1
|
Hu R, Cao J, Rong C, Wu S, Wu L. Increasing the flexibility of the substrate binding pocket of Streptomyces phospholipase D can enhance its catalytic efficiency in soybean phosphatidylcholine. Int J Biol Macromol 2024; 280:135824. [PMID: 39306159 DOI: 10.1016/j.ijbiomac.2024.135824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The catalytic efficiency of Streptomyces klenkii phospholipase D (SkPLD) in soybean phosphatidylcholine (soy-PC) processing is constrained by its acyl chain specificity. To address this limitation, we engineered the substrate-binding pocket of SkPLD to increase its flexibility. The mutant P343A/Y383L exhibited a 7.14-fold increase in catalytic efficiency toward soy-PC compared to the wild type. This enhancement was attributed to improved substrate-binding pocket flexibility, as evidenced by the significantly higher specific activity of the mutant toward PCs with various acyl chains (58.20-327.76 U/mg vs. 13.56-76.67 U/mg). Monomolecular film experiments demonstrated that the P343A/Y383L mutant reduced the energy barrier for PC binding, facilitating favorable interactions with the soy-PC monolayer. Molecular dynamics simulations revealed that the mutant's increased flexibility allowed for easier diffusion and penetration into the soy-PC monolayer, while the non-polar amino acids in the substrate-binding pocket promoted rapid interactions with the acyl chains of PC, ultimately leading to enhanced catalytic activity.
Collapse
Affiliation(s)
- Rongkang Hu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China.
| | - Jiale Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Chenghao Rong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Siyi Wu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China; Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China
| | - Linxiu Wu
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, PR China.
| |
Collapse
|
2
|
Hu R, Wu L, Cheng Q, Chen S, Shen T, Lan D, Ma Y, Wang Y. Structural variations and phospholipid binding characteristics of Streptomyces klenkii phospholipase D at the lipid-water interface. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Hu R, Cui R, Lan D, Wang F, Wang Y. Acyl Chain Specificity of Marine Streptomyces klenkii PhosPholipase D and Its Application in Enzymatic Preparation of Phosphatidylserine. Int J Mol Sci 2021; 22:10580. [PMID: 34638918 PMCID: PMC8508628 DOI: 10.3390/ijms221910580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/04/2023] Open
Abstract
Mining of phospholipase D (PLD) with altered acyl group recognition except its head group specificity is also useful in terms of specific acyl size phospholipid production and as diagnostic reagents for quantifying specific phospholipid species. Microbial PLDs from Actinomycetes, especially Streptomyces, best fit this process requirements. In the present studies, a new PLD from marine Streptomyces klenkii (SkPLD) was purified and biochemically characterized. The optimal reaction temperature and pH of SkPLD were determined to be 60 °C and 8.0, respectively. Kinetic analysis showed that SkPLD had the relatively high catalytic efficiency toward phosphatidylcholines (PCs) with medium acyl chain length, especially 12:0/12:0-PC (67.13 S-1 mM-1), but lower catalytic efficiency toward PCs with long acyl chain (>16 fatty acids). Molecular docking results indicated that the different catalytic efficiency was related to the increased steric hindrance of long acyl-chains in the substrate-binding pockets and differences in hydrogen-bond interactions between the acyl chains and substrate-binding pockets. The enzyme displayed suitable transphosphatidylation activity and the reaction process showed 26.18% yield with L-serine and soybean PC as substrates. Present study not only enriched the PLD enzyme library but also provide guidance for the further mining of PLDs with special phospholipids recognition properties.
Collapse
Affiliation(s)
| | | | | | - Fanghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (R.H.); (R.C.); (D.L.)
