1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Totani M, Nakamichi A, Kadokawa JI. Enzymatic Assembly of Chitosan-Based Network Polysaccharides and Their Encapsulation and Release of Fluorescent Dye. Molecules 2024; 29:1804. [PMID: 38675624 PMCID: PMC11052119 DOI: 10.3390/molecules29081804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
We prepared network polysaccharide nanoscopic hydrogels by crosslinking water-soluble chitosan (WSCS) with a carboxylate-terminated maltooligosaccharide crosslinker via condensation. In this study, the enzymatic elongation of amylose chains on chitosan-based network polysaccharides by glucan phosphorylase (GP) catalysis was performed to obtain assembly materials. Maltoheptaose (Glc7) primers for GP-catalyzed enzymatic polymerization were first introduced into WSCS by reductive amination. Crosslinking of the product with the above-mentioned crosslinker by condensation was then performed to produce Glc7-modified network polysaccharides. The GP-catalyzed enzymatic polymerization of the α-d-glucose 1-phosphate monomer from the Glc7 primers on the network polysaccharides was conducted, where the elongated amylose chains formed double helices. Enzymatic disintegration of the resulting network polysaccharide assembly successfully occurred by α-amylase-catalyzed hydrolysis of the double helical amyloses. The encapsulation and release of a fluorescent dye, Rhodamine B, using the CS-based network polysaccharides were also achieved by means of the above two enzymatic approaches.
Collapse
Affiliation(s)
| | | | - Jun-ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan; (M.T.); (A.N.)
| |
Collapse
|
3
|
Vine-Twining Inclusion Behavior of Amylose towards Hydrophobic Polyester, Poly(β-propiolactone), in Glucan Phosphorylase-Catalyzed Enzymatic Polymerization. Life (Basel) 2023; 13:life13020294. [PMID: 36836651 PMCID: PMC9958898 DOI: 10.3390/life13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
This study investigates inclusion behavior of amylose towards, poly(β-propiolactone) (PPL), that is a hydrophobic polyester, via the vine-twining process in glucan phosphorylase (GP, isolated from thermophilic bacteria, Aquifex aeolicus VF5)-catalyzed enzymatic polymerization. As a result of poor dispersibility of PPL in sodium acetate buffer, the enzymatically produced amylose by GP catalysis incompletely included PPL in the buffer media under the general vine-twining polymerization conditions. Alternatively, we employed an ethyl acetate-sodium acetate buffer emulsion system with dispersing PPL as the media for vine-twining polymerization. Accordingly, the GP (from thermophilic bacteria)-catalyzed enzymatic polymerization of an α-d-glucose 1-phosphate monomer from a maltoheptaose primer was performed at 50 °C for 48 h in the prepared emulsion to efficiently form the inclusion complex. The powder X-ray diffraction profile of the precipitated product suggested that the amylose-PPL inclusion complex was mostly produced in the above system. The 1H NMR spectrum of the product also supported the inclusion complex structure, where a calculation based on an integrated ratio of signals indicated an almost perfect inclusion of PPL in the amylosic cavity. The prevention of crystallization of PPL in the product was suggested by IR analysis, because it was surrounded by the amylosic chains due to the inclusion complex structure.
Collapse
|
4
|
Fabrication of Chitosan-Based Network Polysaccharide Nanogels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238384. [PMID: 36500476 PMCID: PMC9740819 DOI: 10.3390/molecules27238384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
In this study, we developed a method to fabricate chitosan-based network polysaccharides via the condensation between amino groups in water-soluble chitosan (WSCS) and a carboxylate-terminated maltooligosaccharide crosslinker. We previously reported on the fabrication of network-polysaccharide-based macroscopic hydrogels via the chemical crosslinking of water-soluble chitin (WSCh) with the crosslinker. Because the molecular weight of the WSCS was much smaller than that of the WSCh, in the present investigation, the chemical crosslinking of the WSCS with the crosslinker was observed at the nanoscale upon the condensation between amino and carboxylate groups in the presence of a condensing agent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, and N-hydroxysuccinimide, affording nano-sized chitosan-based network polysaccharides. The occurrence of the crosslinking via the formation of amido linkages was supported by the IR analysis and 1H NMR measurements after the dissolution via acid hydrolysis in DCl/D2O. The products formed nanogels, whose sizes depended on the amino/carboxylate feed ratio. The nanoscale morphology and size of the products were evaluated via scanning electron microscopy, dynamic light scattering analyses, and transition electron microscopy. In the present study, we successfully developed the method to fabricate nanogel materials based on network polysaccharide structures, which can practically be applied as new polysaccharide-based 3D bionanomaterials.
