1
|
Bilal M, Singh AK, Iqbal HM, Boczkaj G. Enzyme-conjugated MXene nanocomposites for biocatalysis and biosensing. CHEMICAL ENGINEERING JOURNAL 2023; 474:145020. [DOI: 10.1016/j.cej.2023.145020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
2
|
Maghraby Y, El-Shabasy RM, Ibrahim AH, Azzazy HMES. Enzyme Immobilization Technologies and Industrial Applications. ACS OMEGA 2023; 8:5184-5196. [PMID: 36816672 PMCID: PMC9933091 DOI: 10.1021/acsomega.2c07560] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 05/27/2023]
Abstract
Enzymes play vital roles in diverse industrial sectors and are essential components of many industrial products. Immobilized enzymes possess higher resistance to environmental changes and can be recovered/recycled easily when compared to the free forms. The primary benefit of immobilization is protecting the enzymes from the harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). The immobilized enzymes can be utilized in various large-scale industries, e.g., medical, food, detergent, textile, and pharmaceutical industries, besides being used in water treatment plants. According to the required application, a suitable enzyme immobilization technique and suitable carrier materials are chosen. Enzyme immobilization techniques involve covalent binding, encapsulation, entrapment, adsorption, etc. This review mainly covers enzyme immobilization by various techniques and their usage in different industrial applications starting from 1992 until 2022. It also focuses on the multiscale operation of immobilized enzymes to maximize yields of certain products. Lastly, the severe consequence of the COVID-19 pandemic on global enzyme production is briefly discussed.
Collapse
Affiliation(s)
- Yasmin
R. Maghraby
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Rehan M. El-Shabasy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin El-Kom 32512, Egypt
| | - Ahmed H. Ibrahim
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Center
for Materials Science, Zewail City of Science
and Technology, 6th of October 12578, Giza, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department
of Nanobiophotonics, Leibniz Institute for
Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
3
|
Yuan K, Song P, Li S, Gao S, Wen J, Huang H. Combining metabolic flux analysis and adaptive evolution to enhance lipase production in Bacillus subtilis. ACTA ACUST UNITED AC 2019; 46:1091-1101. [DOI: 10.1007/s10295-019-02205-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/31/2018] [Indexed: 11/24/2022]
Abstract
Abstract
Metabolic fluxes during lipase production by Bacillus subtilis CICC 20034 in synthetic medium were studied using metabolic flux analysis (MFA). The MFA showed that lipase production was dependent on, and coupled to the tributyrin uptake rate, formation of biomass, lactate, ATP, as well as amino acids from the aspartate and glutamate family. Using tributyrin as the sole carbon source, an adaptive evolution strategy was applied to increase the tributyrin uptake rate. B. subtilis SPZ1 was obtained from CICC 20034 by adaptive evolution over 1000 generations of growth-based selection. The tributyrin consumption rate of strain SPZ1 reached 0.89 g/(L·h) which was 1.9-fold higher than that of the original strain. The MFA indicated that the 212% increase of tributyrin uptake flux contributed to the 556% increase of lipase flux. Consequently, the lipase activity (0.65 U/mL) of strain SPZ1 was 1.9-fold higher than that of the original strain. This was the highest lipase activity obtained by fermentation in synthetic medium reported for Bacillus strains. In complex culture medium, lipase activity of SPZ1 reached 3.3 U/mL.