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (R.H.); (R.C.); (D.L.)
| |
Collapse
|
4
|
Hu R, Cui R, Tang Q, Lan D, Wang F, Wang Y. Enhancement of Phospholipid Binding and Catalytic Efficiency of Streptomyces klenkii Phospholipase D by Increasing Hydrophobicity of the Active Site Loop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11110-11120. [PMID: 34516129 DOI: 10.1021/acs.jafc.1c04078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanism of active site loops of Streptomyces phospholipase D (PLD) binding to the lipid-water interface for catalytic reactions still remains elusive. A flexible loop (residues 376-382) in the active site of Streptomyces klenkii PLD (SkPLD) is conserved within PLDs in most of the Streptomyces species. The residue Ser380 was found to be essential for the enzyme's adsorption to the interface and its substrate recognition. The S380V mutant showed a 4.8 times higher catalytic efficiency and nearly seven times higher adsorption equilibrium coefficient compared to the wild-type SkPLD. The monolayer film technique has confirmed that the substitution of Ser380 with valine in the loop exhibited positive interaction between the enzyme and PCs with different acyl chain lengths. The results of the interfacial binding properties indicated that the S380V mutant might display suitable phosphatidylserine synthesis activity. The present study will be helpful to explain the role of residue 380 in the active site loops of Streptomyces PLD.
Collapse
Affiliation(s)
- Rongkang Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Ruiguo Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Qingyun Tang
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Fanghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd., Foshan, Guangdong 528200, People's Republic of China
| |
Collapse
|
5
|
Wang F, Liu S, Mao X, Cui R, Yang B, Wang Y. Crystal Structure of a Phospholipase D from the Plant-Associated Bacteria Serratia plymuthica Strain AS9 Reveals a Unique Arrangement of Catalytic Pocket. Int J Mol Sci 2021; 22:3219. [PMID: 33809980 PMCID: PMC8004604 DOI: 10.3390/ijms22063219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Phospholipases D (PLDs) play important roles in different organisms and in vitro phospholipid modifications, which attract strong interests for investigation. However, the lack of PLD structural information has seriously hampered both the understanding of their structure-function relationships and the structure-based bioengineering of this enzyme. Herein, we presented the crystal structure of a PLD from the plant-associated bacteria Serratia plymuthica strain AS9 (SpPLD) at a resolution of 1.79 Å. Two classical HxKxxxxD (HKD) motifs were found in SpPLD and have shown high structural consistence with several PLDs in the same family. While comparing the structure of SpPLD with the previous resolved PLDs from the same family, several unique conformations on the C-terminus of the HKD motif were demonstrated to participate in the arrangement of the catalytic pocket of SpPLD. In SpPLD, an extented loop conformation between β9 and α9 (aa228-246) was found. Moreover, electrostatic surface potential showed that this loop region in SpPLD was positively charged while the corresponding loops in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) were neutral. The shortened loop between α10 and α11 (aa272-275) made the SpPLD unable to form the gate-like structure which existed specically in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) and functioned to stabilize the substrates. In contrast, the shortened loop conformation at this corresponding segment was more alike to several nucleases (Nuc, Zuc, mZuc, NucT) within the same family. Moreover, the loop composition between β11 and β12 was also different from the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9), which formed the entrance of the catalytic pocket and were closely related to substrate recognition. So far, SpPLD was the only structurally characterized PLD enzyme from Serratia. The structural information derived here not only helps for the understanding of the biological function of this enzyme in plant protection, but also helps for the understanding of the rational design of the mutant, with potential application in phospholipid modification.
Collapse
Affiliation(s)
- Fanghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (F.W.); (S.L.); (X.M.); (R.C.)
| | - Siyu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (F.W.); (S.L.); (X.M.); (R.C.)
| | - Xuejing Mao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (F.W.); (S.L.); (X.M.); (R.C.)
| | - Ruiguo Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (F.W.); (S.L.); (X.M.); (R.C.)
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China;
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (F.W.); (S.L.); (X.M.); (R.C.)
