1
|
Chen H, Xu M, Zhang B, Yu S, Weir MD, Melo MAS, Masri RM, Tang Y, Xu HHK, Yang D. Novel strategy of S. mutans gcrR gene over-expression plus antibacterial dimethylaminohexadecyl methacrylate suppresses biofilm acids and reduces dental caries in rats. Dent Mater 2024; 40:e41-e51. [PMID: 38942710 DOI: 10.1016/j.dental.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Mengmeng Xu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Bin Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuang Yu
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi M Masri
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yunhao Tang
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Deqin Yang
- Department of Endodontics, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing 404100, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 404100, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 404100, PR China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei Distrinct, Chongqing 401147, PR China.
| |
Collapse
|
2
|
Regulation of biofilm formation by non-coding RNA in prokaryotes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100151. [PMID: 36636617 PMCID: PMC9829692 DOI: 10.1016/j.crphar.2022.100151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Biofilm refers to microbes that associate with each other or to a surface via self-synthesized exopolysaccharides and other surface-related structures. The presence of biofilms consisting of pathogenic microbes in the food and clinical environment can pose a threat to human health as microbes in biofilms are highly robust and are difficult to remove. Understanding the process of biofilm formation is crucial for the development of novel strategies to control or harness biofilm. The complex network of proteins, small RNA, and diverse molecules regulate biofilm formation at different steps in biofilm development, including triggering the switch from planktonic to sessile cells, maturation of biofilms, and eventual dispersion of microbes from the biofilms. Small non-coding RNAs are relatively small RNAs that are not translated into proteins and play diverse roles in metabolism, physiology, pathogenesis, and biofilm formation. In this review, we primarily focused on non-coding regulatory RNA that regulates biofilm formation in clinically relevant pathogens or threatens human health. Even though many ncRNA have recently been identified in Archaea, much characterization work remains. The mechanisms and regulatory processes controlled by ncRNA in prokaryotes are covered in this review.
Collapse
|
3
|
Khara P, Mohapatra SS, Biswas I. Role of CovR phosphorylation in gene transcription in Streptococcus mutans. MICROBIOLOGY-SGM 2018; 164:704-715. [PMID: 29504927 DOI: 10.1099/mic.0.000641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans, the primary aetiological agent of dental caries, is one of the major bacteria of the human oral cavity. The pathogenicity of this bacterium is attributed not only to the expression of virulence factors, but also to its ability to respond and adapt rapidly to the ever-changing conditions of the oral cavity. The two-component signal transduction system (TCS) CovR/S plays a crucial role in virulence and stress response in many streptococci. Surprisingly, in S. mutans the response regulator CovR appears to be an orphan, as the cognate sensor kinase, CovS, is absent in all the strains. We found that acetyl phosphate, an intracellular phosphodonor molecule known to act in signalling, might play a role in CovR phosphorylation in vivo. We also found that in vitro, upon phosphorylation by potassium phosphoramide (a high-energy phophodonor) CovR formed a dimer and showed altered electrophoretic mobility. As expected, we found that the conserved aspartic acid residue at position 53 (D53) was the site of phosphorylation, since neither phosphorylation nor dimerization was seen when an alanine-substituted CovR mutant (D53A) was used. Surprisingly, we found that the ability of CovR to act as a transcriptional regulator does not depend upon its phosphorylation status, since the D53A mutant behaved similarly to the wild-type protein in both in vivo and in vitro DNA-binding assays. This unique phosphorylation-mediated inhibition of CovR function in S. mutans sheds light on an unconventional mechanism of the signal transduction pathway.