Collapse
|
5
|
Inclusion behavior of amylose toward hydrophobic polyester, poly(γ-butyrolactone), in vine-twining polymerization. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Liu J, Wang Y, Li X, Jin Z, Svensson B, Bai Y. Effect of Starch Primers on the Fine Structure of Enzymatically Synthesized Glycogen-like Glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6202-6212. [PMID: 35549341 DOI: 10.1021/acs.jafc.2c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycogen-like glucan (GnG) is a unique hyperbranched polysaccharide nanoparticle which is drawing increasing attention due to its biodegradability and abundant short branches that can be functionalized. Because starch and GnG are both composed of glucose residues and have similar glucosidic bonds, GnG could be fabricated by sucrose phosphorylase, α-glucan phosphorylase, and branching enzymes from starch primers and sucrose. In this study, high-amylose starch, normal starch, and waxy corn starch were used as primers to synthesize GnG, and their impact on the fine structure of GnG was investigated. Structural analysis indicated that with increasing content of amylopectin in the starch primer, the proportion of short chains in GnG decreased, and the degree of β-amylolysis and α-amylolysis was enhanced. Amylose in the primer contributed to a compact and homogeneous structure of GnG, while amylopectin triggered the formation of branch points with a more open distribution. These findings provide a new strategy for regulating the fine structure of GnG.
Collapse
Affiliation(s)
- Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
8
|
Abe S, Yamamoto K, Kadokawa JI. Hydrophobic polysaccharides: Partially 2‐deoxygenated amyloses. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shogo Abe
- Kagoshima University: Kagoshima Daigaku Graduate School of Science and Engineering JAPAN
| | - Kazuya Yamamoto
- Kagoshima University: Kagoshima Daigaku Graduate School of Scinece and Engineering JAPAN
| | - Jun-ichi Kadokawa
- Kagoshima University: Kagoshima Daigaku Graduate School of Science and Engineering Korimoto 890-0065 Kagoshima JAPAN
| |
Collapse
|
9
|
Liu J, Bai Y, Ji H, Wang Y, Jin Z, Svensson B. Controlling the Fine Structure of Glycogen-like Glucan by Rational Enzymatic Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14951-14960. [PMID: 34847321 DOI: 10.1021/acs.jafc.1c06531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycogen-like glucan (GnG), a hyperbranched glucose polymer, has been receiving increasing attention to generate synthetic polymers and nanoparticles. Importantly, different branching patterns strongly influence the functionality of GnG. To uncover ways of obtaining different GnG branching patterns, a series of GnG with radius from 22.03 to 27.06 nm were synthesized using sucrose phosphorylase, α-glucan phosphorylase (GP), and branching enzyme (BE). Adjusting the relative activity ratio of GP and BE (GP/BE) made the molecular weight (MW) distribution of intermediate GnG products follow two different paths. At a low GP/BE, the GnG developed from "small to large" during the synthetic process, with the MW increasing from 6.15 × 106 to 1.21 × 107 g/mol, and possessed a compact structure. By contrast, a high GP/BE caused the "large to small" model, with the MW reduction of GnG from 1.62 × 107 to 1.21 × 107 g/mol, and created a loose external structure. The higher GP activity promoted the elongation of external chains and restrained chain transfer by the BE to the inner zone of GnG, which would modulate the loose-tight structure of GnG. These findings provide new useful insights into the construction of structurally well-defined nanoparticles.
Collapse
Affiliation(s)
- Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
10
|
Dai Y, Zhang T, Jiang B, Mu W, Chen J, Hassanin HA. Dictyoglomus turgidum DSM 6724 α-Glucan Phosphorylase: Characterization and Its Application in Multi-enzyme Cascade Reaction for D-Tagatose Production. Appl Biochem Biotechnol 2021; 193:3719-3731. [PMID: 34379312 DOI: 10.1007/s12010-021-03624-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
Phosphorylase is a type of enzyme-producing sugar phosphates through the reversible phosphorolysis reactions of glycosides, which makes it an important starting enzyme in multi-enzyme systems for rare sugar biomanufacturing. To investigate its application in D-tagatose biosynthesis from maltodextrin using in vitro multi-enzyme cascade biosystem, the α-glucan phosphorylase (αGP; EC 2.4.1.1) from the thermophile D. turgidum DSM 6724 was prepared and characterized. It exhibited the specific activity of 30.28 U/mg at its optimal temperature of 70 °C. Thermostability results revealed that DituαGP could maintain more than 25% of initial activity for 4 h, even at 90 °C. The highest activity was observed at pH 5.5, and most divalent metal ions deactivated the enzyme. DituαGP exhibited great application potential in the multi-enzyme system that about 3.919 g/L of D-tagatose was produced from 150 g/L of maltodextrin within 36 h. DituαGP has played an important role in this biosystem and will also be applied in the synthesis of other rare sugars from maltodextrin.
Collapse
Affiliation(s)
- Yiwei Dai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hinawi Am Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
11
|
Kadokawa JI, Wada Y, Yamamoto K. Preparation of Amylose-Oligo[( R)-3-hydroxybutyrate] Inclusion Complex by Vine-Twining Polymerization. Molecules 2021; 26:2595. [PMID: 33946828 PMCID: PMC8124448 DOI: 10.3390/molecules26092595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we attempted to prepare an amylose-oligo[(R)-3-hydroxybutyrate] (ORHB) inclusion complex using a vine-twining polymerization approach. Our previous studies indicated that glucan phosphorylase (GP)-catalyzed enzymatic polymerization in the presence of appropriate hydrophobic guest polymers produces the corresponding amylose-polymer inclusion complexes, a process named vine-twining polymerization. When vine-twining polymerization was conducted in the presence of ORHB under general enzymatic polymerization conditions (45 °C), the enzymatically produced amylose did not undergo complexation with ORHB. However, using a maltotriose primer in the same polymerization system at 70 °C for 48 h to obtain water-soluble amylose, called single amylose, followed by cooling the system over 7 h to 45 °C, successfully induced the formation of the inclusion complex. Furthermore, enzymatic polymerization initiated from a longer primer under the same conditions induced the partial formation of the inclusion complex. The structures of the different products were analyzed by X-ray diffraction, 1H-NMR, and IR measurements. The mechanism of formation of the inclusion complexes discussed in the study is proposed based on the additional experimental results.
