1
|
Shadpour H, Sims CE, Thresher RJ, Allbritton NL. Sorting and expansion of murine embryonic stem cell colonies using micropallet arrays. Cytometry A 2009; 75:121-9. [PMID: 19012319 DOI: 10.1002/cyto.a.20672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Isolation of cell colonies is an essential task in most stem cell studies. Conventional techniques for colony selection and isolation require significant time, labor, and consumption of expensive reagents. New microengineered technologies hold the promise for improving colony manipulation by reducing the required manpower and reagent consumption. Murine embryonic stem cells were cultured on arrays composed of releasable elements termed micropallets created from a biocompatible photoresist. Micropallets containing undifferentiated colonies were released using a laser-based technique followed by cell collection and expansion in culture. The micropallet arrays provided a biocompatible substrate for maintaining undifferentiated murine stem cells in culture. A surface coating of 0.025% gelatin was shown to be optimal for cell culture and collection. Arrays composed of surface-roughened micropallets provided further improvements in culture and isolation. Colonies of viable stem cells were efficiently isolated and collected. Colonies sorted in this manner were shown to remain undifferentiated even after collection and further expansion in culture. Qualitative and quantitative analyses of sorting, collection efficiency, and cell viability after release and expansion of stem cell colonies demonstrated that the micropallet array technology is a promising alternative to conventional sorting methods for stem cell applications.
Collapse
Affiliation(s)
- Hamed Shadpour
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
2
|
Warren MV, Studley ML, Dubus P, Fiette L, Rozell B, Quintanilla-Martinez L, Raspa M, Breuer M, Song JY, Gates H, Brown SDM, Schofield PN. An impending crisis in the provision of histopathology expertise for mouse functional genomics. J Pathol 2009; 217:4-13. [DOI: 10.1002/path.2460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Horsch M, Schädler S, Gailus-Durner V, Fuchs H, Meyer H, de Angelis MH, Beckers J. Systematic gene expression profiling of mouse model series reveals coexpressed genes. Proteomics 2008; 8:1248-56. [PMID: 18338826 DOI: 10.1002/pmic.200700725] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major aim of the Human Brain Proteome Project (HBPP) is a better understanding of the molecular etiology and progression of neurodegenerative diseases. Transgenic and loss-of-function mouse mutant lines (MMLs) serve as experimental models. Transcriptome and proteome regulate each other in a complex and controlled way, and their comparative analysis is an essential aspect. As a fundamental study, we have assessed transcript profiles using a microarray containing 21 000 cDNA probes in a series of disease models within the German Mouse Clinic (GMC). Seventeen distinct organs of one adult stage were systematically collected for each submitted MML. Samples for gene expression profiling are individually selected based on conspicuous phenotypes in at least one of 14 GMC phenotype screens or on previous knowledge of the mutant phenotype. By microarray experiments expression patterns of 90 organs from 46 MMLs were analysed, identifying up to 232 differentially expressed genes in 45 organs. Here we present an overview of the results of all MMLs analysed and demonstrate the efficiency of systematic genome-wide expression profiling for the detection of molecular phenotypes in organs of a mammalian model organism. We identify the recurring regulation of particular genes and groups of coexpressed genes in apparently unrelated MMLs.
Collapse
Affiliation(s)
- Marion Horsch
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Aigner B, Rathkolb B, Mohr M, Klempt M, Hrabé de Angelis M, Wolf E. Generation of ENU-Induced Mouse Mutants with Hypocholesterolemia: Novel Tools for Dissecting Plasma Lipoprotein Homeostasis. Lipids 2007; 42:731-7. [PMID: 17554576 DOI: 10.1007/s11745-007-3075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 05/10/2007] [Indexed: 12/11/2022]
Abstract
Pathologic plasma lipoprotein cholesterol levels play a key role in the development and pathogenesis of human atherosclerotic cardiovascular diseases. Plasma cholesterol homeostasis is regulated by genetic predispositions and environmental factors. Animal models showing aberrant plasma cholesterol levels are used for the identification and analysis of novel causative genes. Here, we searched for inherited hypocholesterolemia phenotypes in randomly mutant mice which may contribute to the detection of disease protective alleles. In the Munich ENU mouse mutagenesis project, clinical chemistry blood analysis was carried out on more than 15,500 G1 offspring and 230 G3 pedigrees of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to a decreased plasma total cholesterol level. We identified 66 animals consistently showing hypocholesterolemia. Transmission of the altered phenotype to the subsequent generations led to the successful establishment of 14 independent hypocholesterolemic lines. Line-specific differences were detected by clinical chemistry analysis of plasma HDL cholesterol, LDL cholesterol and triglycerides. Thus, we successfully established a novel panel of ENU-derived mutant mouse lines for their use in the identification of alleles selectively influencing the plasma cholesterol homeostasis. Such findings may be subsequently used for humans and other species.