Collapse
Affiliation(s)
- Pratick Khara
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Saswat Sourav Mohapatra
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA.,Present address: Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TN 603203, India
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
CovR alleviates transcriptional silencing by a nucleoid-associated histone-like protein in Streptococcus mutans. J Bacteriol 2012; 194:2050-61. [PMID: 22343292 DOI: 10.1128/jb.06812-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus mutans, the global response regulator CovR plays an important role in biofilm formation, stress tolerance response, and caries production. We have previously demonstrated that CovR activates a large gene cluster, which is a part of a genomic island, TnSmu2. In this article, we have further characterized CovR at the molecular level to understand the gene activation mechanism. Toward this end, we mapped the transcription start site of the operon that lies upstream of the SMU.1348 gene (P(SMU.1348)), the first gene of the cluster. We constructed a transcriptional reporter fusion and showed that CovR induces expression from P(SMU.1348). We also demonstrated that purified CovR protects the sequence surrounding the -10 region of P(SMU.1348). In an in vitro transcription assay, we showed that histone-like protein (HLP), a homologue of Escherichia coli HU protein, represses transcription from P(SMU.1348). In vivo overexpression of HLP in trans also represses transcription from P(SMU.1348). Addition of CovR to the HLP-repressed P(SMU.1348) resulted in increased transcription from the promoter, suggesting a role for CovR in countering HLP silencing. Moreover, addition of SMU.1349, a transcriptional activator of the operon, to the in vitro assay further stimulated the transcription. Based on our in vivo and in vitro results, we propose a model for transcriptional activation of the operon.
Collapse
|
5
|
Dmitriev A, Mohapatra SS, Chong P, Neely M, Biswas S, Biswas I. CovR-controlled global regulation of gene expression in Streptococcus mutans. PLoS One 2011; 6:e20127. [PMID: 21655290 PMCID: PMC3105014 DOI: 10.1371/journal.pone.0020127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/13/2011] [Indexed: 12/15/2022] Open
Abstract
CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome) were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus.
Collapse
Affiliation(s)
- Alexander Dmitriev
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Saswat S. Mohapatra
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Patrick Chong
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Melody Neely
- Department of Microbiology and Immunology, Wayne State School of Medicine, Detroit, Michigan, United States of America
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Molecular mimicry between streptococcal pyrogenic exotoxin B and endothelial cells. J Transl Med 2010; 90:1492-506. [PMID: 20458278 DOI: 10.1038/labinvest.2010.93] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Molecular mimicry between group A streptococcus and host antigens has important roles in the development of post-streptococcal sequelae, including glomerulonephritis and rheumatic heart disease (RHD). The etiology of RHD involves host cross-reactivity with M proteins and carbohydrate antigens. In this study, we show that anti-streptococcal pyrogenic exotoxin B (SPE B) antibodies exhibited characteristics of autoantibodies, which cross-react with endothelial cells. Immunoglobulin G (IgG) deposition and complement activation were observed in the heart valve of SPE B-immunized mice. In addition, apoptosis in the heart valve was detected in SPE B-immunized mice. An anti-SPE B monoclonal antibody (mAb) 10G showed cross-reactivity with human microvascular endothelial (HMEC-1) cells and mouse valve endothelial cells. Passive immunization with mAb 10G also caused IgG deposition, complement activation, and apoptotic cell death in the mouse heart valve. We conducted peptide array and ELISA using synthetic peptides to identify the SPE B antigenic epitope recognized by mAb 10G. Results showed that the major epitope of mAb 10G is localized to amino-acid residues 296-310 of SPE B (P7-8). The cross-reactivity of mAb 10G with endothelial cells was inhibited using P7-8 peptides for competition. These results suggest that anti-SPE B antibodies cross-react with endothelial cells, and that a dominant epitope is located within the amino-acid residues 296-310 of SPE B. Moreover, we found that mAb 10G can also bind to N-acetyl-β-D-glucosamine (GlcNAc) conjugated with bovine serum albumin (BSA), but not to BSA or M1 protein. Competition assay showed that the binding activity of mAb 10G with GlcNAc-BSA and P7-8 of SPE B was inhibited by pretreatment with GlcNAc-BSA or P7-8 peptides. Therefore, our results suggest that conformational molecular mimicry may exist between SPE B and GlcNAc.