Collapse
Affiliation(s)
- Jun-ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan; (Y.W.); (K.Y.)
| | | | | |
Collapse
|
12
|
Kadokawa JI, Chigita H, Yamamoto K. Chemoenzymatic synthesis of carboxylate-terminated maltooligosaccharides and their use for cross-linking of chitin. Int J Biol Macromol 2020; 159:510-516. [PMID: 32417546 DOI: 10.1016/j.ijbiomac.2020.05.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
In this paper, we report chemoenzymatic synthesis of maltooligosaccharides having carboxylate groups at both ends (carboxylate-terminated maltooligosaccharides, GlcA-Glcn-GlcCOONa). The products were further used as cross-linker for water-soluble chitin (WSCh) to obtain network chitins. The synthesis of GlcA-Glcn-GlcCOONa was achieved by thermostable phosphorylase-catalyzed enzymatic α-glucuronylation using α-d-glucuronic acid 1-phosphate with a carboxylated maltooligosaccharide, which was prepared by chemical oxidation at the reducing end of maltoheptaose with sodium hypoiodite. The structures of GlcA-Glcn-GlcCOONa were evaluated by 1H NMR and MALDI-TOF mass spectra. The obtained GlcA-Glcn-GlcCOONa were used as cross-linker for WSCh by condensation in the presence of condensing agent. The reaction mixtures totally turned into hydrogel form in most cases. Morphologies of lyophilized samples (cryogels) from the hydrogels were evaluated by SEM measurement. The hydrogels could be converted into films by pressing. Furthermore, mechanical properties of the hydrogels and films were investigated by compression and tensile tests, respectively.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| | - Hirotaka Chigita
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
13
|
Thermostable α-Glucan Phosphorylase-Catalyzed Enzymatic Copolymerization to Produce Partially 2-Deoxygenated Amyloses. Processes (Basel) 2020. [DOI: 10.3390/pr8091070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
α-Glucan phosphorylase catalyzes the enzymatic polymerization of α-d-glucose 1-phosphate (Glc-1-P) monomers from a maltooligosaccharide primer to produce α(1→4)-glucan—i.e., amylose. In this study, by exploiting the weak specificity for the substrate recognition of a thermostable α-glucan phosphorylase (from Aquifex aeolicus VF5), we investigated the enzymatic copolymerization of 2-deoxy-α-d-glucose 1-phosphate (dGlc-1-P), which was produced in situ from d-glucal, with Glc-1-P to obtain non-natural heteropolysaccharides composed of α(1→4)-linked dGlc/Glc units—i.e., partially 2-deoxygenated amylose. The reactions were carried out at different monomer feed ratios using a maltotriose primer at 40 °C for 24 h. The products were precipitated from the reaction medium, isolated by centrifugation, and subjected to 1H NMR spectroscopic and powder X-ray diffraction measurements to evaluate their chemical and crystalline structures, respectively. Owing to its amorphous nature, the partially 2-deoxygenated amylose with adapted unit ratios formed a film when subjected to a casting method.
Collapse
|
14
|
Uto T, Nakamura S, Yamamoto K, Kadokawa JI. Evaluation of artificial crystalline structure from amylose analog polysaccharide without hydroxy groups at C-2 position. Carbohydr Polym 2020; 240:116347. [PMID: 32475598 DOI: 10.1016/j.carbpol.2020.116347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/25/2023]
Abstract
In this study, we found that a new artificial crystalline structure was fabricated from an amylose analog polysaccharide without hydroxy groups at the C-2 position, i.e., 2-deoxyamylose. The polysaccharide with a well-defined structure was synthesized by facile thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization. Powder X-ray diffraction (XRD) analysis of the product indicated the formation of a specific crystalline structure that was completely different from the well-known double helix of the natural polysaccharide, amylose. Molecular dynamics simulations showed that the isolated chains of 2-deoxyamylose spontaneously assembled to a novel double helix based on building blocks with controlled hydrophobicity arising from pyranose ring stacking. The simulation results corresponded with the XRD patterns.