Collapse
Affiliation(s)
- Kai Yuan
- 0000 0000 9389 5210 grid.412022.7 Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing China
| | - Ping Song
- 0000 0000 9389 5210 grid.412022.7 Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing China
- 0000 0004 1761 2484 grid.33763.32 Department Biochemical Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - Shuang Li
- 0000 0000 9389 5210 grid.412022.7 Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 211816 Nanjing China
| | - Song Gao
- 0000 0004 1800 0658 grid.443480.f Jiangsu Key Laboratory of Marine Bioresources and Environment Huaihai Institute of Technology 222005 Lianyungang China
| | - Jianping Wen
- 0000 0004 1761 2484 grid.33763.32 Department Biochemical Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - He Huang
- 0000 0000 9389 5210 grid.412022.7 School of Pharmaceutical Sciences Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
4
|
Kumar N, Pandey R, Prabhu AA, Venkata Dasu V. Genetic and substrate-level modulation of Bacillus subtilis physiology for enhanced extracellular human interferon gamma production. Prep Biochem Biotechnol 2018; 48:391-401. [PMID: 29688129 DOI: 10.1080/10826068.2018.1446157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human interferon-gamma (hIFNG) production is limited by various gene-level bottlenecks including translation, protein folding, and secretion which depends upon the physiological state of the organism. In this study gene-level and substrate-level modulations have been used to control Bacillus subtilis physiology for >15 fold extracellular soluble hIFNG production. Two variants of the native human interferon-gamma gene (hifng) were designed and synthesized, namely, cohifnghis and cohifng having codon adaptation index 25.33 and 26.89% higher than the native gene, respectively. BScoIFNG and BScoIFNGhis with ΔG of -100.0 and -113.7 kcal mol-1 resulted in 30 and 6.5% higher hIFNG compared to the native gene in complex medium. BScoIFNG produced 1.53 fold higher hIFNG using glucose-based defined medium as compared to the complex medium by modulating the physiological parameter growth rate from 0.35 to 0.26 hr-1. Further modulatory effect of various phosphotransferase transport system (PTS) and no-PTS sugars, sugar alcohols, and organic acids was quantified on the physiology of B. subtilis WB800N for extracellular hIFNG production. Sorbitol and glycerol emerged as the best hIFNG producers with lowest growth and substrate consumption rates. BScoIFNG produced maximum 3.15 mg L-1 hIFNG at 50 g L-1 glycerol with highest hIFNG yield (Yp/x = 0.136) and lowest substrate uptake rate (qs = 0.26).
Collapse
Affiliation(s)
- Nitin Kumar
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Rajat Pandey
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Ashish Anand Prabhu
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| | - Veeranki Venkata Dasu
- a Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam , India
| |
Collapse
|
5
|
Enhanced Production of Alpha Amylase by Exploiting Novel Bacterial Co-Culture Technique Employing Solid State Fermentation. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2016. [DOI: 10.1007/s40995-016-0015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Dash BK, Rahman MM, Sarker PK. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase. BIOMED RESEARCH INTERNATIONAL 2015; 2015:859805. [PMID: 26180814 PMCID: PMC4477212 DOI: 10.1155/2015/859805] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/21/2022]
Abstract
A study was carried out with a newly isolated bacterial strain yielding extracellular amylase. The phylogenetic tree constructed on the basis of 16S rDNA gene sequences revealed this strain as clustered with the closest members of Bacillus sp. and identified as Bacillus subtilis BI19. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Rice flour (1.25%) as a cheap natural carbon source was found to induce amylase production mostly. A combination of peptone and tryptone as organic and ammonium sulfate as inorganic nitrogen sources gave highest yield. Maximum production was obtained after 24 h of incubation at 37 °C with an initial medium pH 8.0. Addition of surfactants like Tween 80 (0.25 g/L) and sodium lauryl sulfate (0.2 g/L) resulted in 28% and 15% increase in enzyme production, respectively. Amylase production was 3.06 times higher when optimized production conditions were used. Optimum reaction temperature and pH for crude amylase activity were 50 °C and 6.0, respectively. The crude enzyme showed activity and stability over a fair range of temperature and pH. These results suggest that B. subtilis BI19 could be exploited for production of amylase at relatively low cost and time.
