1
|
Genetic and Histopathological Heterogeneity of Neuroblastoma and Precision Therapeutic Approaches for Extremely Unfavorable Histology Subgroups. Biomolecules 2022; 12:biom12010079. [PMID: 35053227 PMCID: PMC8773700 DOI: 10.3390/biom12010079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Peripheral neuroblastic tumors (neuroblastoma, ganglioneuroblastoma and ganglioneuroma) are heterogeneous and their diverse and wide range of clinical behaviors (spontaneous regression, tumor maturation and aggressive progression) are closely associated with genetic/molecular properties of the individual tumors. The International Neuroblastoma Pathology Classification, a biologically relevant and prognostically significant morphology classification distinguishing the favorable histology (FH) and unfavorable histology (UH) groups in this disease, predicts survival probabilities of the patients with the highest hazard ratio. The recent advance of neuroblastoma research with precision medicine approaches demonstrates that tumors in the UH group are also heterogeneous and four distinct subgroups—MYC, TERT, ALT and null—are identified. Among them, the first three subgroups are collectively named extremely unfavorable histology (EUH) tumors because of their highly aggressive clinical behavior. As indicated by their names, these EUH tumors are individually defined by their potential targets detected molecularly and immunohistochemically, such as MYC-family protein overexpression, TERT overexpression and ATRX (or DAXX) loss. In the latter half on this paper, the current status of therapeutic targeting of these EUH tumors is discussed for the future development of effective treatments of the patients.
Collapse
|
2
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
3
|
Ricardo MG, Ali AM, Plewka J, Surmiak E, Labuzek B, Neochoritis CG, Atmaj J, Skalniak L, Zhang R, Holak TA, Groves M, Rivera DG, Dömling A. Multicomponent Peptide Stapling as a Diversity‐Driven Tool for the Development of Inhibitors of Protein–Protein Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel G. Ricardo
- Faculty of Chemistry, Center for Natural Product ResearchUniversity of Havana Cuba
| | - Ameena M. Ali
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Jacek Plewka
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Ewa Surmiak
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Beata Labuzek
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Constantinos G. Neochoritis
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
- Department of ChemistryUniversity of Crete Greece
| | - Jack Atmaj
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
- Faculty of ChemistryJagiellonian University Krakow Poland
| | | | - Ran Zhang
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Tad A. Holak
- Faculty of ChemistryJagiellonian University Krakow Poland
| | - Matthew Groves
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| | - Daniel G. Rivera
- Faculty of Chemistry, Center for Natural Product ResearchUniversity of Havana Cuba
| | - Alexander Dömling
- Department of PharmacyDrug Design group, University of Groningen The Netherlands
| |
Collapse
|
4
|
Ricardo MG, Ali AM, Plewka J, Surmiak E, Labuzek B, Neochoritis CG, Atmaj J, Skalniak L, Zhang R, Holak TA, Groves M, Rivera DG, Dömling A. Multicomponent Peptide Stapling as a Diversity-Driven Tool for the Development of Inhibitors of Protein-Protein Interactions. Angew Chem Int Ed Engl 2020; 59:5235-5241. [PMID: 31944488 DOI: 10.1002/anie.201916257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Stapled peptides are chemical entities in-between biologics and small molecules, which have proven to be the solution to high affinity protein-protein interaction antagonism, while keeping control over pharmacological performance such as stability and membrane penetration. We demonstrate that the multicomponent reaction-based stapling is an effective strategy for the development of α-helical peptides with highly potent dual antagonistic action of MDM2 and MDMX binding p53. Such a potent inhibitory activity of p53-MDM2/X interactions was assessed by fluorescence polarization, microscale thermophoresis, and 2D NMR, while several cocrystal structures with MDM2 were obtained. This MCR stapling protocol proved efficient and versatile in terms of diversity generation at the staple, as evidenced by the incorporation of both exo- and endo-cyclic hydrophobic moieties at the side chain cross-linkers. The interaction of the Ugi-staple fragments with the target protein was demonstrated by crystallography.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Faculty of Chemistry, Center for Natural Product Research, University of Havana, Cuba
| | - Ameena M Ali
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ewa Surmiak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Beata Labuzek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Constantinos G Neochoritis
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands.,Department of Chemistry, University of, Crete, Greece
| | - Jack Atmaj
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands.,Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Lukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ran Zhang
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Matthew Groves
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| | - Daniel G Rivera
- Faculty of Chemistry, Center for Natural Product Research, University of Havana, Cuba
| | - Alexander Dömling
- Department of Pharmacy, Drug Design group, University of, Groningen, The Netherlands
| |
Collapse
|
5
|
Rational design using sequence information only produces a peptide that binds to the intrinsically disordered region of p53. Sci Rep 2019; 9:8584. [PMID: 31253862 PMCID: PMC6599006 DOI: 10.1038/s41598-019-44688-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/22/2019] [Indexed: 01/19/2023] Open
Abstract
Intrinsically disordered regions (IDRs) of proteins are involved in many diseases. The rational drug design against disease-mediating proteins is often based on the 3D structure; however, the flexible structure of IDRs hinders the use of such structure-based design methods. Here, we developed a rational design method to obtain a peptide that can bind an IDR using only sequence information based on the statistical contact energy of amino acid pairs. We applied the method to the disordered C-terminal domain of the tumor suppressor p53. Titration experiments revealed that one of the designed peptides, DP6, has a druggable affinity of ~1 μM to the p53 C-terminal domain. NMR spectroscopy and molecular dynamics simulation revealed that DP6 selectively binds to the vicinity of the target sequence in the C-terminal domain of p53. DP6 inhibits the nonspecific DNA binding of a tetrameric form of the p53 C-terminal domain, but does not significantly affect the specific DNA binding of a tetrameric form of the p53 core domain. Single-molecule measurements revealed that DP6 retards the 1D sliding of p53 along DNA, implying modulation of the target searching of p53. Statistical potential-based design may be useful in designing peptides that target IDRs for therapeutic purposes.
Collapse
|
6
|
Tumor Suppressor p53 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1. J Virol 2017; 91:JVI.00312-17. [PMID: 28794023 DOI: 10.1128/jvi.00312-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers.IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology.
Collapse
|
7
|
Wamsley JJ, Gary C, Biktasova A, Hajek M, Bellinger G, Virk R, Issaeva N, Yarbrough WG. Loss of LZAP inactivates p53 and regulates sensitivity of cells to DNA damage in a p53-dependent manner. Oncogenesis 2017; 6:e314. [PMID: 28394357 PMCID: PMC5520489 DOI: 10.1038/oncsis.2017.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy and radiation, the two most common cancer therapies, exert their anticancer effects by causing damage to cellular DNA. However, systemic treatment damages DNA not only in cancer, but also in healthy cells, resulting in the progression of serious side effects and limiting efficacy of the treatment. Interestingly, in response to DNA damage, p53 seems to play an opposite role in normal and in the majority of cancer cells-wild-type p53 mediates apoptosis in healthy tissues, attributing to the side effects, whereas mutant p53 often is responsible for acquired cancer resistance to the treatment. Here, we show that leucine zipper-containing ARF-binding protein (LZAP) binds and stabilizes p53. LZAP depletion eliminates p53 protein independently of its mutation status, subsequently protecting wild-type p53 cells from DNA damage-induced cell death, while rendering cells expressing mutant p53 more sensitive to the treatment. In human non-small-cell lung cancer, LZAP levels correlated with p53 levels, suggesting that loss of LZAP may represent a novel mechanism of p53 inactivation in human cancer. Our studies establish LZAP as a p53 regulator and p53-dependent determinative of cell fate in response to DNA damaging treatment.
Collapse
Affiliation(s)
- J J Wamsley
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - C Gary
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - A Biktasova
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - M Hajek
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - G Bellinger
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - R Virk
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - N Issaeva
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - W G Yarbrough
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Abstract
Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with new and improved properties in a physiological environment, and in turn could serve as useful tools to study biology and lead to practical applications in the areas of diagnostics or therapeutics. Remarkable progress has been accomplished over the past 20 years with the discovery of many potent bioactive foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules such as membranes, protein surfaces, and nucleic acids. These current achievements, future opportunities, and key challenges that remain are discussed in this article.