Collapse
Affiliation(s)
- Bernhard Aigner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-University Munich, Hackerstr. 27, 85764, Oberschleissheim, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Carlson CM, Largaespada DA. Insertional mutagenesis in mice: new perspectives and tools. Nat Rev Genet 2005; 6:568-80. [PMID: 15995698 DOI: 10.1038/nrg1638] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insertional mutagenesis has been at the core of functional genomics in many species. In the mouse, improved vectors and methodologies allow easier genome-wide and phenotype-driven insertional mutagenesis screens. The ability to generate homozygous diploid mutations in mouse embryonic stem cells allows prescreening for specific null phenotypes prior to in vivo analysis. In addition, the discovery of active transposable elements in vertebrates, and their development as genetic tools, has led to in vivo forward insertional mutagenesis screens in the mouse. These new technologies will greatly contribute to the speed and ease with which we achieve complete functional annotation of the mouse genome.
Collapse
Affiliation(s)
- Corey M Carlson
- Department of Genetics, Cell Biology, and Development, University of Minnesota Cancer Center, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
6
|
Seltmann M, Horsch M, Drobyshev A, Chen Y, de Angelis MH, Beckers J. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines. Mamm Genome 2005; 16:1-10. [PMID: 15674728 DOI: 10.1007/s00335-004-3012-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 09/09/2004] [Indexed: 10/25/2022]
Abstract
Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.
Collapse
Affiliation(s)
- Matthias Seltmann
- GSF-National Research Center for Environment and Health, Institute of Experimental Genetics, Ingolstaedter Landstr. 1, Neuherberg, D-85764, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Oliver PL, Davies KE. Analysis of human neurological disorders using mutagenesis in the mouse. Clin Sci (Lond) 2005; 108:385-97. [PMID: 15831088 DOI: 10.1042/cs20050041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mouse continues to play a vital role in the deciphering of mammalian gene function and the modelling of human neurological disease. Advances in gene targeting technologies have facilitated the efficiency of generating new mouse mutants, although this valuable resource has rapidly expanded in recent years due to a number of major random mutagenesis programmes. The phenotype-driven mutagenesis screen at the MRC Mammalian Genetics Unit has generated a significant number of mice with potential neurological defects, and our aim has been to characterize selected mutants on a pathological and molecular level. Four lines are discussed, one displaying late-onset ataxia caused by Purkinje cell loss and an allelic series of three tremor mutants suffering from hypomyelination of the peripheral nerve. Molecular analysis of the causative mutation in each case has provided new insights into functional aspects of the mutated proteins, illustrating the power of mutagenesis screens to generate both novel and clinically relevant disease models.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
8
|
Affiliation(s)
- Anne E Carpenter
- Whitehead Institute for Biomedical Research, MIT Department of Biology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
9
|
Ohl F, Keck ME. Behavioural screening in mutagenised mice—in search for novel animal models of psychiatric disorders. Eur J Pharmacol 2003; 480:219-28. [PMID: 14623364 DOI: 10.1016/j.ejphar.2003.08.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Complementary to the 'gene-driven' analysis of gene function, 'phenotype-driven' approaches can be performed and may be equally important. Despite the current availability of a long list of mouse mutants, there remains an appreciable need for behavioural phenotypes in mouse models permitting to learn more about the aetiology of psychiatric disorders. This lack can be compensated by phenotype-driven ethyl-nitrosourea (ENU)-mutagenesis programs which aim at identifying novel phenotypes without any a priori assumptions, thus, representing a unique possibility to create novel animal models which approximate the underlying genetic aetiology. The power of mouse mutagenesis critically depends on the phenotyping procedures performed. In the case of ENU-mutants, behavioural phenotyping is especially challenging, as behavioural profiles have to be identified in single individuals. For high-throughput screening, approaches have been made to establish standardised screening protocols including a combination of well-validated, easy to perform behavioural tests. Different strategies are being introduced, which are used in ENU-mutagenesis screens to identify behavioural mutants representing possible endophenotypes of psychiatric diseases.