Collapse
Affiliation(s)
- Biplab Kumar Dash
- Department of Biotechnology and Genetic Engineering, Faculty of Applied Science and Technology, Islamic University, Kushtia 7003, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jessore University of Science and Technology, Jessore 7408, Bangladesh
| | - M. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Applied Science and Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Palash Kumar Sarker
- Microbial Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| |
Collapse
|
7
|
Amplification, Sequencing and Cloning of Iranian Native Bacillus subtilis Alpha-amylase Gene in Saccharomyces cerevisiae. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Zhu MJ, Cheng JR, Chen HT, Deng MC, Xie WH. Optimization of neutral protease production from Bacillus subtilis: using agroindustrial residues as substrates and response surface methodology. Biotechnol Appl Biochem 2013; 60:336-42. [PMID: 23654222 DOI: 10.1002/bab.1094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/28/2012] [Indexed: 11/12/2022]
Abstract
Statistically based experimental designs were applied to optimize the fermentation medium and cultural conditions for the maximization of neutral protease using three agroindustrial residues (cassava pulp, soybean meal, and wheat bran) and Bacillus subtilis DES-59. The Plackett-Burman design was used to evaluate the effects of variables such as the concentration of substrates, initial pH, shaker's rotating speed, temperature, inoculum size, and incubation time. Among the eight parameters, three significant variables (cassava pulp, soybean meal, and inoculum size) were selected for the optimization study, in which a central composite design was used to optimize the concentrations of cassava pulp and soybean meal and inoculum size and investigate the interactive effects of the three variables. The optimal parameters obtained from response surface methodology are 37.78 g/L of cassava pulp, 15 g/L of soybean meal, and 6.5% (v/v) of inoculum size, respectively, resulting in a maximum neutral protease activity of 4107 ± 122 U/mL.
Collapse
Affiliation(s)
- Ming-Jun Zhu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, PR China.
| | | | | | | | | |
Collapse
|
9
|
Joseph B, Shrivastava N, Ramteke PW. Extracellular cold-active lipase of Microbacterium luteolum isolated from Gangotri glacier, western Himalaya: Isolation, partial purification and characterization. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Chacko S, Ramteke PW, Joseph B. A comparative study on the production of amidase using immobilized and dehydrated immobilized cells of Pseudomonas putida MTCC 6809. J Genet Eng Biotechnol 2012. [DOI: 10.1016/j.jgeb.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Joseph B, Ramteke PW. Extracellular solvent stable cold-active lipase from psychrotrophic Bacillus sphaericus MTCC 7526: partial purification and characterization. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0483-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Divakaran D, Chandran A, Pratap Chandran R. Comparative study on production of a-Amylase from Bacillus licheniformis strains. Braz J Microbiol 2011; 42:1397-404. [PMID: 24031769 PMCID: PMC3768710 DOI: 10.1590/s1517-838220110004000022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 06/06/2011] [Indexed: 11/26/2022] Open
Abstract
Alpha amylase (α-1, 4-glucan-glucanhydrolase, EC 3.2.1.1), an extracellular enzyme, degrades α, 1–4 glucosidic linkages of starch and related substrates in an endo-fashion producing oligosaccharides including maltose, glucose and alpha limit dextrin (7). The present study deals with the production and comparative study of production of α-amylase from two strains of Bacillus licheniformis, MTCC 2617 and 2618, by using four different substrates, starch, rice, wheat and ragi powder as carbon source by submerged fermentation. The effect of varying pH and incubation temperature, activator, inhibitor, and substrate concentration was investigated on the activity of α-amylase produced by MTCC strain 2618. The results shows that the production of the α-amylase by the B.licheniformis strain MTCC 2618, using four different substrates were found to be maximum (Starch 3.64 IU/ml/minutes, Rice powder 2.93 IU/ml/minutes, Wheat powder 2.67 IU/ml/minutes, Ragi powder 2.36 IU/ml/minutes) on comparing the enzyme production of two strains. It was also observed that the maximum production was found on the 3rd day (i.e. 72 hr) and characterization of crude enzyme revealed that optimum activity was at pH 7 and 37°C.
Collapse
Affiliation(s)
- Dibu Divakaran
- Department of Biotechnology and Research, K. V. M. College of Engineering and Information Technology , Kokkothamangalam P. O., Cherthala - 688583, Alappuzha District, Kerala , India
| | | | | |
Collapse
|
13
|
Uysal E, Akcan N, Baysal Z, Uyar F. Optimization of α-amylase production by Bacillus subtilis RSKK96: using the Taguchi experimental design approach. Prep Biochem Biotechnol 2011; 41:84-93. [PMID: 21229466 DOI: 10.1080/10826068.2010.534333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, the Taguchi experimental design was applied to optimize the conditions for α-amylase production by Bacillus subtilis RSKK96, which was purchased from Refik Saydam Hifzissihha Industry (RSHM). Four factors, namely, carbon source, nitrogen source, amino acid, and fermentation time, each at four levels, were selected, and an orthogonal array layout of L(16) (4(5)) was performed. The model equation obtained was validated experimentally at maximum casein (1%), corn meal (1%), and glutamic acid (0.01%) concentrations with incubation time to 72 h in the presence of 1% inoculum density. Point prediction of the design showed that maximum α-amylase production of 503.26 U/mg was achieved under optimal experimental conditions.