Collapse
|
9
|
Zhang W, Zhong T, Chen Y. LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer. J Proteomics 2016; 152:172-180. [PMID: 27826076 DOI: 10.1016/j.jprot.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
In breast cancer, p53 could be functionally compromised by interaction with several proteins. Among those proteins, MDM2 serves as a pivotal negative regulator and counteracts p53 activation. Thus, the ability to quantitatively and accurately monitor the changes in level of p53-MDM2 interaction with disease state can enable an improved understanding of this protein-protein interaction (PPI), provide a better insight into cancer development and allow the emergence of advanced treatments. However, rare studies have evaluated the quantitative extent of PPI including p53-MDM2 interaction so far. In this study, a LC-MS/MS-based targeted proteomics assay was developed and coupled with co-immunoprecipitation (Co-IP) for the quantification of p53-MDM2 complex. A p53 antibody with the epitope residing at 156-214 residues achieved the greatest IP efficiency. 321KPLDGEYFTLQIR333 (p53) and 327ENWLPEDK334 (MDM2) were selected as surrogate peptides in the targeted analysis. Stable isotope-labeled synthetic peptides were used as internal standards. An LOQ (limit of quantification) of 2ng/mL was obtained. Then, the assay was applied to quantitatively detect total p53, total MDM2 and p53-MDM2 in breast cells and tissue samples. Western blotting was performed for a comparison. Finally, a quantitative time-course analysis in MCF-7 cells with the treatment of nutlin-3 as a PPI inhibitor was also monitored. BIOLOGICAL SIGNIFICANCE Proteins do not function as single entities but rather as a team player that has to communicate. Protein-protein interaction (PPI), normally by means of non-covalent contact among binary or large protein complex, is essential for many cellular processes including cancer progression. Thus, the ability to quantitatively and accurately monitor the changes in level of PPI with disease state can enable an improved understanding of PPI, provide a better insight into cancer development and allow the emergence of advanced treatments. However, rare studies have evaluated the quantitative extent of PPI so far. The major issue of current available approaches is the trade-off between sensitivity and specificity. Thus, techniques with the ability to quantify PPIs with both high sensitivity (low false-negative rate) and high specificity (low false-positive rate) are eagerly desired. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics has shown its potential to study biomolecules because of its high sensitivity, high selectivity and wide dynamic range. In this study, we made an effort to develop a LC-MS/MS-based targeted proteomics assay for the quantitative detection of p53-MDM2 interaction in breast cells and tissue samples.
Collapse
Affiliation(s)
- Wen Zhang
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing 211166, China
| | - Ting Zhong
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing 211166, China.
| |
Collapse
|
10
|
Jatoi I, Benson JR. Management of women with a hereditary predisposition for breast cancer. Future Oncol 2016; 12:2277-88. [DOI: 10.2217/fon-2016-0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Women with a hereditary breast cancer predisposition have three management options: screening, chemoprevention (risk-reducing medication) and risk-reducing surgery. However, no randomized trials have addressed the effect of these strategies in mutation carriers. In the general population, randomized trials failed to demonstrate a benefit for screening in premenopausal women. Moreover, although chemoprevention reduces breast cancer incidence in high-risk populations, this benefit is potentially confined to estrogen receptor-positive tumors. Finally, observational studies suggest that prophylactic mastectomy and even prophylactic salpingo-ophorectomy reduces breast cancer risk in BRCA mutation carriers, but there are systematic biases associated with such studies. Therefore, women with a hereditary predisposition for breast cancer should be informed of the three risk-reducing strategies, and that their benefits are not fully understood.
Collapse
Affiliation(s)
- Ismail Jatoi
- Division of Surgical Oncology & Endocrine Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - John R Benson
- Addenbrookes Hospital, Cambridge University, Cambridge, UK
| |
Collapse
|
11
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|
12
|
ElSawy KM, Lane DP, Verma CS, Caves LSD. Recognition Dynamics of p53 and MDM2: Implications for Peptide Design. J Phys Chem B 2016; 120:320-8. [PMID: 26701330 DOI: 10.1021/acs.jpcb.5b11162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptides that inhibit MDM2 and attenuate MDM2-p53 interactions, thus activating p53, are currently being pursued as anticancer drug leads for tumors harboring wild type p53. The thermodynamic determinants of peptide-MDM2 interactions have been extensively studied. However, a detailed understanding of the dynamics that underlie these interactions is largely missing. In this study, we explore the kinetics of the binding of a set of peptides using Brownian dynamics simulations. We systematically investigate the effect of peptide C-terminal substitutions (Ser, Ala, Asn, Pro) of a Q16ETFSDLWKLLP27 p53-based peptide and a M1PRFMDYWEGLN12 12/1 phage-derived peptide on their interaction dynamics with MDM2. The substitutions modulate peptide residence times around the MDM2 protein. In particular, the highest affinity peptide, Q16ETFSDLWKLLS27, has the longest residence time (t ∼ 25 μs) around MDM2, suggesting its potentially important contribution to binding affinity. The binding of the p53-based peptides appears to be kinetically driven while that of the phage-derived series appears to be thermodynamically driven. The phage-derived peptides were found to adopt distinctly different modes of interaction with the MDM2 protein compared to their p53-based counterparts. The p53-based peptides approach the N-terminal region of the MDM2 protein with the peptide C-terminal end oriented toward the protein, while the M1PRFMDYWEGLN12-based peptides adopt the reverse orientation. To probe the determinants of this switch in orientation, a designed mutant of the phage-derived peptide, R3E (M1PEFMDYWEGLN12), was simulated and found to adopt the orientation adopted by the p53-based peptides and also to result in almost a 5-fold increase in the peptide residence time (∼120 μs) relative to the p53-based peptides. On this basis, we suggest that the R3E mutant phage-derived peptide has a higher affinity for MDM2 than the p53-based peptides and would therefore, competitively inhibit MDM2-p53. The study, therefore, provides a novel computational framework for kinetics-based lead optimization for anticancer drug development strategies.
Collapse
Affiliation(s)
- Karim M ElSawy
- York Centre for Complex Systems Analysis (YCCSA), University of York , York, YO10 5GE, United Kingdom.,Department of Chemistry, College of Science, Qassim University , Buraydah 52571, Saudi Arabia
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore , 138648
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research) , 30 Biopolis Street, #07-01 Matrix , Singapore , 138671.,Department of Biological Sciences, National University of Singapore , 14 Science Drive 4 , Singapore 117543.,School of Biological Sciences, Nanyang Technological University , 50 Nanyang Drive , Singapore 637551
| | - Leo S D Caves
- York Centre for Complex Systems Analysis (YCCSA), University of York , York, YO10 5GE, United Kingdom.,Department of Biology, University of York , York YO10 5DD, United Kingdom
| |
Collapse
|
13
|
ElSawy KM, Sim A, Lane DP, Verma CS, Caves LS. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2. Cell Cycle 2015; 14:179-88. [PMID: 25584963 DOI: 10.4161/15384101.2014.989043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The interaction of p53 and MDM2 is modulated by the phosphorylation of p53. This mechanism is key to activating p53, yet its molecular determinants are not fully understood. To study the spatiotemporal characteristics of this molecular process we carried out Brownian dynamics simulations of the interactions of the MDM2 protein with a p53 peptide in its wild type state and when phosphorylated at Thr18 (pThr18) and Ser20 (pSer20). We found that p53 phosphorylation results in concerted changes in the topology of the interaction landscape in the diffusively bound encounter complex domain. These changes hinder phosphorylated p53 peptides from binding to MDM2 well before reaching the binding site. The underlying mechanism appears to involve shift of the peptide away from the vicinity of the MDM2 protein, peptide reorientation, and reduction in peptide residence time relative to wild-type p53 peptide. pThr18 and pSr20 p53 peptides experience reduction in residence times by factors of 13.6 and 37.5 respectively relative to the wild-type p53 peptide, indicating a greater role for Ser20 phosphorylation in abrogating p53 MDM2 interactions. These detailed insights into the effect of phosphorylation on molecular interactions are not available from conventional experimental and theoretical approaches and open up new avenues that incorporate molecular interaction dynamics, for stabilizing p53 against MDM2, which is a major focus of anticancer drug lead development.