Collapse
Affiliation(s)
- Takuya Uto
- Organization for Promotion of Tenure Track, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Shota Nakamura
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
15
|
Abstract
Because polysaccharides have very complicated chemical structures constructed by a great diversity of monosaccharide residues and glycosidic linkages, enzymatic approaches have been identified as powerful tools to precisely synthesize polysaccharides as the reactions progress in highly controlled regio- and stereoarrangements. α-Glucan phosphorylase (GP) is one of the enzymes that have acted as catalysts for the practical production of well-defined polysaccharides. GP can catalyze enzymatic polymerization of α-d-glucose 1-phosphate (Glc-1-P) as a monomer from a maltooligosaccharide primer to produce a pure amylose with well-defined structure via the formation of α(1→4)-glycosidic linkages. Here, the author presents methods which achieve the enzymatic synthesis of functional amylosic materials and amylose analog polysaccharides by GP-catalyzed enzymatic polymerization approaches. As the polymerization progresses at the non-reducing end of the primer, it can be conducted using polymeric primers that are modified at the reducing end and covalently attached on suitable polymeric chains. By using such polymeric primers, various amylose-grafted functional materials can be enzymatically synthesized. For example, the detailed protocol for the synthesis of amylose-grafted poly(γ-glutamic acid) is described. GP shows loose specificity for the recognition of substrates, which allows to recognize some monosaccharide 1-phosphates as analog substrates of Glc-1-P. Representatively, the experimental procedure of the GP-catalyzed enzymatic polymerization of α-d-glucosamine 1-phosphate as the analog substrate is presented to synthesize an α(1→4)-linked glucosamine polymer, that is called amylosamine. By means of a similar approach catalyzed by GP, several amylose analog polysaccharides have been obtained.
Collapse
|
16
|
Kadokawa JI, Orio S, Yamamoto K. Formation of microparticles from amylose-grafted poly(γ-glutamic acid) networks obtained by thermostable phosphorylase-catalyzed enzymatic polymerization. RSC Adv 2019; 9:16176-16182. [PMID: 35521363 PMCID: PMC9064375 DOI: 10.1039/c9ra02999k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/16/2019] [Indexed: 11/21/2022] Open
Abstract
Amylose is a natural polysaccharide with helical conformation, which spontaneously forms water-insoluble assemblies, such as double helixes and inclusion complexes, at ambient temperatures in aqueous media, whereas it is synthesized as a water-soluble single chain by thermostable phosphorylase-catalyzed enzymatic polymerization at elevated temperatures in aqueous buffer solvents. In this study, we investigated the enzymatic polymerization at 80 °C using a primer-grafted poly(γ-glutamic acid) (PGA) in the presence or absence of poly(l-lactic acid) (PLLA) as a guest polymer for inclusion by amylose. Consequently, the produced amylose-grafted PGAs formed microparticles by cooling the mixtures at room temperature after the enzymatic polymerization in either the presence or the absence of PLLA. The particle sizes, which were evaluated by SEM measurement, were dependent on the feed ratios of PLLA. Based on the characterization results by the powder X-ray diffraction, IR, and dynamic light scattering measurements, a mechanism for the formation of the microparticles in the present system is proposed.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Saya Orio
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University 1-21-40 Korimoto Kagoshima 890-0065 Japan
| |
Collapse
|
17
|
Kadokawa JI, Yano K, Orio S, Yamamoto K. Formation of Supramolecular Soft Materials from Amylosic Inclusion Complexes with Designed Guest Polymers Obtained by Vine-Twining Polymerization. ACS OMEGA 2019; 4:6331-6338. [PMID: 31459773 PMCID: PMC6649246 DOI: 10.1021/acsomega.9b00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/27/2019] [Indexed: 05/18/2023]
Abstract
Amylose forms supramolecular inclusion complexes with polymeric guests in the phosphorylase-catalyzed enzymatic polymerization field, so-called "vine-twining polymerization". However, such inclusion complexes have not exhibited specific properties and processability as functional supramolecular materials. In this study, we found that amylosic inclusion complexes, which were obtained by vine-twining polymerization using a designed guest polymer, that is, an amphiphilic triblock copolymer poly(2-methyl-2-oxazoline-block-tetrahydrofuran-block-2-methyl-2-oxazoline), exhibited gel and film formation properties. The characterization results of the products suggested that enzymatically elongated amylose chains complexed with the polytetrahydrofuran block in the triblock copolymer. Accordingly, the outer poly(2-methyl-2-oxazoline) blocks constructed hydrophilic spaces among the inclusion complex segments. Furthermore, the presence of such outer blocks affected the lower regularity of crystalline alignment among the inclusion complex segments in the products. Such higher-order structures probably induced the formation of supramolecular soft materials, such as gels and films.
Collapse
|
18
|
Preparation of Amylose-Carboxymethyl Cellulose Conjugated Supramolecular Networks by Phosphorylase-Catalyzed Enzymatic Polymerization. Catalysts 2019. [DOI: 10.3390/catal9030211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymatic polymerization has been noted as a powerful method to precisely synthesize polymers with complicated structures, such as polysaccharides, which are not commonly prepared by conventional polymerization. Phosphorylase is one of the enzymes which have been used to practically synthesize well-defined polysaccharides. The phosphorylase-catalyzed enzymatic polymerization is conducted using α-d-glucose 1-phosphate as a monomer, and maltooligosaccharide as a primer, respectively, to obtain amylose. Amylose is known to form supramolecules owing to its helical conformation, that is, inclusion complex and double helix, in which the formation is depended on whether a guest molecule is present or not. In this paper, we would like to report the preparation of amylose-carboxymethyl cellulose (CMC) conjugated supramolecular networks, by the phosphorylase-catalyzed enzymatic polymerization, using maltoheptaose primer-grafted CMC. When the enzymatic polymerization was carried out using the graft copolymer, either in the presence or in the absence of a guest polymer poly (ε-caprolactone) (PCL), the enzymatically elongated amylose chains from the primers on the CMC main-chain formed double helixes or inclusion complexes, depending on the amounts of PCL, which acted as cross-linking points for the construction of network structures. Accordingly, the reaction mixtures totally turned into hydrogels, regardless of the structures of supramolecular cross-linking points.