Collapse
Affiliation(s)
- Ersin Uysal
- Dicle University, Diyarbakır Vocational School, Diyarbakır, Turkey
| | | | | | | |
Collapse
|
14
|
Role of extracellular protease in nitrogen substrate management during antibiotic fermentation: a process model and experimental validation. Appl Microbiol Biotechnol 2011; 91:1019-28. [DOI: 10.1007/s00253-011-3318-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/25/2022]
|
15
|
|
16
|
Çakar ZP. Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnol J 2009; 4:992-1002. [DOI: 10.1002/biot.200800332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design. Appl Microbiol Biotechnol 2008; 79:915-23. [DOI: 10.1007/s00253-008-1508-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/01/2008] [Accepted: 04/15/2008] [Indexed: 11/26/2022]
|
18
|
Ileri N, Calik P, Sengül A. Phosphate enrichment and fed-batch operation for prolonged ?-lactamase production by Bacillus licheniformis. J Appl Microbiol 2007; 102:1418-26. [PMID: 17448176 DOI: 10.1111/j.1365-2672.2006.03163.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Investigation of the phosphate effect and feeding strategy, i.e. linear and exponential feeding, to improve beta-lactamase production by Bacillus licheniformis considering the viability of the cells. METHODS AND RESULTS Effect of phosphate enrichment on beta-lactamase production was investigated and resulted in 1.2-fold increase in beta-lactamase activity. Thereafter, exponential and linear feed profiles were established, after an initial batch phase for t = 0-7.5 h. The highest beta-lactamase activity was obtained at fed-batch operation with exponential feeding (FBO1) condition as A = 106 U cm(-3), which is c. 1.7-fold higher than that of the phosphate-enriched batch operation (PE-BO). CONCLUSIONS Biphasic variations in beta-lactamase production was enhanced to monophasic variation with the exponential feeding strategy where the activity was obtained as A = 106 U cm(-3) at t = 16 h. SIGNIFICANCE AND IMPACT OF THE STUDY Phosphate enrichment decreases the intracellular ammonium concentration and organic acid excretion, but increrases beta-lactamase production. When batch operation (BO) and PE-BO are compared, it is seen that succinic acid formation decreased with the phosphate enrichment as a result of smooth operation of the tricarboxylic acid cycle. At FBO1 despite the increased lactic and acetic acid formation, beta-lactamase production increased 1.7-fold, and 92% of the cells were alive at the end of the fermentation.
Collapse
Affiliation(s)
- N Ileri
- Department of Chemical Engineering, Industrial Biotechnology and Metabolic Engineering Laboratory, Middle East Technical University, Ankara, Turkey
| | | | | |
Collapse
|
19
|
Kocabaş P, Çalık P, Özdamar TH. Fermentation characteristics of l-tryptophan production by thermoacidophilic Bacillus acidocaldarius in a defined medium. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Caldeira AT, Feio SS, Arteiro JS, Roseiro JC. Antimicrobial activity of steady-state cultures of Bacillus sp. CCMI 1051 against wood contaminant fungi. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Rao YK, Lu SC, Liu BL, Tzeng YM. Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2005.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Thys RC, Guzzon SO, Cladera-Olivera F, Brandelli A. Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.03.070] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:299-310. [PMID: 15546673 DOI: 10.1016/j.bbamcr.2004.02.011] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/13/2004] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis is a rod-shaped, Gram-positive soil bacterium that secretes numerous enzymes to degrade a variety of substrates, enabling the bacterium to survive in a continuously changing environment. These enzymes are produced commercially and this production represents about 60% of the industrial-enzyme market. Unfortunately, the secretion of heterologous proteins, originating from Gram-negative bacteria or from eukaryotes, is often severely hampered. Several bottlenecks in the B. subtilis secretion pathway, such as poor targeting to the translocase, degradation of the secretory protein, and incorrect folding, have been revealed. Nevertheless, research into the mechanisms and control of the secretion pathways will lead to improved Bacillus protein secretion systems and broaden the applications as industrial production host. This review focuses on studies that aimed at optimizing B. subtilis as cell factory for commercially interesting heterologous proteins.
