1
|
Napolitano F, D'Angelo L, de Girolamo P, Avallone L, de Lange P, Usiello A. The Thyroid Hormone-target Gene Rhes a Novel Crossroad for Neurological and Psychiatric Disorders: New Insights from Animal Models. Neuroscience 2018; 384:419-428. [PMID: 29857029 DOI: 10.1016/j.neuroscience.2018.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 02/08/2023]
Abstract
Ras homolog enriched in striatum (Rhes) is predominantly expressed in the corpus striatum. Rhes mRNA is localized in virtually all dopamine D1 and D2 receptor-bearing medium-sized spiny neurons (MSNs), and cholinergic interneurons of striatum. Early studies in rodents showed that Rhes is developmentally regulated by thyroid hormone, as well as by dopamine innervation in adult rat, monkey and human brains. At cellular level, Rhes interferes with adenosine A2A- and dopamine D1 receptor-dependent cAMP/PKA pathway, upstream of the activation of the heterotrimeric G protein complex. Besides its involvement in GPCR-mediated signaling, Rhes modulates Akt pathway activation, acts as E3-ligase of mutant huntingtin, whose sumoylation accounts for neurotoxicity in Huntington's disease, and physically interacts with Beclin-1, suggesting its potential involvement in autophagy-related cellular events. In addition, this protein can also bind to and activate striatal mTORC1, one of the key players in l-DOPA-induced dyskinesia in rodent models of Parkinson's disease. Accordingly, lack of Rhes attenuated such motor disturbances in 6-OHDA-lesioned Rhes knockout mice. In support of its role in MSN-dependent functions, several studies documented that mutant animals displayed alterations in striatum-related phenotypes reminiscent of psychiatric illness in humans, including deficits in prepulse inhibition of startle reflex and, most interestingly, a striking enhancement of behavioral responses elicited by caffeine, phencyclidine or amphetamine. Overall, these data suggest that Rhes modulates molecular and biochemical events underlying striatal functioning, both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Napolitano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate, Naples, Italy.
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandro Usiello
- Ceinge Biotecnologie Avanzate, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
2
|
Vitucci D, Di Giorgio A, Napolitano F, Pelosi B, Blasi G, Errico F, Attrotto MT, Gelao B, Fazio L, Taurisano P, Di Maio A, Marsili V, Pasqualetti M, Bertolino A, Usiello A. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice. Neuropsychopharmacology 2016; 41:916-27. [PMID: 26228524 PMCID: PMC4707838 DOI: 10.1038/npp.2015.228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/03/2015] [Accepted: 07/25/2015] [Indexed: 12/18/2022]
Abstract
Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.
Collapse
Affiliation(s)
- Daniela Vitucci
- Ceinge Biotecnologie Avanzate, Naples, Italy,Dipartimento di Scienze Motorie e del Benessere DiSMeB, Università degli Studi di Napoli Parthenope, Naples, Italy
| | - Annabella Di Giorgio
- Istituto di Ricovero e Cura a Carattere Scientifico ‘Casa Sollievo della Sofferenza', Foggia, Italy
| | - Francesco Napolitano
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy
| | - Barbara Pelosi
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Francesco Errico
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Molecular Medicine and Medical Biotechnology, University of Naples ‘Federico II', Naples, Italy
| | - Maria Teresa Attrotto
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Barbara Gelao
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Leonardo Fazio
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | - Paolo Taurisano
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy
| | | | | | - Massimo Pasqualetti
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy,Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto (Trento), Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Bari, Italy,pRED, Neuroscience DTA, Hoffmann-La Roche, Basel, Switzerland,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro', Piazza G. Cesare 11, Bari 70124, Italy, Tel: +39 0805478572, Fax: +39 0805593172,
| | - Alessandro Usiello
- Ceinge Biotecnologie Avanzate, Naples, Italy,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), Caserta, Italy,Ceinge Biotecnologie Avanzate, Via G. Salvatore 486, Naples 80145, Italy, Tel: +39 0813737899, Fax: +39 0813737808. E-mail:
| |
Collapse
|