Collapse
Affiliation(s)
- Karim M ElSawy
- a York Center for Complex Systems Analysis (YCCSA); University of York ; York , UK
| | | | | | | | | |
Collapse
|
14
|
Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:89-100. [PMID: 25311384 DOI: 10.1016/j.bbamcr.2014.10.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/18/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide; PDAC is characterized by poor prognosis, resistance to conventional chemotherapy and high mortality rate. TP53 tumor suppressor gene is frequently mutated in PDAC, resulting in the accumulation of mutated protein with potential gain-of-function (GOF) activities, such as genomic instability, hyperproliferation and chemoresistance. The purpose of this study was to assess the relevance of the p53 status on the PDAC cells response to the standard drug gemcitabine. We also examined the potential therapeutic effect of p53-reactivating molecules to restore the mutant p53 function in GEM treated PDAC cells. We showed that gemcitabine stabilized mutant p53 protein in the nuclei and induced chemoresistance, concurrent with the mutant p53-dependent expression of Cdk1 and CCNB1 genes, resulting in a hyperproliferation effect. Despite the adverse activation of mutant p53 by gemcitabine, simultaneous treatment of PDAC cells with gemcitabine and p53-reactivating molecules (CP-31398 and RITA) reduced growth rate and induced apoptosis. This synergistic effect was observed in both wild-type and mutant p53 cell lines and was absent in p53-null cells. The combination drug treatment induced p53 phosphorylation on Ser15, apoptosis and autophagosome formation. Furthermore, pharmacological inhibition of autophagy further increased apoptosis stimulated by gemcitabine/CP-31398 treatment. Together, our results show that gemcitabine aberrantly stimulates mutant p53 activity in PDAC cells identifying key processes with potential for therapeutic targeting. Our data also support an anti-tumoral strategy based on inhibition of autophagy combined with p53 activation and standard chemotherapy for both wild-type and mutant p53 expressing PDACs.
Collapse
Affiliation(s)
- Claudia Fiorini
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Marco Cordani
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Chiara Padroni
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Blandino
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute-IFO, Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute-IFO, Rome, Italy.
| | - Massimo Donadelli
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
15
|
Yi YW, Kang HJ, Kim HJ, Kong Y, Brown ML, Bae I. Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells. Oncotarget 2014; 4:984-94. [PMID: 23846322 PMCID: PMC3759676 DOI: 10.18632/oncotarget.1070] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many types of mutations in tumor suppressor p53 are oncogenic through gain-of-function. Therefore, targeting mutant p53 (mtp53) is a promising therapeutic approach to fight against many types of cancers. We report here a small molecule compound YK-3-237 that reduces acetylation of mtp53 and exhibits anti-proliferative effects toward triple-negative breast cancer (TNBC) cells carrying mtp53. YK-3-237 activates SIRT1 enzyme activities in vitro and deacetylation of both mtp53 and wild type p53 (WTp53) in a SIRT1-dependent manner. Deacetylation of mtp53 resulted in depletion of mtp53 protein level and up-regulated the expression of WTp53-target genes, PUMA and NOXA. YK-3-237 also induces PARP-dependent apoptotic cell death and arrests the cell cycle at G2/M phase in mtp53 TNBC cells. Taken together, our data suggest that targeting acetylation of mtp53 is a potential target to treat human cancers.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
More than half of all human cancers carry p53 gene mutations whose resulting proteins are mostly full-length with a single amino acid change, abundantly present in cancer cells and unable to exert oncosuppressor activities. Frequently, mutant p53 proteins gain oncogenic functions through which they actively contribute to the establishment, the maintenance and the spreading of a given cancer cell. Intense research effort has been devoted to the deciphering of the molecular mechanisms underlying the gain of function of mutant p53 proteins. Here we mainly review the oncogenic transcriptional activity of mutant p53 proteins that mainly occurs through the aberrant cooperation with bona-fide transcription factors and leads to either aberrant up-regulation or down-regulation of selected target genes. Thus, mutant p53 proteins are critical components of oncogenic transcriptional networks that have a profound impact in human cancers.
Collapse
|
17
|
Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis. Apoptosis 2012; 18:337-46. [DOI: 10.1007/s10495-012-0790-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Doppalapudi RS, Riccio ES, Davis Z, Menda S, Wang A, Du N, Green C, Kopelovich L, Rao CV, Benbrook DM, Kapetanovic IM. Genotoxicity of the cancer chemopreventive drug candidates CP-31398, SHetA2, and phospho-ibuprofen. Mutat Res 2012; 746:78-88. [PMID: 22498038 PMCID: PMC3375211 DOI: 10.1016/j.mrgentox.2012.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/10/2012] [Accepted: 03/21/2012] [Indexed: 02/06/2023]
Abstract
The genotoxic activities of three cancer chemopreventive drug candidates, CP-31398 (a cell permeable styrylquinazoline p53 modulator), SHetA2 (a flexible heteroarotinoid), and phospho-ibuprofen (PI, a derivative of ibuprofen) were tested. None of the compounds were mutagenic in the Salmonella/Escherichia coli/microsome plate incorporation test. CP-31398 and SHetA2 did not induce chromosomal aberrations (CA) in Chinese hamster ovary (CHO) cells, either in the presence or absence of rat hepatic S9 (S9). PI induced CA in CHO cells, but only in the presence of S9. PI, its parent compound ibuprofen, and its moiety diethoxyphosphoryloxybutyl alcohol (DEPBA) were tested for CA and micronuclei (MN) in CHO cells in the presence of S9. PI induced CA as well as MN, both kinetochore-positive (Kin+) and -negative (Kin-), in the presence of S9 at ≤100μg/ml. Ibuprofen was negative for CA, positive for MN with Kin+ at 250μg/ml, and positive for MN with Kin- at 125 and 250μg/ml. DEPBA induced neither CA nor MN at ≤5000μg/ml. The induction of chromosomal damage in PI-treated CHO cells in the presence of S9 may be due to its metabolites. None of the compounds were genotoxic, in the presence or absence of S9, in the GADD45α-GFP Human GreenScreen assay and none induced MN in mouse bone marrow erythrocytes.
Collapse
|
19
|
Chen J. Towards the physical basis of how intrinsic disorder mediates protein function. Arch Biochem Biophys 2012; 524:123-31. [PMID: 22579883 DOI: 10.1016/j.abb.2012.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/28/2012] [Accepted: 04/30/2012] [Indexed: 02/06/2023]
Abstract
Intrinsically disordered proteins (IDPs) are an important class of functional proteins that is highly prevalent in biology and has broad association with human diseases. In contrast to structured proteins, free IDPs exist as heterogeneous and dynamical conformational ensembles under physiological conditions. Many concepts have been discussed on how such intrinsic disorder may provide crucial functional advantages, particularly in cellular signaling and regulation. Establishing the physical basis of these proposed phenomena requires not only detailed characterization of the disordered conformational ensembles, but also mechanistic understanding of the roles of various ensemble properties in IDP interaction and regulation. Here, we review the experimental and computational approaches that may be integrated to address many important challenges of establishing a "structural" basis of IDP function, and discuss some of the key emerging ideas on how the conformational ensembles of IDPs may mediate function, especially in coupled binding and folding interactions.
Collapse
Affiliation(s)
- Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
20
|
ElSawy KM, Twarock R, Lane DP, Verma CS, Caves LSD. Characterization of the Ligand Receptor Encounter Complex and Its Potential for in Silico Kinetics-Based Drug Development. J Chem Theory Comput 2011; 8:314-21. [PMID: 26592892 DOI: 10.1021/ct200560w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study of drug-receptor interactions has largely been framed in terms of the equilibrium thermodynamic binding affinity, an in vitro measure of the stability of the drug-receptor complex that is commonly used as a proxy measure of in vivo biological activity. In response to the growing realization of the importance of binding kinetics to in vivo drug activity we present a computational methodology for the kinetic characterization of drug-receptor interactions in terms of the encounter complex. Using trajectory data from multiple Brownian dynamics simulations of ligand diffusion, we derive the spatial density of the ligand around the receptor and show how it can be quantitatively partitioned into different basins of attraction. Numerical integration of the ligand densities within the basins can be used to estimate the residence time of the ligand within these diffusive binding sites. Simulations of two structurally similar inhibitors of Hsp90 exhibit diffusive binding sites with similar spatial structure but with different ligand residence times. In contrast, a pair of structurally dissimilar inhibitors of MDM2, a peptide and a small molecule, exhibit spatially distinct basins of attraction around the receptor, which in turn reveal differences in ligand orientational order. Thus, our kinetic approach provides microscopic details of drug-receptor dynamics that provide novel insight into the observed differences in the thermodynamic binding affinities for the two inhibitors, such as the differences in the entropic contributions to binding. The characterization of the encounter complex, in terms of the structure, topology, and dynamics of diffusive binding sites, offers a new perspective on ligand-receptor interactions and the potential for greater insight into drug action. The method, which requires no prior knowledge of the bound state, is a first step toward the incorporation of ligand kinetics into in silico drug development protocols.