Collapse
Affiliation(s)
- Lidia Westers
- Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
24
|
Calik P, Bilir E, Ozçelik IS, Calik G, Ozdamar TH. Inorganic compounds have dual effect on recombinant protein production: influence of anions and cations on serine alkaline protease production. J Appl Microbiol 2004; 96:194-200. [PMID: 14678174 DOI: 10.1046/j.1365-2672.2003.02141.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Investigation of concerted effects of cations, i.e. Mg2+ and Mn2+, in combination with their anions, i.e. sulphate, chloride and acetate (Ac), on the physiology of Bacillus licheniformis carrying pHV1431::subC to improve the fermentation medium for serine alkaline protease (SAP) production, whereupon, determination of the acid that can be used in pH control. METHODS AND RESULTS The cell concentrations increased with the increase in MnSO4 and Mn(Ac)2 concentrations, and the highest values were obtained at Co(MnSO4) = 0.20 mmol l-1 and Co(Mn(CH3COO)2) = 4.0 mmol l-1, as 2.3 and 2.2 g l-1, respectively. However, Co(MnCl2) did not influence biomass concentration. SAP production was inhibited with MnCl2 after Co(MnCl2) = 0.60 mmol l-1, but with MnSO4 SAP production was inhibited drastically. Whereas, at high concentrations of Mn(Ac)2 SAP production increased and the highest activity was obtained as ASAP = 1285 U ml-1 at t = 65 h. With the Mg compounds, cell concentrations increased with the increase in the concentrations of MgSO4, MgCl2 and Mg(Ac)2; and the anions did not show any influence on the cell growth. Similar to the results of Mn compounds, the glucose consumption rate increased with the increase in MgSO4 and MgCl2 concentrations; contrariwise, decreased with the increase in Mg(Ac)2 concentrations, due to the use of acetate as the second carbon source. Co(MgSO4) = 0.40 mmol l-1, Co(MgCl2) = 1.60 mmol l-1 and Co(Mg(Ac)2) = 0.40 mmol l-1 were the optimum concentrations separately, and the highest SAP activity was obtained with Mg(Ac)2 as ASAP = 1338 U ml-1 at t = 47 h. Consequently, ion acetate and its acid HAc appear, respectively, as the superior anion for the essential cations and the control agent for pH control in the bioreactor. Finally, optimum initial concentrations and the concerted effects of Mg(Ac)2 and Mn(Ac)2 were investigated, and the optimum concentrations were found respectively as 0.40 and 0.80 mmol l-1, while the maximum activity was obtained as ASAP = 1010 U ml-1 at a shortened cultivation time of t = 39 h. CONCLUSIONS Mn(Ac)2 and Mg(Ac)2 together enhanced the cell formation and SAP synthesis rates, moreover, SAP synthesis started at an earlier cultivation time. SIGNIFICANCE AND IMPACT OF THE STUDY Each inorganic compound with its cation and anion has dual effect on the metabolism. Mg2+ and Mn2+ at their specific concentrations influence the regulation of the pathways that might cause better coupling of supply and demand for the amino acids on the basis of the amino acid composition of the enzyme molecule.
Collapse
Affiliation(s)
- P Calik
- Industrial Biotechnology Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
25
|
Protein-based complex medium design for recombinant serine alkaline protease production. Enzyme Microb Technol 2003. [DOI: 10.1016/j.enzmictec.2003.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Overexpression of a serine alkaline protease gene in Bacillus licheniformis and its impact on the metabolic reaction network. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00030-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Çalık P, Bilir E, Çalık G, Özdamar TH. Influence of pH conditions on metabolic regulations in serine alkaline protease production by Bacillus licheniformis. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00162-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Metabolic flux analysis for human therapeutic protein productions and hypothesis for new therapeutical strategies in medicine. Biochem Eng J 2002. [DOI: 10.1016/s1369-703x(02)00008-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
|