| |
Collapse
|
6
|
Zhang Z, Chen M, Xu W, Zhang W, Zhang T, Guang C, Mu W. Microbial phospholipase D: Identification, modification and application. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Hou HJ, Gong JS, Dong YX, Qin J, Li H, Li H, Lu ZM, Zhang XM, Xu ZH, Shi JS. Phospholipase D engineering for improving the biocatalytic synthesis of phosphatidylserine. Bioprocess Biosyst Eng 2019; 42:1185-1194. [PMID: 30989410 DOI: 10.1007/s00449-019-02116-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/25/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylserine is widely used in food, health, chemical and pharmaceutical industries. The phospholipase D-mediated green synthesis of phosphatidylserine has attracted substantial attention in recent years. In this study, the phospholipase D was heterologously expressed in Bacillus subtilis, Pichia pastoris, and Corynebacterium glutamicum, respectively. The highest activity of phospholipase D was observed in C. glutamicum, which was 0.25 U/mL higher than these in B. subtilis (0.14 U/mL) and P. pastoris (0.22 U/mL). System engineering of three potential factors, including (1) signal peptides, (2) ribosome binding site, and (3) promoters, was attempted to improve the expression level of phospholipase D in C. glutamicum. The maximum phospholipase D activity reached 1.9 U/mL, which was 7.6-fold higher than that of the initial level. The enzyme displayed favorable transphosphatidylation activity and it could efficiently catalyze the substrates L-serine and soybean lecithin for synthesis of phosphatidylserine after optimizing the conversion reactions in detail. Under the optimum conditions (trichloromethane/enzyme solution 4:2, 8 mg/mL soybean lecithin, 40 mg/mL L-serine, and 15 mM CaCl2, with shaking under 40 °C for 10 h), the reaction process showed 48.6% of conversion rate and 1.94 g/L of accumulated phosphatidylserine concentration. The results highlight the use of heterologous expression, system engineering, and process optimization strategies to adapt a promising phospholipase D for efficient phosphatidylserine production in synthetic application.
Collapse
Affiliation(s)
- Hai-Juan Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yu-Xiu Dong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zhen-Ming Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
8
|
Tao X, Jia N, Cheng N, Ren Y, Cao X, Liu M, Wei D, Wang FQ. Design and evaluation of a phospholipase D based drug delivery strategy of novel phosphatidyl-prodrug. Biomaterials 2017; 131:1-14. [DOI: 10.1016/j.biomaterials.2017.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022]
|
9
|
Hama S, Ogino C, Kondo A. Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes. Appl Microbiol Biotechnol 2015; 99:7879-91. [DOI: 10.1007/s00253-015-6845-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/25/2023]
|
10
|
Liu Y, Zhang T, Qiao J, Liu X, Bo J, Wang J, Lu F. High-yield phosphatidylserine production via yeast surface display of phospholipase D from Streptomyces chromofuscus on Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5354-5360. [PMID: 24841277 DOI: 10.1021/jf405836x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The gene encoding phospholipase D (PLD) from Streptomyces chromofuscus was displayed on the cell surface of Pichia pastoris GS115/pKFS-pldh using a Flo1p anchor attachment signal sequence (FS anchor). The displayed PLD (dPLD) showed maximum enzymatic activity at pH 6.0 and 55 °C and was stable within a broad range of temperatures (20-65 °C) and pHs (pH 4.0-11.0). In addition, the thermostability, acid stability and organic solvent tolerance of the dPLD were significantly enhanced compared with the secreted PLD (sPLD) from S. chromofuscus. Use of dPLD for conversion of phosphatidylcholine (PC) and l-serine to phosphatidylserine (PS) showed that 67.5% of PC was converted into PS at the optimum conditions. Moreover, the conversion rate of PS remained above 50% after 7 repeated batch cycles. Thus, P. pastoris GS115/pKFS-pldh shows the potential for viable industrial production of PS.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Ulbrich-Hofmann R, Lerchner A, Oblozinsky M, Bezakova L. Phospholipase D and its application in biocatalysis. Biotechnol Lett 2005; 27:535-44. [PMID: 15973486 DOI: 10.1007/s10529-005-3251-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Phospholipase D (PLD) from plants or microorganisms is used as biocatalyst in the transformation of phospholipids and phospholipid analogs in both laboratory and industrial scale. In recent years the elucidation of the primary structure of many PLDs from several sources, as well as the resolution of the first crystal structure of a microbial PLD, have yielded new insights into the structural basis and the catalytic mechanism of this catalyst. This review summarizes some new results of PLD research in the light of application.
Collapse
Affiliation(s)
- Renate Ulbrich-Hofmann
- Department of Biochemistry/Biotechnology, Martin-Luther University Halle-Wittenberg, D-06120, Halle, Germany.
| | | | | | | |
Collapse
|