Collapse
|
19
|
Orio S, Shoji T, Yamamoto K, Kadokawa JI. Difference in Macroscopic Morphologies of Amylosic Supramolecular Networks Depending on Guest Polymers in Vine-Twining Polymerization. Polymers (Basel) 2018; 10:E1277. [PMID: 30961202 PMCID: PMC6401710 DOI: 10.3390/polym10111277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
Amylose, a natural polysaccharide, acts as a host molecule to form supramolecular inclusion complexes in its enzymatically formation process, that is, phosphorylase-catalyzed enzymatic polymerization using the α-d-glucose 1-phosphate monomer and the maltooligosaccharide primer, in the presence of appropriate guest polymers (vine-twining polymerization). Furthermore, in the vine-twining polymerization using maltooligosaccharide primer-grafted polymers, such as maltoheptaose (G₇)-grafted poly(γ-glutamic acid) (PGA), in the presence of poly(ε-caprolactone) (PCL), the enzymatically elongated amylose graft chains have formed inclusion complexes with PCL among the PGA main-chains to construct supramolecular networks. Either hydrogelation or aggregation as a macroscopic morphology from the products was observed in accordance with PCL/primer feed ratios. In this study, we evaluated macroscopic morphologies from such amylosic supramolecular networks with different guest polymers in the vine-twining polymerization using G₇-grafted PGA in the presence of polytetrahydrofuran (PTHF), PCL, and poly(l-lactide) (PLLA). Consequently, we found that the reaction mixture using PTHF totally turned into a hydrogel form, whereas the products using PCL and PLLA were aggregated in the reaction mixtures. The produced networks were characterized by powder X-ray diffraction and scanning electron microscopic measurements. The difference in the macroscopic morphologies was reasonably explained by stabilities of the complexes depending on the guest polymers.
Collapse
Affiliation(s)
- Saya Orio
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan.
| | - Takuya Shoji
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan.
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan.
| | - Jun-Ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan.
| |
Collapse
|
20
|
Thermostable alpha-glucan phosphorylases: characteristics and industrial applications. Appl Microbiol Biotechnol 2018; 102:8187-8202. [PMID: 30043268 DOI: 10.1007/s00253-018-9233-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
α-Glucan phosphorylases (α-GPs) catalyze the reversible phosphorolysis of α-1,4-linked polysaccharides such as glycogen, starch, and maltodextrins, therefore playing a central role in the usage of storage polysaccharides. The discovery of these enzymes and their role in the course of catalytic conversion of glycogen was rewarded with the Nobel Prize in Physiology or Medicine in 1947. Nowadays, however, thermostable representatives attract special attention due to their vast potential in the enzymatic production of diverse carbohydrates and derivatives such as (functional) oligo- and (non-natural) polysaccharides, artificial starch, glycosides, and nucleotide sugars. One of the most recently explored utilizations of α-GPs is their role in the multi-enzymatic process of energy production stored in carbohydrate biobatteries. Regardless of their use, thermostable α-GPs offer significant advantages and facilitated bioprocess design due to their high operational temperatures. Here, we present an overview and comparison of up-to-date characterized thermostable α-GPs with a special focus on their reported biotechnological applications.