Collapse
|
7
|
Lei B. Benfang Lei’s research on heme acquisition in Gram-positive pathogens and bacterial pathogenesis. World J Biol Chem 2010; 1:286-90. [PMID: 21537486 PMCID: PMC3083973 DOI: 10.4331/wjbc.v1.i9.286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
Benfang Lei’s laboratory conducts research on pathogenesis of human pathogen Group A Streptococcus (GAS) and horse pathogen Streptococcus equi (S. equi). His current research focuses on heme acquisition in Gram-positive pathogens and molecular mechanism of GAS and S. equi pathogenesis. Heme is an important source of essential iron for bacterial pathogens. Benfang Lei and colleagues identified the first cell surface heme-binding protein in Gram-positive pathogens and the heme acquisition system in GAS, demonstrated direct heme transfer from one protein to another, demonstrated an experimental pathway of heme acquisition by the Staphylococcus aureus Isd system, elucidated the activated heme transfer mechanism, and obtained evidence for a chemical mechanism of direct axial ligand displacement during the Shp-to-HtsA heme transfer reaction. These findings have considerably contributed to the progress that has been made over recent years in understanding the heme acquisition process in Gram-positive pathogens. Pathogenesis of GAS is mediated by an abundance of extracellular proteins, and pathogenic role and functional mechanism are not known for many of these virulence factors. Lei laboratory identified a secreted protein of GAS as a CovRS-regulated virulence factor that is a protective antigen and is critical for GAS spreading in the skin and systemic dissemination. These studies may lead to development of novel strategies to prevent and treat GAS infections.
Collapse
Affiliation(s)
- Benfang Lei
- Benfang Lei, Department of Veterinary Molecular Biology, Montana State University, 960 Technology Blvd, Bozeman, MT 59717, United States
| |
Collapse
|
8
|
Zhang M, McDonald FM, Sturrock SS, Charnock SJ, Humphery-Smith I, Black GW. Group A streptococcus cell-associated pathogenic proteins as revealed by growth in hyaluronic acid-enriched media. Proteomics 2007; 7:1379-90. [PMID: 17407184 DOI: 10.1002/pmic.200600578] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Group A streptococcus (GAS), also know as Streptococcus pyogenes, is a human pathogen and can cause several fatal invasive diseases such as necrotising fasciitis, the so-called flesh-eating disease, and toxic shock syndrome. The destruction of connective tissue and the hyaluronic acid (HA) therein, is a key element of GAS pathogenesis. We therefore propagated GAS in HA-enriched growth media in an attempt to create a simple biological system that could reflect some elements of GAS pathogenesis. Our results show that several recognised virulence factors were up-regulated in HA-enriched media, including the M1 protein, a collagen-like surface protein and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, which has been shown to play important roles in streptococcal pathogenesis. Interestingly, two hypothetical proteins of unknown function were also up-regulated and detailed bioinformatics analysis showed that at least one of these hypothetical proteins is likely to be involved in pathogenesis. It was therefore concluded that this simple biological system provided a valuable tool for the identification of potential GAS virulence factors.
Collapse
Affiliation(s)
- Meng Zhang
- Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Melchior MB, Vaarkamp H, Fink-Gremmels J. Biofilms: a role in recurrent mastitis infections? Vet J 2006; 171:398-407. [PMID: 16624706 DOI: 10.1016/j.tvjl.2005.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2005] [Indexed: 11/25/2022]
Abstract
Mastitis remains one the most important diseases in dairy cattle despite the progress made in improving general udder health in recent years. Epidemiological studies have revealed that following treatment with antimicrobials, bacteriological cure rates vary between 0% and 80% but with no evidence of a significant loss of activity of the major classes of antibiotics licensed for the treatment of bovine mastitis. Recurrent infections are often attributable to biofilm growth of bacteria and this review provides an overview of those mechanisms related to bacterial biofilm growth in mastitis. Biofilm formation is accompanied by significant genetic and subsequent physiological changes in the microorganisms resulting, inter alia, in a loss of sensitivity to virtually all classes of antibiotics.