Collapse
Affiliation(s)
| | | | - David P Lane
- P53 Laboratory (p53Lab, A* STAR), 8A Biomedical Grove 06-06, Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., 07-01 Matrix , Singapore 138671
| | | |
Collapse
|
21
|
Bae SK, Gwak J, Song IS, Park HS, Oh S. Induction of apoptosis in colon cancer cells by a novel topoisomerase I inhibitor TopIn. Biochem Biophys Res Commun 2011; 409:75-81. [PMID: 21549095 DOI: 10.1016/j.bbrc.2011.04.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
The tumor suppressor p53 plays an important role in cellular emergency mechanisms through regulating the genes involved in cell cycle arrest and apoptosis. To identify small molecules that can activate p53-responsive transcription, we performed chemical screening using genetically engineered HCT116 reporter cells. We found that TopIn (7-phenyl-6H-[1,2,5]oxadiazolo[3,4-e]indole 3-oxide) efficiently activated p53-mediated transcriptional activity and induced phosphorylation of p53 at Ser15, thereby stabilizing the p53 protein. Furthermore, TopIn upregulated the expression of p21(WAF1/CIP1), a downstream target of p53, and suppressed cellular proliferation in various colon cancer cells. Additionally, TopIn induced DNA fragmentation, caspase-3/7 activation and poly ADP ribose polymerase cleavage, typical biochemical markers of apoptosis, in p53 wild-type and mutated colon cancer cells. Finally, we found that TopIn inhibited topoisomerase I activity, but not topoisomerase II, in vitro and induced the formation of the topoisomerase I-DNA complex in HCT116 colon cancer cells. Unlike camptothecin (CPT) and its derivative SN38, TopIn did not affect the activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP) or multidrug-resistant protein-1 (MDR-1). These results suggest that TopIn may present a promising new topoisomerase I-targeting anti-tumor therapeutics.
Collapse
Affiliation(s)
- Soo Kyung Bae
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Click TH, Ganguly D, Chen J. Intrinsically disordered proteins in a physics-based world. Int J Mol Sci 2010; 11:5292-309. [PMID: 21614208 PMCID: PMC3100817 DOI: 10.3390/ijms11125292] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are a newly recognized class of functional proteins that rely on a lack of stable structure for function. They are highly prevalent in biology, play fundamental roles, and are extensively involved in human diseases. For signaling and regulation, IDPs often fold into stable structures upon binding to specific targets. The mechanisms of these coupled binding and folding processes are of significant importance because they underlie the organization of regulatory networks that dictate various aspects of cellular decision-making. This review first discusses the challenge in detailed experimental characterization of these heterogeneous and dynamics proteins and the unique and exciting opportunity for physics-based modeling to make crucial contributions, and then summarizes key lessons from recent de novo simulations of the structure and interactions of several regulatory IDPs.
Collapse
Affiliation(s)
| | | | - Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
23
|
Sun W, Yang J. Functional mechanisms for human tumor suppressors. J Cancer 2010; 1:136-40. [PMID: 20922055 PMCID: PMC2948218 DOI: 10.7150/jca.1.136] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 09/13/2010] [Indexed: 12/19/2022] Open
Abstract
Tumor suppressors refer to a large group of molecules that are capable of controlling cell division, promoting apoptosis, and suppressing metastasis. The loss of function for a tumor suppressor may lead to cancer due to uncontrolled cell division. Because of their importance, extensive studies have been undertaken to understand the different functional mechanisms of tumor suppressors. Here, we briefly review the four major mechanisms, inhibition of cell division, induction of apoptosis, DNA damage repair, and inhibition of metastasis. It is noteworthy that some tumor suppressors, such as p53, may adopt more than one mechanism for their functions.
Collapse
Affiliation(s)
- Wanpeng Sun
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | |
Collapse
|
24
|
Dudek JM, Horton RA. TR-FRET Biochemical Assays for Detecting Posttranslational Modifications of p53. ACTA ACUST UNITED AC 2010; 15:569-75. [DOI: 10.1177/1087057110365898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p53 tumor suppressor protein plays a pivotal role in suppressing oncogenesis by regulating a range of cellular functions, including DNA repair, cell growth, cell cycle progression, and cellular death. A network of different pathways converge upon p53, ultimately regulating the response of the tumor suppressor protein by posttranslational modifications. The authors have developed a time-resolved fluorescence resonance energy transfer (TR-FRET)–based high-throughput compatible assay to analyze the critical posttranslational modifications of p53, including phosphorylation, acetylation, and ubiquitination. By using full-length p53 protein fused with GFP (GFP-p53) as the substrate, they were able to measure all 3 different posttranslational modifications with a single substrate. In addition, with a few additional steps, the GFP-p53 substrate can also be used to assay deacetylation to aid in the discovery of inhibitors for sirtuins or other deacetylase enzymes. The flexibility of the assay to measure a diverse range of posttranslational modifications allows one to further dissect the complex regulating mechanisms of p53 and enable the discovery of specific inhibitors for these processes.
Collapse
|
25
|
Demma M, Maxwell E, Ramos R, Liang L, Li C, Hesk D, Rossman R, Mallams A, Doll R, Liu M, Seidel-Dugan C, Bishop WR, Dasmahapatra B. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53. J Biol Chem 2010; 285:10198-212. [PMID: 20124408 DOI: 10.1074/jbc.m109.083469] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature. Here, we report a small molecule, SCH529074, that binds specifically to the p53 DBD in a saturable manner with an affinity of 1-2 microm. Binding restores wild type function to many oncogenic mutant forms of p53. This small molecule reactivates mutant p53 by acting as a chaperone, in a manner similar to that previously reported for the peptide CDB3. Binding of SCH529074 to the p53 DBD is specifically displaced by an oligonucleotide with a sequence derived from the p53-response element. In addition to reactivating mutant p53, SCH529074 binding inhibits ubiquitination of p53 by HDM2. We have also developed a novel variant of p53 by changing a single amino acid in the core domain of p53 (N268R), which abolishes binding of SCH529074. This amino acid change also inhibits HDM2-mediated ubiquitination of p53. Our novel findings indicate that through its interaction with p53 DBD, SCH529074 restores DNA binding activity to mutant p53 and inhibits HDM2-mediated ubiquitination.
Collapse
Affiliation(s)
- Mark Demma
- Department of Tumor Biology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dey A, Lane DP, Verma CS. Modulating the p53 pathway. Semin Cancer Biol 2010; 20:3-9. [DOI: 10.1016/j.semcancer.2010.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/21/2022]
|
27
|
Ganguly D, Chen J. Atomistic details of the disordered states of KID and pKID. Implications in coupled binding and folding. J Am Chem Soc 2009; 131:5214-23. [PMID: 19278259 DOI: 10.1021/ja808999m] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intrinsically disordered proteins (IDPs) are a newly recognized class of functional proteins for which a lack of stable tertiary fold is required for function. Because of the heterogeneous and dynamical nature, molecular modeling is necessary to provide the missing details of disordered states of IDP that are crucial for understanding their functions. In particular, generalized Born (GB) implicit solvent, combined with replica exchange (REX), might offer an optimal balance between accuracy and efficiency for modeling IDPs. We carried out extensive REX simulations in an optimized GB force field to characterize the disordered states of a regulatory IDP, KID domain of transcription factor CREB, and its phosphorylated form, pKID. The results revealed that both KID and pKID, though highly disordered on the tertiary level, are compact and mainly occupy a small number of helical substates. Interestingly, although phosphorylation of KID Ser133 leads only to marginal changes in average helicities on the ensemble level, underlying conformational substates differ significantly. In particular, pSer133 appears to restrict the accessible conformational space of the loop region and thus reduces the entropic cost of KID folding upon binding to the KIX domain of CREB-binding protein. Such an expanded role of phosphorylation in the KID:KIX recognition was not previously recognized because of a lack of substantial conformational changes on the ensemble level and inaccessibility of the structural details from experiments. The results also suggest that an implicit solvent-based modeling framework, despite various existing limitations, might be feasible for accurate atomistic simulation of small IDPs in general.