Collapse
|
21
|
Kadokawa JI, Egashira N, Yamamoto K. Chemoenzymatic Preparation of Amylose-Grafted Chitin Nanofiber Network Materials. Biomacromolecules 2018; 19:3013-3019. [DOI: 10.1021/acs.biomac.8b00577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Naomichi Egashira
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
22
|
Yui T, Uto T, Nakauchida T, Yamamoto K, Kadokawa JI. Double helix formation from non-natural amylose analog polysaccharides. Carbohydr Polym 2018; 189:184-189. [PMID: 29580397 DOI: 10.1016/j.carbpol.2018.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
|
23
|
|
24
|
Nakauchida T, Yamamoto K, Kadokawa JI. Hierarchically controlled assemblies from amylose analog aminopolysaccharides by reductive amination: From nano- to macrostructures. J Appl Polym Sci 2017. [DOI: 10.1002/app.45890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takuya Nakauchida
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto, Kagoshima 890-0065 Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto, Kagoshima 890-0065 Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto, Kagoshima 890-0065 Japan
| |
Collapse
|
25
|
Chemoenzyamtic synthesis and self-assembling gelation behavior of amylose-grafted poly(γ-glutamic acid). Int J Biol Macromol 2017; 97:99-105. [DOI: 10.1016/j.ijbiomac.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/01/2017] [Indexed: 11/22/2022]
|
26
|
Tanaka T, Tsutsui A, Tanaka K, Yamamoto K, Kadokawa JI. Evaluation of Stability of Amylose Inclusion Complexes Depending on Guest Polymers and Their Application to Supramolecular Polymeric Materials. Biomolecules 2017; 7:E28. [PMID: 28294979 PMCID: PMC5372740 DOI: 10.3390/biom7010028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
This paper describes the evaluation of the stability of amylose-polymer inclusion complexes under solution state in dimethyl sulfoxide (DMSO) depending on guest polymers. The three complexes were prepared by the vine-twining polymerization method using polytetrahydrofuran (PTHF), poly(ε-caprolactone) (PCL), and poly(l-lactide) (PLLA) as guest polymers. The stability investigation was conducted at desired temperatures (25, 30, 40, 60 °C) in DMSO solutions of the complexes. Consequently, the amylose-PTHF inclusion complex was dissociated at 25 °C, while the other complexes were stable under the same conditions. When the temperatures were elevated, the amylose-PCL and amylose-PLLA complexes were dissociated at 40 and 60 °C, respectively. We also found that amylose inclusion supramolecular polymers which were prepared by the vine-twining polymerization using primer-guest conjugates formed films by the acetylation of amylose segments. The film from acetylated amylose-PLLA supramolecular polymer had higher storage modulus than that from acetylated amylose-PTHF supramolecular polymer, as a function of temperature.
Collapse
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Atsushi Tsutsui
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kazuya Tanaka
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan.
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan.
| | - Jun-Ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 860-0065, Japan.
| |
Collapse
|
27
|
Egashira N, Yamamoto K, Kadokawa JI. Enzymatic grafting of amylose on chitin nanofibers for hierarchical construction of controlled microstructures. Polym Chem 2017. [DOI: 10.1039/c7py00521k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, controlled microstructures were constructed by enzymatic grafting on amidinium chitin nanofibers, followed by lyophilisation, which were changed from network to porous morphologies depending on the molecular weights of amylose graft chains.
Collapse
Affiliation(s)
- Naomichi Egashira
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Kazuya Yamamoto
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Jun-ichi Kadokawa
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| |
Collapse
|
28
|
Synthesis of α(1→4)-linked non-natural mannoglucans by α-glucan phosphorylase-catalyzed enzymatic copolymerization. Carbohydr Polym 2016; 151:1034-1039. [DOI: 10.1016/j.carbpol.2016.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022]
|
29
|
Kadokawa JI. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions. Polymers (Basel) 2016; 8:E138. [PMID: 30979227 PMCID: PMC6432375 DOI: 10.3390/polym8040138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/29/2023] Open
Abstract
In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose) was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named "vine-twining polymerization". Through this approach, amylose supramolecular network materials were fabricated using designed graft copolymers. Furthermore, supramolecular inclusion polymers were formed by vine-twining polymerization using primer⁻guest conjugates.
Collapse
Affiliation(s)
- Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
30
|
Zhou W, You C, Ma H, Ma Y, Zhang YHP. One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1777-1783. [PMID: 26832825 DOI: 10.1021/acs.jafc.5b05648] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
α-Glucose 1-phosphate (G1P) is synthesized from 5% (w/v) corn starch and 1 M phosphate mediated by α-glucan phosphorylase (αGP) from the thermophilic bacterium Thermotoga maritima at pH 7.2 and 70 °C. To increase G1P yield from corn starch containing branched amylopectin, a hyper-thermostable isoamylase from Sulfolobus tokodaii was added for simultaneous starch gelatinization and starch-debranching hydrolysis at 85 °C and pH 5.5 before αGP use. The pretreatment of isoamylase increased G1P titer from 120 mM to 170 mM. To increase maltose and maltotriose utilization, the third thermostable enzyme, 4-glucanotransferase (4GT) from Thermococcus litoralis, was added during the late stage of G1P biotransformation, further increasing G1P titer to 200 mM. This titer is the highest G1P level obtained on starch or its derived products (maltodextrin and soluble starch). This study suggests that in vitro multienzyme biotransformation has an advantage of great engineering flexibility in terms of space and time compared with microbial fermentation.
Collapse
Affiliation(s)
- Wei Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Chun You
- Cell Free Bioinnovations Inc. , 1800 Kraft Drive, Suite 222, Blacksburg, Virginia 24060, United States
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Y-H Percival Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Cell Free Bioinnovations Inc. , 1800 Kraft Drive, Suite 222, Blacksburg, Virginia 24060, United States
- Biological Systems Engineering Department, Virginia Tech , 304 Seitz Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
31
|
Gotanda R, Yamamoto K, Kadokawa JI. Amylose Stereoselectively Includes Poly(d-alanine) to Form Inclusion Complex in Vine-Twining Polymerization: A Novel Saccharide-Peptide Supramolecular Conjugate. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ryuya Gotanda
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| |
Collapse
|
32
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
33
|
Nakauchida T, Takata Y, Yamamoto K, Kadokawa JI. Chemoenzymatic synthesis and pH-responsive properties of amphoteric block polysaccharides. Org Biomol Chem 2016; 14:6449-56. [DOI: 10.1039/c6ob00817h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the chemoenzymatic synthesis of amphoteric polysaccharides comprising a glucuronic acid block and a glucosamine block, which showed specific pH-responsive properties.