Collapse
Affiliation(s)
- M B Melchior
- Department of Veterinary Pharmacology Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80152, 3508 TD Utrecht, The Netherlands.
| | | | | |
Collapse
|
10
|
Kuo CF, Luo YH, Lin HY, Huang KJ, Wu JJ, Lei HY, Lin MT, Chuang WJ, Liu CC, Jin YT, Lin YS. Histopathologic changes in kidney and liver correlate with streptococcal pyrogenic exotoxin B production in the mouse model of group A streptococcal infection. Microb Pathog 2004; 36:273-85. [PMID: 15043862 DOI: 10.1016/j.micpath.2004.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 01/15/2004] [Accepted: 01/19/2004] [Indexed: 11/25/2022]
Abstract
Previous studies show that isogenic mutants deficient in streptococcal pyrogenic exotoxin B (SPE B) cause less mortality and skin tissue damage than wild-type strains of Streptococcus pyogenes when inoculated into mice via an air pouch. In this study, the growth and dissemination of bacteria, pathologic changes in various organs, and their correlation with SPE B production were examined. Bacterial numbers in the air pouch from wild-type strain NZ131-infected mice increased at 48 h, while those from speB mutant SW510-infected mice continuously reduced. Mice infected with NZ131 developed bacteremia and greater dissemination in the kidney, liver, and spleen; those infected with SW510 showed either no or slight bacteremia and dissemination. Co-inoculation of SW510 with recombinant SPE B showed a higher bacterial count in the air pouch, bacteremia, and organ dissemination compared to co-inoculation with a C192S mutant lacking protease activity. The histopathologic changes examined showed lesions in kidney and liver in the NZ131-infected but not in SW510-infected mice. The elevation in sera of BUN, AST, and ALT correlated positively with renal and liver impairment. Taken together, SPE B produced during S. pyogenes infection plays a pathogenic role. A direct effect of SPE B on vessel permeability change was also demonstrated.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nilsson CL. Bacterial proteomics and vaccine development. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 2:59-65. [PMID: 12083954 DOI: 10.2165/00129785-200202010-00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Until recently, the development of vaccines for use in humans relied on the response to attenuated or whole-cell preparations, or empirically selected antigens. The post-genomic era holds the possibility of rational design of novel vaccines for important human pathogens. The discovery and development of these new vaccines is likely to be accomplished through integrated proteomic strategies. Although most proteomic studies are based on two-dimensional gel electrophoresis (2D-PAGE) as a separation technique, new methods have been developed within the past two years that provide complementary information concerning microbial protein expression. The 2D-PAGE technique in combination with Western blotting has been successfully applied in the discovery of antigens from Helicobacter pylori, Chlamydia trachomatis and Borrelia garinii. Two-dimensional semi-preparative electrophoresis has provided complementary information regarding membrane protein expression in a strain of H. pylori. Through two-dimensional liquid chromatography-tandem mass spectrometry, the most comprehensive information to date regarding protein expression in yeast was obtained. This technique may shortly become an important tool in vaccinology. This review of the current state of bacterial proteomics as applied in vaccinology presents analytical techniques for protein separation, proteomics without gels, reverse vaccinology, and functional approaches to the identification of virulence proteins in microbes.
Collapse
Affiliation(s)
- Carol L Nilsson
- Institute of Medical Biochemistry, Göteborg University, Box 440, SE 405 30 Göteborg, Sweden.
| |
Collapse
|
12
|
Joyce EA, Chan K, Salama NR, Falkow S. Redefining bacterial populations: a post-genomic reformation. Nat Rev Genet 2002; 3:462-73. [PMID: 12042773 DOI: 10.1038/nrg820] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sexual reproduction and recombination are essential for the survival of most eukaryotic populations. Until recently, the impact of these processes on the structure of bacterial populations has been largely overlooked. The advent of large-scale whole-genome sequencing and the concomitant development of molecular tools, such as microarray technology, facilitate the sensitive detection of recombination events in bacteria. These techniques are revealing that bacterial populations are comprised of isolates that show a surprisingly wide spectrum of genetic diversity at the DNA level. Our new awareness of this genetic diversity is increasing our understanding of population structures and of how these affect host pathogen relationships.
Collapse
Affiliation(s)
- Elizabeth A Joyce
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Fairchild D 037, Stanford, California 94305-5402, USA.
| | | | | | | |
Collapse
|
13
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2448396 DOI: 10.1002/cfg.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|