Collapse
Affiliation(s)
- Debabani Ganguly
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | |
Collapse
|
28
|
van Montfort RLM, Workman P. Structure-based design of molecular cancer therapeutics. Trends Biotechnol 2009; 27:315-28. [PMID: 19339067 DOI: 10.1016/j.tibtech.2009.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 01/16/2023]
Abstract
Structure-based approaches now impact across the whole continuum of drug discovery, from new target selection through the identification of hits to the optimization of lead compounds. Optimal application of structure-based design involves close integration with other discovery technologies, including fragment-based and virtual screening. Here, we illustrate the use of structural information and of structure-based drug design approaches in the discovery of small-molecule inhibitors for cancer drug targets and provide an outlook on the exploitation of structural information in future cancer drug discovery. Examples include high profile protein kinase targets and structurally related PI3 kinases, histone deacetylases, poly(ADP-ribose)polymerase and the molecular chaperone HSP90. Structure-based design approaches have also been successfully applied to the protein-protein interaction targets p53-MDM2 and the Bcl-2 family.
Collapse
Affiliation(s)
- Rob L M van Montfort
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, Chelsea, London SW3 6JB, UK.
| | | |
Collapse
|
29
|
Lee DH, Kim C, Zhang L, Lee YJ. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol 2008; 75:2020-33. [PMID: 18377871 DOI: 10.1016/j.bcp.2008.02.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/05/2008] [Accepted: 02/20/2008] [Indexed: 11/27/2022]
Abstract
We observed that treatment of prostate cancer cells for 24 h with wogonin, a naturally occurring monoflavonoid, induced cell death in a dose- and time-dependent manner. Exposure of wogonin to LNCaP cells was associated with increased intracellular levels of p21(Cip-1), p27(Kip-1), p53, and PUMA, oligomerization of Bax, release of cytochrome c from the mitochondria, and activation of caspases. We also confirmed the role of p53 by noting that knock-in in p53 expression by transfecting p53 DNA increased wogonin-induced apoptosis in p53-null PC-3 cells. To study the mechanism of PUMA up-regulation, we determined the activities of PUMA promoter in the wogonin treated and untreated cells. Increase of the intracellular levels of PUMA protein was due to increase in transcriptional activity. Data from chromatin immunoprecipitation (ChIP) analyses revealed that wogonin activated the transcription factor p53 binding activity to the PUMA promoter region. We observed that the up-regulation of PUMA mediated wogonin cytotoxicity. Further characterization of the transcriptional response to wogonin in HCT116 human colon cancer cells demonstrated that PUMA induction was p53-dependent; deficiency in either p53 or PUMA significantly protected HCT116 cells against wogonin-induced apoptosis. Also, wogonin promoted mitochondrial translocation and multimerization of Bax. Interestingly, wogonin (100 microM) treatment did not affect the viability of normal human prostate epithelial cells (PrEC). Taken together, these results indicate that p53-dependent transcriptional induction of PUMA and oligomerization of Bax play important roles in the sensitivity of cancer cells to apoptosis induced by caspase activation through wogonin.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
30
|
Grochova D, Vankova J, Damborsky J, Ravcukova B, Smarda J, Vojtesek B, Smardova J. Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast. Oncogene 2007; 27:1243-52. [PMID: 17724467 DOI: 10.1038/sj.onc.1210748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The p53 gene is often mutated during cancer development. Frequency and functional consequences of these mutations vary in different tumor types. We analysed conformation and temperature dependency of 23 partially inactivating temperature-dependent (td) p53 mutants derived from various human tumors in yeast. We found considerable differences in transactivation capabilities and discriminative character of various p53 mutants. No correlations in transactivation rates and conformations of the td p53 proteins were detected. Amifostine-induced p53 reactivation occurred only in 13 of 23 td mutants, and this effect was temperature dependent and responsive element specific. The most of the p53 mutations (10/13) reactivated by amifostine were located in the part of the p53 gene coding for hydrophobic beta-sandwich structure of the DNA-binding domain.
Collapse
Affiliation(s)
- D Grochova
- Department of Pathology, University Hospital, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
31
|
Resnick-Silverman L, Manfredi JJ. Gene-specific mechanisms of p53 transcriptional control and prospects for cancer therapy. J Cell Biochem 2007; 99:679-89. [PMID: 16676359 DOI: 10.1002/jcb.20925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regulation of gene-specific activation is critical to the tumor suppressor function by p53. p53 is a well-characterized transcription factor that responds to DNA damage and other genotoxic stresses by the activation of downstream targets that are involved with repair, differentiation, senescence, growth arrest, and apoptosis. Sequence-specific binding to DNA, conformation, post-translational modifications, cofactor binding, stability, and subcellular localization all influence the performance of p53. The purpose of this review is to define features that play a key role in gene-specific activation and to show that these are often incapacitated in cancer cells. Using such knowledge to design selective strategies for the restoration of p53 wild-type function in cancer cells represents a promising cancer therapy.
Collapse
Affiliation(s)
- Lois Resnick-Silverman
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
32
|
Park SE, Min YK, Ha JD, Kim BT, Lee WG. Novel small molecule induces p53-dependent apoptosis in human colon cancer cells. Biochem Biophys Res Commun 2007; 358:842-7. [PMID: 17509529 DOI: 10.1016/j.bbrc.2007.04.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Using high-throughput screening with small-molecule libraries, we identified a compound, KCG165 [(2-(3-(2-(pyrrolidin-1-yl)ethoxy)-1,10b-dihydro-[1,2,4]triazolo[1,5-c]quinazolin-5(6H)-one)], which strongly activated p53-mediated transcriptional activity. KCG165-induced phosphorylations of p53 at Ser(6), Ser(15), and Ser(20)(,) which are all key residues involved in the activation and stabilization of p53. Consistent with these findings, KCG165 increased level of p53 protein and led to the accumulation of transcriptionally active p53 in the nucleus with the increased occupancy of p53 in the endogenous promoter region of its downstream target gene, p21(WAF1/CIP). Notably, KCG165-induced p53-dependent apoptosis in cancer cells. Furthermore, we suggested topoisomerase II as the molecular target of KCG165. Together, these results indicate that KCG165 may have potential applications as an antitumor agent.
Collapse
Affiliation(s)
- Sang Eun Park
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | | | | | | | | |
Collapse
|
33
|
Stevens C, Lin Y, Sanchez M, Amin E, Copson E, White H, Durston V, Eccles DM, Hupp T. A Germ Line Mutation in the Death Domain of DAPK-1 Inactivates ERK-induced Apoptosis. J Biol Chem 2007; 282:13791-803. [PMID: 17244621 DOI: 10.1074/jbc.m605649200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is activated genetically by a set of kinases that are components of the calcium calmodulin kinase superfamily, including CHK2, AMP kinase, and DAPK-1. In dissecting the mechanism of DAPK-1 control, a novel mutation (N1347S) was identified in the death domain of DAPK-1. The N1347S mutation prevented the death domain module binding stably to ERK in vitro and in vivo. Gel filtration demonstrated that the N1347S mutation disrupted the higher order oligomeric nature of the purified recombinant death domain miniprotein. Accordingly, the N1347S death domain module is defective in vivo in the formation of high molecular weight oligomeric intermediates after cross-linking with ethylene glycol bis(succinimidylsuccinate). Full-length DAPK-1 protein harboring a N1347S mutation in the death domain was also defective in binding to ERK in cells and was defective in formation of an ethylene glycol bis(succinimidylsuccinate)-cross-linked intermediate in vivo. Full-length DAPK-1 encoding the N1347S mutation was attenuated in tumor necrosis factor receptor-induced apoptosis. However, the N1347S mutation strikingly prevented ERK:DAPK-1-dependent apoptosis as defined by poly(ADP-ribose) polymerase cleavage, Annexin V staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling imaging. Significant penetrance of the N1347S allele was identified in normal genomic DNA indicating the mutation is germ line, not tumor derived. The frequency observed in genomic DNA was from 37 to 45% for homozygous wild-type, 41 to 47% for heterozygotes, and 12 to 15% for homozygous mutant. These data highlight a naturally occurring DAPK-1 mutation that alters the oligomeric structure of the death domain, de-stabilizes DAPK-1 binding to ERK, and prevents ERK:DAPK-1-dependent apoptosis.