Collapse
Affiliation(s)
- Takuya Nakauchida
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Yusei Takata
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Kazuya Yamamoto
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Jun-ichi Kadokawa
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| |
Collapse
|
34
|
Yamashita K, Yamamoto K, Kadokawa JI. Synthesis of Non-Natural Heteroaminopolysaccharides by α-Glucan Phosphorylase-Catalyzed Enzymatic Copolymerization: α(1→4)-Linked Glucosaminoglucans. Biomacromolecules 2015; 16:3989-94. [DOI: 10.1021/acs.biomac.5b01332] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kento Yamashita
- Department
of Chemistry, Biotechnology, and Chemical Engineering, Graduate School
of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Department
of Chemistry, Biotechnology, and Chemical Engineering, Graduate School
of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Jun-ichi Kadokawa
- Department
of Chemistry, Biotechnology, and Chemical Engineering, Graduate School
of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
35
|
Tanaka T, Gotanda R, Tsutsui A, Sasayama S, Yamamoto K, Kimura Y, Kadokawa JI. Synthesis and gel formation of hyperbranched supramolecular polymer by vine-twining polymerization using branched primer–guest conjugate. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Takata Y, Yamamoto K, Kadokawa JI. Preparation of pH-Responsive Amphoteric Glycogen Hydrogels by α-Glucan Phosphorylase-Catalyzed Successive Enzymatic Reactions. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusei Takata
- Department of Chemistry, Biotechnologyand Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnologyand Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnologyand Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| |
Collapse
|
37
|
Tanaka T, Sasayama S, Yamamoto K, Kimura Y, Kadokawa JI. Evaluating Relative Chain Orientation of Amylose and Poly(l
-lactide) in Inclusion Complexes Formed by Vine-Twining Polymerization Using Primer-Guest Conjugates. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201400603] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science; Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| | - Shota Sasayama
- Department of Chemistry; Biotechnology and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Kazuya Yamamoto
- Department of Chemistry; Biotechnology and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Yoshiharu Kimura
- Department of Biobased Materials Science; Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry; Biotechnology and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
- Research Center for Environmentally Friendly Materials Engineering; Muroran Institute of Technology; 27-1 Mizumoto-cho Muroran Hokkaido 050-8585 Japan
| |
Collapse
|
38
|
Tanaka T, Tsutsui A, Gotanda R, Sasayama S, Yamamoto K, Kadokawa JI. Synthesis of Amylose-Polyether Inclusion Supramolecular Polymers by Vine-twining Polymerization Using Maltoheptaose-functionalized Poly(tetrahydrofuran) as a Primer-guest Conjugate. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Atsushi Tsutsui
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology
| | - Ryuya Gotanda
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Shota Sasayama
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
39
|
Kadokawa JI, Tanaka K, Hatanaka D, Yamamoto K. Preparation of multiformable supramolecular gels through helical complexation by amylose in vine-twining polymerization. Polym Chem 2015. [DOI: 10.1039/c5py00753d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular hydrogels with macroscopic interfacial healing behavior were obtained through helical complexation by amylose in vine-twining polymerization using poly(γ-glutamic acid-graft-ε-caprolactone), which were further converted into cryo- and ion gels.
Collapse
Affiliation(s)
- Jun-ichi Kadokawa
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Kazuya Tanaka
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Daisuke Hatanaka
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Kazuya Yamamoto
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| |
Collapse
|
40
|
Kadokawa JI, Shimohigoshi R, Yamashita K, Yamamoto K. Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-d-glucosamine 1-phosphate. Org Biomol Chem 2015; 13:4336-43. [DOI: 10.1039/c5ob00167f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan and chitin stereoisomers were successfully synthesized by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-d-glucosamine 1-phosphate and subsequent N-acetylation.