Collapse
Affiliation(s)
- Frauke Ohl
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
| | | |
Collapse
|
10
|
Abstract
The accelerating pace of the discovery of genes has far surpassed our capabilities to understand their biological function--in other words, the phenotypes they engender. We need efficient and comprehensive large-scale phenotyping technologies. This presents a difficult challenge because phenotypes are numerous and diverse, and they can be observed and annotated at the molecular, cellular and organismal level. New technologies and approaches will therefore be required. Here, I describe recent efforts to develop new and efficient technologies for assessing cellular phenotypes.
Collapse
Affiliation(s)
- Barry R Bochner
- Biolog, Inc., 3938 Trust Way, Hayward, California 94545, USA.
| |
Collapse
|
11
|
Drobyshev AL, Machka C, Horsch M, Seltmann M, Liebscher V, Hrabé de Angelis M, Beckers J. Specificity assessment from fractionation experiments (SAFE): a novel method to evaluate microarray probe specificity based on hybridisation stringencies. Nucleic Acids Res 2003; 31:E1-1. [PMID: 12527790 PMCID: PMC140526 DOI: 10.1093/nar/gng001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cDNA-chip technology is a highly versatile tool for the comprehensive analysis of gene expression at the transcript level. Although it has been applied successfully in expression profiling projects, there is an ongoing dispute concerning the quality of such expression data. The latter critically depends on the specificity of hybridisation. SAFE (specificity assessment from fractionation experiments) is a novel method to discriminate between non- specific cross-hybridisation and specific signals. We applied in situ fractionation of hybridised target on DNA-chips by means of repeated washes with increasing stringencies. Different fractions of hybridised target are washed off at defined stringencies and the collected fluorescence intensity data at each step comprise the fractionation curve. Based on characteristic features of the fractionation curve, unreliable data can be filtered and eliminated from subsequent analyses. The approach described here provides a novel experimental tool to identify probes that produce specific hybridisation signals in DNA-chip expression profiling approaches. The iterative use of the SAFE procedure will result in increasingly reliable sets of probes for microarray experiments and significantly improve the overall efficiency and reliability of RNA expression profiling data from DNA-chip experiments.
Collapse
Affiliation(s)
- Alexei L Drobyshev
- Institute of Experimental Genetics, GSF-National Research Centre for Environment and Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Among the wide variety of model organisms commonly used for studies on aging, such as worms, flies and rodents, a wide research gap exists between the invertebrate and vertebrate model systems. In developmental biology, a similar gap has been filled by the zebrafish (Danio rerio). We propose that the zebrafish is uniquely suited to serve as a bridge model for gerontology. With high fecundity and economical husbandry requirements, large populations of zebrafish may be generated quickly and cheaply, facilitating large-scale approaches including demographic studies and mutagenesis screens. A variety of mutants identified in such screens have led to modelling of human disease, including cardiac disorders and cancer. While zebrafish longevity is at least 50% longer than in commonly used mouse strains, as an ectothermic fish species, its life span may be readily modulated by caloric intake, ambient temperature and reproductive activity. These features, coupled with a growing abundance of biological resources, including an ongoing genome sequencing project, make the zebrafish a compelling model organism for studies on aging.
Collapse
Affiliation(s)
- Glenn S Gerhard
- Department of Pathology, Dartmouth Medical School, Hanover, NH, USA.
| | | |
Collapse
|
13
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2448432 DOI: 10.1002/cfg.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|