Collapse
Affiliation(s)
- Craig Stevens
- Cancer Research UK p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bossi G, Sacchi A. Restoration of wild-type p53 function in human cancer: relevance for tumor therapy. Head Neck 2007; 29:272-84. [PMID: 17230559 DOI: 10.1002/hed.20529] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the majority of human cancers, the tumor suppressor activity of p53 is impaired because of mutational events or interactions with other proteins (ie, MDM2). The loss of p53 function is responsible for increased aggressiveness of cancers, while tumor chemoresistance and radioresistance are dependent upon the expression of mutant p53 proteins. METHODS Review of the literature indicates that p53 acts primarily as a transcription factor whose function is subject to a complex and diverse array of covalent post-translational modifications that markedly influence the expression of p53 target genes responsible for cellular responses such as growth arrest, senescence, or apoptosis. The ability of p53 to induce apoptosis in cancer cells is believed essential for cancer therapy. RESULTS Numerous data indicate that p53 dependent apoptosis is a relevant factor in determining the efficacy of anticancer treatments. Thus, the development of new strategies for restoration of p53 function in human tumors is considered an important issue. Two main approaches for restoration of p53 function have been pursued that impact anticancer treatments: (a) de novo expression of wild-type p53 (wt-p53) through gene therapy and (b) identification of small molecules reactivating wt-p53 function. CONCLUSIONS The extensive body of knowledge acquired has identified manipulations of p53 signaling as a relevant issue for successful therapies. In this context, the recognition of p53 status in cancer cells is significant and would help considerably in the selection of an appropriate therapeutic approach. p53 manipulations for cancer therapy have revealed the need for specificity of p53 activation and ability to spare body tissues. Furthermore, the promising results obtained by using molecules competent to reactivate wt-p53 functions in cancer cells provide the basis for the design of new molecules with lower side effects and higher anti-tumor efficiency. The reexpression and reactivation of p53 protein in human cancer cells would increase tumor susceptibility to radiation or chemotherapy enhancing the efficacy of standard therapeutic protocols.
Collapse
Affiliation(s)
- Gianluca Bossi
- Department of Experimental Oncology, Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | |
Collapse
|
35
|
Peltonen J, Welsh JA, Vähäkangas KH. Is there a role for PCR-SSCP among the methods for missense mutation detection of TP53 gene? Hum Exp Toxicol 2007; 26:9-18. [PMID: 17334176 DOI: 10.1177/0960327107071918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutation analysis methods have increased in variety during the past years. High-throughput microarray methods have especially increased in popularity. However, new methods require reference points, and not all of the methods are equal in sensitivity and specificity. Furthermore, the detection of unknown missense mutations, such as unknown TP53 mutations in human tumors, for clinical purposes requires great accuracy, which may be difficult to acquire with the current high-throughput methods. For these reasons, the classical methods, such as PCR-manual sequencing and PCR-SSCP, are still valuable and necessary.
Collapse
Affiliation(s)
- J Peltonen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
36
|
Craig AL, Chrystal JA, Fraser JA, Sphyris N, Lin Y, Harrison BJ, Scott MT, Dornreiter I, Hupp TR. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members. Mol Cell Biol 2007; 27:3542-55. [PMID: 17339337 PMCID: PMC1899961 DOI: 10.1128/mcb.01595-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical studies have shown that Ser(20) phosphorylation in the transactivation domain of p53 mediates p300-catalyzed DNA-dependent p53 acetylation and B-cell tumor suppression. However, the protein kinases that mediate this modification are not well defined. A cell-free Ser(20) phosphorylation site assay was used to identify a broad range of calcium calmodulin kinase superfamily members, including CHK2, CHK1, DAPK-1, DAPK-3, DRAK-1, and AMPK, as Ser(20) kinases. Phosphorylation of a p53 transactivation domain fragment at Ser(20) by these enzymes in vitro can be mediated in trans by a docking site peptide derived from the BOX-V domain of p53, which also harbors the ubiquitin signal for MDM2. Evaluation of these calcium calmodulin kinase superfamily members as candidate Ser(20) kinases in vivo has shown that only CHK1 or DAPK-1 can stimulate p53 transactivation and induce Ser(20) phosphorylation of p53. Using CHK1 as a prototypical in vivo Ser(20) kinase, we demonstrate that (i) CHK1 protein depletion using small interfering RNA can attenuate p53 phosphorylation at Ser(20), (ii) an enhanced green fluorescent protein (EGFP)-BOX-V fusion peptide can attenuate Ser(20) phosphorylation of p53 in vivo, (iii) the EGFP-BOX-V fusion peptide can selectively bind to CHK1 in vivo, and (iv) the Deltap53 spliced variant lacking the BOX-V motif is refractory to Ser(20) phosphorylation by CHK1. These data indicate that the BOX-V motif of p53 has evolved the capacity to bind to enzymes that mediate either p53 phosphorylation or ubiquitination, thus controlling the specific activity of p53 as a transcription factor.
Collapse
Affiliation(s)
- Ashley L Craig
- University of Edinburgh, Cancer Research Centre, Edinburgh EH4 2XR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cancer predisposition, onset and therapeutic response can be critically determined by the integrity of the tumor suppressor p53. The majority of human cancers appear to exhibit either abnormal p53 or disrupted p53 activation pathways. Intervention to restore wild-type p53 activities is an attractive approach for cancer therapy. The manipulation of p53 and its targets is a challenging field that is still in its infancy, but witnessing some notable developments in the areas of p53 gene therapy, mutant reactivation and suppression of the negative p53 regulator Mdm2 using small molecules. In addition, wild-type p53 manipulation in healthy tissues of cancer patients in the context of chemotherapy and radiation therapies is offering the potential of enhanced patient recovery.
Collapse
Affiliation(s)
- Sue Haupt
- Department of Hematology, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|
38
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53 – ein natürlicher Krebskiller: Einsichten in die Struktur und Therapiekonzepte. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Römer L, Klein C, Dehner A, Kessler H, Buchner J. p53—A Natural Cancer Killer: Structural Insights and Therapeutic Concepts. Angew Chem Int Ed Engl 2006; 45:6440-60. [PMID: 16983711 DOI: 10.1002/anie.200600611] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Every single day, the DNA of each cell in the human body is mutated thousands of times, even in absence of oncogenes or extreme radiation. Many of these mutations could lead to cancer and, finally, death. To fight this, multicellular organisms have evolved an efficient control system with the tumor-suppressor protein p53 as the central element. An intact p53 network ensures that DNA damage is detected early on. The importance of p53 for preventing cancer is highlighted by the fact that p53 is inactivated in more than 50 % of all human tumors. Thus, for good reason, p53 is one of the most intensively studied proteins. Despite the great effort that has been made to characterize this protein, the complex function and the structural properties of p53 are still only partially known. This review highlights basic concepts and recent progress in understanding the structure and regulation of p53, focusing on emerging new mechanistic and therapeutic concepts.
Collapse
Affiliation(s)
- Lin Römer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
40
|
Shimizu H, Saliba D, Wallace M, Finlan L, Langridge-Smith P, Hupp T. Destabilizing missense mutations in the tumour suppressor protein p53 enhance its ubiquitination in vitro and in vivo. Biochem J 2006; 397:355-67. [PMID: 16579792 PMCID: PMC1513284 DOI: 10.1042/bj20051521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
p53 ubiquitination catalysed by MDM2 (murine double minute clone 2 oncoprotein) provides a biochemical assay to dissect stages in E3-ubiquitin-ligase-catalysed ubiquitination of a conformationally flexible protein. A mutant form of p53 (p53(F270A)) containing a mutation in the second MDM2-docking site in the DNA-binding domain of p53 (F270A) is susceptible to modification of long-lived and high-molecular-mass covalent adducts in vivo. Mutant F270A is hyperubiquitinated in cells as defined by immunoprecipitation and immunoblotting with an anti-ubiquitin antibody. Transfection of His-tagged ubiquitin along with p53(R175H) or p53(F270A) also results in selective hyperubiquitination in cells under conditions where wild-type p53 is refractory to covalent modification. The extent of mutant p53(R175H) or p53(F270A) unfolding in cells as defined by exposure of the DO-12 epitope correlates with the extent of hyperubiquitination, suggesting a link between substrate conformation and E3 ligase function. The p53(F270A:6KR) chimaeric mutant (where 6KR refers to the simultaneous mutation of lysine residues at positions 370, 372, 373, 381, 382 and 386 to arginine) maintains the high-molecular-mass covalent adducts and is modified in an MDM2-dependent manner. Using an in vitro ubiquitination system, mutant p53(F270A) and the p53(F270A:6KR) chimaeric mutant is also subject to hyperubiquitination outwith the C-terminal domain, indicating direct recognition of the mutant p53 conformation by (a) factor(s) in the cell-free ubiquitination system. These data identify an in vitro and in vivo assay with which to dissect how oligomeric protein conformational alterations are linked to substrate ubiquitination in cells. This has implications for understanding the recognition of misfolded proteins during aging and in human diseases such as cancer.