Collapse
Affiliation(s)
- Jun-ichi Kadokawa
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Riko Shimohigoshi
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Kento Yamashita
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| | - Kazuya Yamamoto
- Department of Chemistry
- Biotechnology
- and Chemical Engineering
- Graduate School of Science and Engineering
- Kagoshima University
| |
Collapse
|
41
|
Takata Y, Shimohigoshi R, Yamamoto K, Kadokawa JI. Enzymatic Synthesis of Dendritic Amphoteric α-Glucans by Thermostable Phosphorylase Catalysis. Macromol Biosci 2014; 14:1437-43. [DOI: 10.1002/mabi.201400204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/13/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Yusei Takata
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering, Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Riko Shimohigoshi
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering, Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering, Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Jun-Ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering, Kagoshima University; 1-21-40 Korimoto Kagoshima 890-0065 Japan
- Research Center for Environmentally Friendly Materials Engineering; Muroran Institute of Technology; 27-1 Mizumoto-cho Muroran Hokkaido 050-8585 Japan
| |
Collapse
|
42
|
Hierarchically Self-Assembled Nanofiber Films from Amylose-Grafted Carboxymethyl Cellulose. FIBERS 2014. [DOI: 10.3390/fib2010034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Synthesis of New Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic α-Glycosylations Using Polymeric Glycosyl Acceptors. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1144.ch011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Tanaka T, Sasayama S, Nomura S, Yamamoto K, Kimura Y, Kadokawa JI. An Amylose-Poly(l
-lactide) Inclusion Supramolecular Polymer: Enzymatic Synthesis by Means of Vine-Twining Polymerization Using a Primer-Guest Conjugate. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201300525] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| | - Shota Sasayama
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University, 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Shintaro Nomura
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University, 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Kazuya Yamamoto
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University, 1-21-40 Korimoto Kagoshima 890-0065 Japan
| | - Yoshiharu Kimura
- Department of Biobased Materials Science, Graduate School of Science and Technology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku, Kyoto 606-8585 Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering; Graduate School of Science and Engineering; Kagoshima University, 1-21-40 Korimoto Kagoshima 890-0065 Japan
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology; 27-1 Mizumoto-cho Muroran Hokkaido 050-8585 Japan
| |
Collapse
|
45
|
Shimohigoshi R, Takemoto Y, Yamamoto K, Kadokawa JI. Thermostable α-Glucan Phosphorylase-catalyzed Successive α-Mannosylations. CHEM LETT 2013. [DOI: 10.1246/cl.130286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | - Kazuya Yamamoto
- Graduate School of Science and Engineering, Kagoshima University
| | - Jun-ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology
| |
Collapse
|
46
|
Kadokawa JI, Nomura S, Hatanaka D, Yamamoto K. Preparation of polysaccharide supramolecular films by vine-twining polymerization approach. Carbohydr Polym 2013; 98:611-7. [PMID: 23987389 DOI: 10.1016/j.carbpol.2013.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/27/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
In this study, we investigated the preparation of polysaccharide supramolecular films through the formation of inclusion complexes by amylose in vine-twining polymerization using carboxymethyl cellulose-graft-poly(ε-caprolactone) (CMC-g-PCL) as a new guest polymer. First, hydrogels were prepared by phosphorylase-catalyzed enzymatic polymerization in the presence of CMC-g-PCL according to the vine-twining polymerization manner. The XRD result of a powdered sample obtained by lyophilization of the resulting hydrogel indicated the presence of inclusion complexes of amylose with the PCL graft-chains between intermolecular (CMC-g-PCL)s, which acted as supramolecular cross-linking points for the hydrogelation. Then, the supramolecular films were obtained by adding water to the powdered samples, followed by drying. The mechanical properties of the selected films examined by tensile testing were superior to those of a CMC film. The effect of the supramolecular cross-linking structures on the mechanical properties of the films was evaluated further by several investigations.
Collapse
Affiliation(s)
- Jun-ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| | | | | | | |
Collapse
|
47
|
Takemoto Y, Izawa H, Umegatani Y, Yamamoto K, Kubo A, Yanase M, Takaha T, Kadokawa JI. Synthesis of highly branched anionic α-glucans by thermostable phosphorylase-catalyzed α-glucuronylation. Carbohydr Res 2012; 366:38-44. [PMID: 23261781 DOI: 10.1016/j.carres.2012.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 11/08/2022]
Abstract
Highly branched anionic α-glucans were enzymatically synthesized by thermostable phosphorylase-catalyzed α-glucuronylation of highly branched cyclic dextrin using α-D-glucuronic acid 1-phosphate (GlcA-1-P) as a glycosyl donor. The resulting products were characterized by ¹H NMR measurement as well as high performance anion exchange chromatographic and MALDI-TOF MS analyses after treatments with several amylases. α-D-Glucose 1-phosphate was detected in the reaction mixtures, suggesting the occurrence of phosphorolysis in the α-glucuronylation. The glucuronylation ratios of glucuronic acid residues to non-reducing ends were evaluated from quantification of α-D-glucose 1-phosphate and inorganic phosphate in the reaction mixtures, which were relatively in good agreement with those determined by ¹H NMR analysis of the products. The glucuronylation ratios increased with increasing feed ratios of GlcA-1-P/non-reducing ends.
Collapse
Affiliation(s)
- Yasutaka Takemoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Umegatani Y, Izawa H, Nawaji M, Yamamoto K, Kubo A, Yanase M, Takaha T, Kadokawa JI. Enzymatic α-glucuronylation of maltooligosaccharides using α-glucuronic acid 1-phosphate as glycosyl donor catalyzed by a thermostable phosphorylase from Aquifex aeolicus VF5. Carbohydr Res 2012; 350:81-5. [DOI: 10.1016/j.carres.2011.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 11/15/2022]
|
49
|
Ye X, Rollin J, Zhang YHP. Thermophilic α-glucan phosphorylase from Clostridium thermocellum: Cloning, characterization and enhanced thermostability. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Hong Y, Wu L, Liu B, Peng C, Sheng D, Ni J, Shen Y. Characterization of a glucan phosphorylase from the thermophilic archaeon Sulfolobus tokodaii strain 7. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|