
16
|
Gunning PA, Mackie AR, Gunning AP, Woodward NC, Wilde PJ, Morris VJ. Effect of Surfactant Type on Surfactant−Protein Interactions at the Air−Water Interface. Biomacromolecules 2004; 5:984-91. [PMID: 15132691 DOI: 10.1021/bm0344957] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The displacement of the proteins (beta-lactoglobulin and beta-casein) from an air-water interface by the nonionic (Tween 20 and Tween 60) and ionic (sodium dodecyl sulfate, cetyltrimethylammonium bromide, and lyso-phosphatidylcholine-lauroyl) surfactants has been visualized by atomic force microscopy (AFM). The surface structure has been sampled by the use of Langmuir-Blodgett deposition onto mica substrates to allow imaging in the AFM. In all cases, the displacement process was found to occur through the recently proposed orogenic mechanism (Mackie et al. J. Colloid Interface Sci. 1999, 210, 157-166). In the case of the nonionic surfactants, the displacement involved nucleation and growth of surfactant domains leading to failure of the protein network and subsequent loss of protein into the bulk phase. The surface pressure dependence of the growth of surfactant domains and the failure of the network were found to be the same for both Tween 20 and Tween 60, demonstrating that the breakdown of the protein film was dominated by the mechanical properties of the network. The displacement of protein by ionic surfactants was found to be characterized by nucleation of surfactant domains with little domain growth prior to failure of the network. The size of the domains formed by ionic surfactants was found to be limited by the strong intersurfactant repulsive forces between the charged headgroups. Screening of these charges led to an increase in the size of the domains. The surface pressure at which the network continuity was lost was found to be dependent on the type of surfactant and, in all cases, to occur at higher surface pressures than that required for nonionic surfactants. This has been attributed to surfactant-protein binding that initially strengthens the protein network at low surfactant concentrations. Evidence obtained from surface shear rheology supports this assertion.
Collapse
Affiliation(s)
- Paul A Gunning
- Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney NR4 7UA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
17
|
Miller R, Fainerman VB, Makievski AV, Krägel J, Grigoriev DO, Kazakov VN, Sinyachenko OV. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Adv Colloid Interface Sci 2000; 86:39-82. [PMID: 10798350 DOI: 10.1016/s0001-8686(00)00032-4] [Citation(s) in RCA: 369] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.
Collapse
Affiliation(s)
- R Miller
- MPI für Kolloid- und Grenzflächenforschung, Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
The influence of the binding of low molecular weight surfactants on the thermal stability and secondary structure of IgG. Colloids Surf A Physicochem Eng Asp 2000. [DOI: 10.1016/s0927-7757(99)00332-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Krägel J, Grigoriev DO, Makievski AV, Miller R, Fainerman VB, Wilde PJ, Wüstneck R. Consistency of surface mechanical properties of spread protein layers at the liquid–air interface at different spreading conditions. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(98)00093-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Li J, Krägel J, Makievski A, Fainermann V, Miller R, Möhwald H. A study of mixed phospholipid/β-casein monolayers at the water|air surface. Colloids Surf A Physicochem Eng Asp 1998. [DOI: 10.1016/s0927-7757(98)00703-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|