Collapse
Affiliation(s)
- Harumi Shimizu
- *Cancer Research UK Cell Signalling Unit, p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR, Scotland, U.K
| | - David Saliba
- *Cancer Research UK Cell Signalling Unit, p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR, Scotland, U.K
- †School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, U.K
| | - Maura Wallace
- *Cancer Research UK Cell Signalling Unit, p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR, Scotland, U.K
| | - Lee Finlan
- *Cancer Research UK Cell Signalling Unit, p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR, Scotland, U.K
| | | | - Ted R. Hupp
- *Cancer Research UK Cell Signalling Unit, p53 Signal Transduction Group, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Wölcke J, Hunt N, Jungmann J, Ullmann D. Early Identification of False Positives in High-Throughput Screening for Activators of p53-DNA Interaction. ACTA ACUST UNITED AC 2006; 11:341-50. [PMID: 16751330 DOI: 10.1177/1087057106286652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Naturally occurring mutant forms of p53 are deficient for specific DNA binding. However, their specific DNA binding can be reactivated. The search for small molecules that reactivate latent p53 is considered to be a cornerstone in cancer therapy. The authors describe a new homogeneous fluorescent assay approach for the characterization of binding affinities of human wild-type latent and activated p53 using DNA*spec(26), with and without the addition of the antibody PAb421, respectively, and fluorescence correlation spectroscopy (FCS)/2-dimensional fluorescence-intensity distribution analysis anisotropy as the detection methods. FCS was compared with 2D-FIDA anisotropy, and a very good correlation of the results with both readouts was observed (KDs for nonspecific DNA binding of 24.4 ± 3.5 nM with 2D-FIDA anisotropy and of 29.5 ± 5.5 nM with FCS). The presence of poly(dI-dC) led to a 10-fold increase of binding affinity (KD of 3.3 ± 0.5 nM in the presence of PAb421). 2D-FIDA anisotropy was demonstrated to be the most accurate readout; hence, this detection technology was selected for a 25,000 compound member high-throughput screening (HTS) campaign. The hits obtained were qualified using a novel data evaluation algorithm that identifies false positives and moreover assesses the validity of true hits in the presence of the deteriorating artifact. This process step is of utmost importance for decreasing the attrition in fluorescence-based HTS.
Collapse
|
42
|
Cesková P, Chichger H, Wallace M, Vojtesek B, Hupp TR. On the mechanism of sequence-specific DNA-dependent acetylation of p53: the acetylation motif is exposed upon DNA binding. J Mol Biol 2005; 357:442-56. [PMID: 16438982 DOI: 10.1016/j.jmb.2005.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 11/30/2022]
Abstract
P53 acetylation requires p300-docking to two contiguous sites in the activation domain that in turn mediates DNA-dependent acetylation of the tetramer. In an attempt to further define the mechanism of DNA-dependent acetylation of p53, an in vitro system has been reconstituted with distinct p53 isoforms and has been used to reveal conformational constraints on p53 acetylation. Two native p53 tetrameric isoforms purified from Sf9 cells differing by the extent of phosphorylation within the C-terminal acetylation site are both acetylated in a sequence-specific DNA-dependent manner. By contrast, p53 purified from an Escherichia coli expression system is in a largely denatured conformation and its acetylation is DNA-independent. Heating native p53 to destroy the folded structure restores DNA-independent acetylation similar to that seen with bacterially expressed p53. There are at least two sites of conformational flexibility in the p53 tetramer: the first in the flexible S10 beta-sheet within the MDM2 ubiquitination sequence and the second in the C-terminal regulatory domain. We analysed therefore whether DNA-dependent acetylation correlated with conformational changes in either of these two regions. DNA-dependent acetylation of p53 is maintained in a dose-dependent manner by low concentrations of consensus site DNA under conditions where flexibility in the S10 beta-sheet region is maintained. Oligonucleotide DNAs that promote acetylation stimulate the binding of monoclonal antibodies PAb421 and ICA-9; two antibodies whose contiguous epitopes overlap the C-terminal acetylation motif. By contrast, bent oligonucleotide DNAs that conceal both the S10 beta-sheet from binding of the monoclonal antibody DO-12 and attenuate binding of the monoclonal antibody PAb421 can preclude acetylation. These data suggest that, in the absence of DNA, the acetylation motif of p53 is in a cryptic state, but after DNA binding, allosteric effects mediate an exposure of the acetylation motif to allow DNA-dependent acetylation of the tetramer.
Collapse
Affiliation(s)
- Pavla Cesková
- CRUK Cell Signaling Unit, University of Edinburgh, South Crewe Road, Edinburgh EH4 2XR, UK
| | | | | | | | | |
Collapse
|
43
|
Malanga M, Althaus FR. The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 2005; 83:354-64. [PMID: 15959561 DOI: 10.1139/o05-038] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA damage signaling is crucial for the maintenance of genome integrity. In higher eukaryotes a NAD+-dependent signal transduction mechanism has evolved to protect cells against the genome destabilizing effects of DNA strand breaks. The mechanism involves 2 nuclear enzymes that sense DNA strand breaks, poly(ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP-2). When activated by DNA breaks, these PARPs use NAD+ to catalyze their automodification with negatively charged, long and branched ADP-ribose polymers. Through recruitment of specific proteins at the site of damage and regulation of their activities, these polymers may either directly participate in the repair process or coordinate repair through chromatin unfolding, cell cycle progression, and cell survival-cell death pathways. A number of proteins, including histones, DNA topoisomerases, DNA methyltransferase-1 as well as DNA damage repair and checkpoint proteins (p23, p21, DNA-PK, NF-kB, XRCC1, and others) can be targeted in this manner; the interaction involves a specific poly(ADP-ribose)-binding sequence motif of 20-26 amino acids in the target domains.
Collapse
Affiliation(s)
- Maria Malanga
- Institute of Pharmacology and Toxicology, University of Zurich-Tierspital, Switzerland
| | | |
Collapse
|
44
|
Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P. Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J 2005; 24:3482-92. [PMID: 16163384 PMCID: PMC1276176 DOI: 10.1038/sj.emboj.7600819] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 08/24/2005] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations and deletions are frequently observed in cancer, and contribute to altered energy metabolism, increased reactive oxygen species (ROS), and attenuated apoptotic response to anticancer agents. The mechanisms by which cells maintain mitochondrial genomic integrity and the reason why cancer cells exhibit more frequent mtDNA mutations remain unclear. Here, we report that the tumor suppressor molecule p53 has a novel role in maintaining mitochondrial genetic stability through its ability to translocate to mitochondria and interact with mtDNA polymerase gamma (pol gamma) in response to mtDNA damage induced by exogenous and endogenous insults including ROS. The p53 protein physically interacts with mtDNA and pol gamma, and enhances the DNA replication function of pol gamma. Loss of p53 results in a significant increase in mtDNA vulnerability to damage, leading to increased frequency of in vivo mtDNA mutations, which are reversed by stable transfection of wild-type p53. This study provides a mechanistic explanation for the accelerating genetic instability and increased ROS stress in cancer cells associated with loss of p53.
Collapse
Affiliation(s)
- Geetha Achanta
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryohei Sasaki
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Feng
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer S Carew
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiqin Lu
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helene Pelicano
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Huang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Maddika S, Booy EP, Johar D, Gibson SB, Ghavami S, Los M. Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci 2005; 118:4485-93. [PMID: 16179607 DOI: 10.1242/jcs.02580] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptin, a small proline-rich protein derived from the chicken anaemia virus, induces cell death selectively in cancer cells. The signalling pathways of apoptin-induced, cancer cell-selective apoptosis are not well understood. Here, we demonstrate that apoptin triggers apoptosis by activating the mitochondrial/intrinsic pathway, and that it acts independently of the death receptor/extrinsic pathway. Jurkat cells deficient in either FADD or caspase-8 (which are both necessary for the extrinsic pathway) were equally as sensitive to apoptin as their parental clones. This demonstrates that apoptin is likely to act through the mitochondrial death pathway. Apoptin treatment causes a loss of mitochondrial membrane potential, and release of the mitochondrial proteins cytochrome c and apoptosis-inducing factor. Apoptin-induced cell death is counteracted by the anti-apoptotic Bcl-2 family members, Bcl-2 itself and Bcl-XL, as shown in Jurkat leukaemia cells. In addition, we describe the processing and activation of caspase-3. By contrast, cleavage of caspase-8, which is predominantly triggered by the death receptor pathway, is not observed. Furthermore, apoptin triggers the cytoplasmic translocation of Nur77, and the inhibition of Nur77 expression by siRNA significantly protects MCF7 cells from apoptin-triggered cell death. Thus, our data indicate that the apoptin death signal(s) ultimately converges at the mitochondria, and that it acts independently of the death receptor pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/physiology
- Apoptosis Inducing Factor/metabolism
- Capsid Proteins/metabolism
- Capsid Proteins/toxicity
- Caspase 3
- Caspase 8
- Caspases/genetics
- Caspases/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cytochromes c/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fas-Associated Death Domain Protein
- Humans
- Membrane Potentials/physiology
- Mitochondria/metabolism
- Neoplasms/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Subbareddy Maddika
- Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E OV9, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, El-Naggar AK, Lozano G. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2005; 119:861-72. [PMID: 15607981 DOI: 10.1016/j.cell.2004.11.006] [Citation(s) in RCA: 822] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 08/09/2004] [Accepted: 10/21/2004] [Indexed: 02/07/2023]
Abstract
Individuals with Li-Fraumeni syndrome carry inherited mutations in the p53 tumor suppressor gene and are predisposed to tumor development. To examine the mechanistic nature of these p53 missense mutations, we generated mice harboring a G-to-A substitution at nucleotide 515 of p53 (p53+/515A) corresponding to the p53R175H hot spot mutation in human cancers. Although p53+/515A mice display a similar tumor spectrum and survival curve as p53+/- mice, tumors from p53+/515A mice metastasized with high frequency. Correspondingly, the embryonic fibroblasts from the p53515A/515A mutant mice displayed enhanced cell proliferation, DNA synthesis, and transformation potential. The disruption of p63 and p73 in p53-/- cells increased transformation capacity and reinitiated DNA synthesis to levels observed in p53515A/515A cells. Additionally, p63 and p73 were functionally inactivated in p53515A cells. These results provide in vivo validation for the gain-of-function properties of certain p53 missense mutations and suggest a mechanistic basis for these phenotypes.
Collapse
Affiliation(s)
- Gene A Lang
- Department of Molecular Genetics, Section of Cancer Genetics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Koed K, Wiuf C, Christensen LL, Wikman FP, Zieger K, Møller K, von der Maase H, Ørntoft TF. High-Density Single Nucleotide Polymorphism Array Defines Novel Stage and Location-Dependent Allelic Imbalances in Human Bladder Tumors. Cancer Res 2005. [DOI: 10.1158/0008-5472.34.65.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Bladder cancer is a common disease characterized by multiple recurrences and an invasive disease course in more than 10% of patients. It is of monoclonal or oligoclonal origin and genomic instability has been shown at certain loci. We used a 10,000 single nucleotide polymorphism (SNP) array with an average of 2,700 heterozygous SNPs to detect allelic imbalances (AI) in 37 microdissected bladder tumors from 17 patients. Eight tumors represented upstaging from Ta to T1, eight from T1 to T2+, and one from Ta to T2+. The AI was strongly stage-dependent as four chromosomal arms showed AI in > 50% of Ta samples, eight in T1, and twenty-two in T2+ samples. The tumors showed stage-dependent clonality as 61.3% of AIs were reconfirmed in later T1 tumors and 84.4% in muscle-invasive tumors. Novel unstable chromosomal areas were identified at chromosomes 6q, 10p, 16q, 20p, 20q, and 22q. The tumors separated into two distinct groups, highly stable tumors (all Ta tumors) and unstable tumors (2/3 muscle-invasive). All 11 unstable tumors had lost chromosome 17p areas and 90% chromosome 8 areas affecting Netrin-1/UNC5D/MAP2K4 genes as well as others. AI was present at the TP53 locus in 10 out of 11 unstable tumors, whereas 6 had homozygous TP53 mutations. Tumor distribution pattern reflected AI as seven out of eight patients with additional upper urinary tract tumors had genomic stable bladder tumors (P < 0.05). These data show the power of high-resolution SNP arrays for defining clinically relevant AIs.
Collapse
Affiliation(s)
- Karen Koed
- 1Departments of Clinical Biochemistry,Molecular Diagnostic Laboratory,
- 3Oncology, Aarhus University Hospital; and
| | - Carsten Wiuf
- 4Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | | | | | - Karsten Zieger
- 1Departments of Clinical Biochemistry,Molecular Diagnostic Laboratory,
- 2Urology, and
| | | | | | - Torben F. Ørntoft
- 1Departments of Clinical Biochemistry,Molecular Diagnostic Laboratory,
| |
Collapse
|
48
|
Dornan D, Eckert M, Wallace M, Shimizu H, Ramsay E, Hupp TR, Ball KL. Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. Mol Cell Biol 2004; 24:10083-98. [PMID: 15509808 PMCID: PMC525491 DOI: 10.1128/mcb.24.22.10083-10098.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon regulatory factor 1 (IRF-1) and p53 control distinct sets of downstream genes; however, these two antioncogenic transcription factors converge to regulate p21 gene expression and to inhibit tumor formation. Here we investigate the mechanism by which IRF-1 and p53 synergize at the p21 promoter and show that stimulation of p21 transcription by IRF-1 does not require its DNA-binding activity but relies on the ability of IRF-1 to bind the coactivator p300 and to stimulate p53-dependent transcription by an allosteric mechanism. Deletion of the p300-binding sites in IRF-1 eliminates the ability of IRF-1 to stimulate p53 acetylation and associated p53 activity. Complementing this, small peptides derived from the IRF-1-p300 interface can bind to p300, stabilize the binding of p300 to DNA-bound p53, stimulate p53 acetylation in trans, and up-regulate p53-dependent activity from the p21 promoter. The nonacetylatable p53 mutant (p53-6KR) cannot be stimulated by IRF-1, further suggesting that p53 acetylation is the mechanism whereby IRF-1 modifies p53 activity. These data expand the core p300-p53 protein LXXLL and PXXP interface by including an IRF-1-p300 interface as an allosteric modifier of DNA-dependent acetylation of p53 at the p21 promoter.
Collapse
Affiliation(s)
- David Dornan
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Demma MJ, Wong S, Maxwell E, Dasmahapatra B. CP-31398 Restores DNA-binding Activity to Mutant p53 in Vitro but Does Not Affect p53 Homologs p63 and p73. J Biol Chem 2004; 279:45887-96. [PMID: 15308639 DOI: 10.1074/jbc.m401854200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effective in vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elements in vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (B(max)) and its affinity (K(d)) for DNA. The compound, however, does not affect the affinity (K(d) value) of wild type p53 for DNA and only increases B(max) slightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.
Collapse
Affiliation(s)
- Mark J Demma
- Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA
| | | | | | | |
Collapse
|
50
|
Finlan L, Hupp TR. The N-terminal interferon-binding domain (IBiD) homology domain of p300 binds to peptides with homology to the p53 transactivation domain. J Biol Chem 2004; 279:49395-405. [PMID: 15337767 DOI: 10.1074/jbc.m405974200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two high affinity Ser-20-phospho-LXXLL p53-binding domains of p300 map to the C-terminal interferon-binding domain (IBiD) and N-terminal IBiD homology domain (IHD) regions. Purified fractions of a recombinant IHD miniprotein are active in a set of in vitro assays highlighting its affinity to the N-terminal LXXLL domain of p53 including (i) dose-dependent binding to Ser-20-phosphorylated p53 tetramers; (ii) DNA-stimulated binding to p53 tetramers; and (iii) inhibition of MDM2-mediated p53 ubiquitination. The active component of the IHD miniprotein was localized to a 75-amino-acid fragment corresponding to amino acids 401-475 on human p300. This minimal IHD miniprotein can function in vivo as a p53-binding polypeptide in assays including: (i) complex formation with VP16-LXXLL peptide motifs in the two-hybrid assay; (ii) action as a dominant negative inhibitor of p53 from p21 luciferase templates; and (iii) attenuation of endogenous p21 protein levels. Further, we show here that the IRF-1-dependent stabilization and reactivation of p53DeltaPRO protein (LXXLL+/PXXP-) can be neutralized by the minimal IHD miniprotein, suggesting that IHD can bind to the p53 LXXLL domain in vivo. Phage-peptide display to the IHD miniprotein gave rise to an LSQXTFSXLXXLL consensus binding site that displays significant homology to the LXXLL transactivation domain of p53. These data validate the IHD scaffold as an independent LXXLL peptide-binding domain within the p300 protein, complementing the known peptide-binding domains including IBiD, C/H1, and C/H3.
Collapse
Affiliation(s)
- Lee Finlan
- University of Edinburgh, Division of Oncology, CRUK Cell Signaling Unit, South Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | |
Collapse
|